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AN EXTENDED JOINT CONSISTENCY THEOREM
FOR FREE LOGIC WITH EQUALITY

RAYMOND D. GUMB

1 Introduction In this paper, proof is given of an extended joint con-
sistency theorem for free logic with equality using techniques sketched by
Hintikka in a proof of a similar theorem for standard first order logic.1

The Robinson consistency theorem and the Craig and Lyndon interpolation
theorems are immediate corollaries, and proof of the Beth definability
theorem is easily had. Certain related theorems of standard first order
logic, though, do not hold in free logic.2 To obtain the extended joint
consistency theorem, I modify the tree method as presented by Leblanc and
Wisdom for standard first order logic,3 adapting it to free logic with
equality. The completeness and soundness of a free method for free logic
with equality are then demonstrated informally by showing that it is
equivalent to an axiomatization known to be sound and complete. Since an
extension of this tree method can be applied to any infinite set of wffs, the
extension is strongly complete and strongly sound. Free logics are of
interest, first, because of the insights they provide concerning a number of
philosophical issues. Axiomatic versions of certain modal and tense logics
have free logics as their quantificational base, and the results presented
here carry over into some of these logics. Second, since free logics
provide one means of formalizing partial functions, free logics are of
potential use as the underlying logics of mathematical theories, and they
can be applied in the analysis of algorithms. To determine the suitability of
free logics for such mathematical applications, it is desirable to establish
results of the sort presented here.

2 The Leblanc tree method The grammar and semantics of TQC*=, a
tree method for free logic with equality, are to be those of Leblanc's QC*=,
a version of free logic with equality which employs in its deductive
component axiom schemas and modus ponens as the only rule of inference.4

QC*= is known to be complete and sound. The primitive logical constants
of QC*= are ~, ^, V, and =. For notational convenience, I shall also use 3 ,
which is defined in the usual manner. Let T, Tl9 and T2 be individual
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parameters of QC*=,let x and y be individual variables of QC*=, let VxA,B,
and C be wffs of QC*=, and let « / b e a set of wffs of QC*=. Following the
notation of Leblanc and Wisdom,5 the rules of TQC*= can be schematized as:

(1) (2) (3) (4)
--5/ B^CV ~(J5=)C)v/ ~V*Av/

B SL \ B 3x(x = T)
~B ° ~C ~A(T/x)

(5) (6)
VΛΓA 3y(y = τ) τl=τ2 B

or #. \ or
3y(y = T) VxA B Tγ=T2

A(T/x) A(T/x) B(TjTύ BiTjTJ

Rules (4)-(6) are subject to the following restrictions. In (4), ~VxA must
not be of the form 3x(x = 7\), and T must be foreign to J and to every
branch on which 3x{x = T) and ~A(T/x) are to be entered.6 In (5), A(T/x)
is entered on a branch when VxΛ and 3y(y = T), where x and 3; may be
identical, already occur on that branch. In (6), B{T2//T^ is entered on a
branch when Tγ = T2 and B already occur on that branch, where B is an
atomic wff (which may be an identity) or the negation of an atomic wff and
B{T2//T^ is the wff obtained by substituting T2 for zero or more occur-
rences of Tι in B.

Leblanc and Wisdom's ground rules7 are modified to become the
ground rules of TQC *=:

A. If both an atomic wff and its negation occur on a branch or if a wff of
the form ~(T = T) occurs on a branch, the branch is closed.
B. When applying any one of the rules of TQC*= according to ground rules
C through F, omit any wff if an occurrence of that wff already appears on
the branch.
C. Rules (l)-(4) are applied only to unchecked wffs. If a wff is decomposed
using any of the rules (l)-(4), the wff must be checked off and the wffs
yielded by the decomposition entered on every open branch through the wff.
D. When applying rule (4) add 3x(x = T) and the instantiation ~A(T/x) of
the negated universal quantification ~VxA on each open branch through
~ VΛΓA, where T is an individual parameter foreign to S and to the branch.
If a pair of wffs of the form ΞI3K3; = Tj and ~A(Tjx) already occur on a
branch, 3x(x = T) and ~A(T/x) are not added to that branch.
E. When applying rule (5), instantiate the universal quantification on each
open branch through it by means of each term T which has occurred so far
along the branch in a wff of the form 3y(y = T).
F. When applying rule (6), on each open branch through the identity
T1 = τ2, apply it n times to each atomic wff or negated atomic wff B on the
branch, where n is the number of occurrences of 7\ in B, adding each of the
n wffs of the form B{T2//T^ to the branch.8
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Leblanc and Wisdom's routine9 requires more extensive modification
so that infinite sets of wffs can be tested for consistency. It is more
convenient to present the routine for TQC*= in the form of a sequence of
instructions (steps), as is frequently done in the specification of an
algorithm, rather than in the form of a flowchart.10

Call a set of wffs J of QC*= infinitely extendible if there are tt0

individual parameters foreign to J, and call a wff B belonging to J activated
if B has been activated in step 2 of the routine for TQC*=, presented below.
Let J be infinitely extendible, and let e(J) be an enumeration Bo, B-lf B-2,
. . . of the wffs in J. Understand that, if J is empty, e(J) is the null
sequence; if J contains just one wff, Bo, e(J) = Bo; if just two wffs, Bo and
B-ι, are in J, e(J) = Bo, B-^ and so on. The enumeration e(J) determines
the order in which the routine for TQC*= activates the wffs in J. One wff
in J is activated in step 2 during each iteration through the loop beginning
at step 2 and ending at step 7. In particular, if J contains one or more
wffs, Bo is activated during the first iteration in step 2; if J contains two or
more wffs and the routine does not declare J to be inconsistent and halt in
step 6 during the first (i = 1) iteration, B-x is activated during the second
(i = 2) iteration in step 2; etc.

The Routine for TQC*=

1. Set i to 1. If J is empty, then (a) declare J to be consistent and (b) halt.
2. If there are one or more wffs in J which have not been activated (if
there are i or more wffs in J), then activate 2?-(f -i) and list 2L(t -!) at the
top of the tree.
3. If there is on an open branch (a) an unchecked wff to which one of the
rules (l)-(4) of TQC*= is applicable or (b) a pair of wffs to which rule (6) is
applicable, then apply the relevant rule. Continue applying rules (l)-(4) and
(6) in this manner until none of these rules can be applied.
4. If there is on an open branch a pair of wffs to which rule (5) is
applicable, then apply rule (5). Continue applying rule (5) in this manner
until it can no longer be applied.
5. If every wff in J has been activated and there is an open branch to which
no line was added in steps 3 and 4, then (a) declare J to be consistent and
(b) halt.
6. If every branch is closed, then (a) declare J to be inconsistent and
(b) halt.
7. (a) Set i to i + 1, and (b) go to step 2.

3 Completeness and soundness Regarding the routine for TQC*=, note
the following facts:

(1) If J is empty, the routine declares J'to be consistent and terminates in
step 1.

During each iteration i s* 1 through the loop beginning at step 2 of the
routine:

(2) if there are i or more wffs in J, -δ-(, -i) will be activated in step 2;
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(3) each wff or pair of wffs to which one of the rules (l)-(4) or (6) is
applicable will have the rule(s) applied to it in step 3 a finite number of
times, which is the maximum number of times permissible according to
ground rules A-D and F in step 3 during iteration i;
(4) each pair of wffs on an open branch to which rule (5) is applicable will
have rule (5) applied to it a finite number of times, which is the maximum
number of times permissible according to ground rule E in step 4 during
iteration i;
(5) if every wff in J has been activated and no line was added to some open
branch in steps 3 and 4, J will be declared to be consistent and the routine
will terminate in step 5 (since nothing more can be done to close that open
branch);
(6) if every branch is closed, J will be declared to be inconsistent and the
routine will terminate in step 6;
(7) if the routine has not terminated in step 5 or step 6, (since steps 2-6
involve a finite sequence of finite operations) the routine will reach step 7,
where it will return to step 2 for the i + 1-th iteration.

A descendant of A is recursively defined as follows:

(1) if B is a wff obtained by applying one of the rules (l)-(4) of TQC*= to A
or rules (5) or (6) of TQC*= to a pair of wffs, one of which is A, then B is a
descendant of A;
(2) if C is a descendant of B and B is a descendant of Λ, then C is a
descendant of A.

An inductive argument on the iteration i employing facts (l)-(7), above,
establishes the additional facts that, for any wff J5.f in the enumeration
e(JΪ), if J is not declared to be inconsistent in some iteration h of the
routine for TQC*= such that 1 ̂  h ^ i, (a) the i + 1-th iteration occurs and
B-i is activated in that iteration and (b) for each iteration j such that
j ^ i + 1, the rules of TQC*= are applied to B^ and each of its descendants
on an open branch the maximum number of times permissible according to
ground rules A-D and F in step 3 and the maximum number of times
permissible according to ground rule E in step 4.

Let J be a set of wffs, and let & be a set consisting of zero or more
sets of wffs. Call a logic strongly complete with respect to & if in that
logic, for every J belonging to <3, if J is syntactically consistent, then J is
semantically consistent. Call a logic strongly sound with respect to C/ if in
that logic, for every J in £>, if J is semantically consistent, then it is
syntactically consistent. Let & be the set consisting of all and only those
sets of wffs of QC*= which are infinitely extendible. Since QC*= is strongly
complete and strongly sound, facts (a) and (b) about the routine for TQC*=
insure that, if TQC*= is weakly complete and weakly sound, then it is also
strongly complete and strongly sound with respect to &. By demonstrating
that to each of the axioms and the rule of inference of QC*= there corre-
sponds a closed tree generated by the routine for TQC*=,we prove the weak
completeness of TQC*=; hence the strong completeness of TQC*= with
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respect to & follows. The weak soundness of TQC*=—hence the strong

soundness of TQC*= with respect to &—is had by demonstrating that if

the set of wffs on an open branch before applying one of the rules of

TQC*= is syntactically consistent in QC*=, then the set of wffs on the

branch after applying one of the rules of TQC*= is syntactically consistent

in QC*=.

For the weak completeness of TQC*=, I shall only consider the

quantificational axioms of QC*=, since the results for the other axioms and

the rule of inference can be retrieved from the literature on tree methods

for standard first order logic with equality. The following proofs employ

the derived ground rule that permits the closing of a branch as soon as any

wff and its negation appear on a branch.11 For each set consisting of the

negation of a quantificational axiom of QC*=, the routine for TQC*=

generates a closed tree.

Axiom 1 \fx(A 3 B) 3 (VxA 3 VxB)

Proof: The first lines generated by the routine for TQC*= are:

0. ~ (Vx(A 3 B) 3 (VxA 3 \fχB)) V

1. V#U ^ B) from 0

2. - ( VΛΓA 3 VxB) from 0 •

3. VxA from 2

4. ~ VxB from 2 •

which are added in step 3 during the first iteration.

If A = B, the tree closes. If A * B, consider the case when ~ VxB is not of

the form 3x(x = 7\). (The other case is similar.) Lines 5 and 6 are also

added in step 3 during the first iteration:

5. 3x(x = T) from 4

6. ~B(T/x) from 4

If B(T/x) is an identity of the form {Tι = 7Ί), the tree closes. Suppose

B(T/x) Φ (T1! = T j . If m ^ 0 is the number of times rule (2) is applied to

the descendants of ~B(T/x) in step 3 during the first iteration, there are at

most 2m open branches on entering step 4. For any branch b such that

1 ^ b ^ 2m, b either closes in step 3 or is still open when step 4 is entered

in the first iteration. Suppose it is still open. Let k ^ m ^ 0 be twice the

number of times rules (3) and (4) are applied plus the number of times

rules (1), (2), and (6) are applied on branch b to ~B(T/x) and its descen-

dants in step 3. In step 4 of the first iteration, line 7 + k is added to

branch b:

7 + k. A(T/x) from 3, 5

and, if branch b does not close at this point, line 8 + k is also added:

8 + k. A{T/x) 3 B(T/x) from 1 , 5 /

Branch b does not close after line 8 + k since ~(A(T/x) 3 B{T/x)) cannot

occur on branch b. Let I ̂  0 be the number of times rule (5) is applied to
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the descendants of VxA and ~B(T/x) on branch b in step 4 of the first
iteration. After line 8 +fc +1, branch b may close. Suppose that it does
not. Then, step 5 is entered, and the routine does not terminate by fact (5)
since 8 + k + I > 0 lines were added to branch b in steps 3 and 4. Step 6 is
entered, and the routine does not terminate by fact (6) since, by assump-
tion, branch b is not closed. So, by fact (7), the routine executes step 7 and
returns to step 2 for the second iteration. In step 3 of the second iteration,
the following line is added:

/ \
9 + k+l. ~A{T/x) B(T/x) from 8 + k

X X
7 + h 6

and branch b is closed. So, if a branch does not close before step 3 of the
second iteration, it will close then. Since there are no open branches, the
routine procedes through step 4 without adding any lines and through step 5
without halting. In step 6, the routine declares the set consisting of the
negation of axiom 1 to be inconsistent and halts by fact 6, since every
branch is closed. So, if the routine does not declare the set consisting of
the negation of axiom 1 to be inconsistent and halt in step 6 during the first
iteration, it will do so in step 6 during the second iteration.

Axiom 2 A => VxA

Proof:

0. ~(A => VxA) V
1. A from 0
2. ~V#A from 0 >/
3. 3x(x = T) from 2
4. ~A from 2

X
1

Note that since A is a wff, the quantification VxA is vacuous and
~A(T/x) = ~A.

Axiom 3 Vy3x(x = y)

Proof:

0. ~Vy3x(x = y) V
1. 3y(y = T) from 0
2. ~3x(x = T) from 0
3. Vx~(x = T) from 2
4. ~(T = T) from 1, 3

X

Axiom A4 Any wff VxA such that A( T/x) is an axiom and T is foreign
to VxA.
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Proof: Suppose that A(T/x) is an axiom, that T is foreign to VxA, and that
the routine for TQC*= generates a closed tree for ~A{T/x). That is:

0. ~A(T/x)

X

Then, since T is foreign to VxA:

0. ~V#A V
1. 3x(x = T) from 0
2. ~A(T/ΛΓ) from 0

X

by fact (b). So, if the routine for TQC*= generates a closed tree for
~A(T/x) and T is foreign to ~VxA, it also generates a closed tree for
- xA.

To establish the weak soundness of TQC*=, it is sufficient to consider
only the quantificational rules of TQC*=, as the results for the other rules
are in the literature. Fof each of the rules (4) and (5) of TQC*=, if the set
of wffs on an open branch before applying the rule is syntactically
consistent in QC*=, then the set of wffs on the branch after applying the
rule is syntactically consistent in QC*=:

Rule 4 If J is syntactically consistent, then, if ~ VxA belongs to J,
J U {3x(x = T), ~A(T/x)} is syntactically consistent for any T foreign to J.

Proof: Suppose that J is syntactically consistent and that ~ VxA belongs to
J. Now suppose that J\j {3x(x = T), ~A(T/x)} is syntactically inconsistent,
where T is foreign to J. Then, substituting y for x in 3x(x = T),
J\-3y(y = T) ~3A{T/x). Since T is foreign to J, JhVx(3y(y = x) ̂ > A);
Hence, by Axiom 1 and modus ponens, J\- Vx3y(y = x) ̂  VxA. Since
Vx3y(y = x) is an axiom, J f- VxA. But, since ~ VxA belongs to J, J \-~ VxA,
hence J is syntactically inconsistent, contradicting the hypothesis. So
J U {3x(x = T), ~A(T/x)} is syntactically consistent.

Rule 5 If J is syntactically consistent, then, if {VxA, 3y(y = T)} c J,
J U {A(T/x)} is syntactically consistent.

Proof: Suppose that J is consistent and that {VxA, 3y{y = T)} c J. Since
3y(y = T) 3 {VxA 3 A(T/x)) is a theorem of QC*=,12 J*-A(T/x). Now sup-
pose JU {A(T/x)} is syntactically inconsistent. Then J \—A(T/x). Hence
J is syntactically inconsistent, contradicting the hypothesis. So J U
{A(T/x)} is syntactically consistent.

So, since TQC*= is weakly complete and weakly sound, it is strongly
complete and strongly sound with respect to &. We now extend TQC*= to a
system TQC*=+ and show that TQC*=+ is strongly complete and strongly
sound. Let P be the set of all individual parameters of QC*=, let g be a
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one-one function g\-P'-> i> such that ί> - {g{T):Te^} has cardinality tfo>
13 let

g<A) = A{g{Tx)yg{T2),..., g(Tn)/Tl9 T29..., ΓJ, where 7\, Γ a,..., Tn are all
of the n distinct individual parameters occurring in A, let J be a set of wffs
which need not be infinitely extendible, and letg(J) = {g(A):Ae j). Clearly,
g(J) is infinitely extendible. Then, as Leblanc has shown,14 J is syntactically
inconsistent in QC*= if and only it g(J) is. By the strong completeness and
soundness of TQC*= with respect to d>, J is syntactically inconsistent in
QC*= if and only if the routine for TQC*= declares g{J) to be inconsistent.

Modify TQC*= to obtain TQC*=+ as follows. Take the individual
parameter T of rule (4) and ground rule D to be any individual parameter
belonging to f> - {g(T):T e 1°} which is foreign to the branch. In step 2 of the
routine, instead of listing B-a-q at the top of the tree, list g{B-a_i)) there.
TQC*=+ can be applied to any set of wffs of QC*=; whether infinitely
extendible or not. By the result of Leblanc's mentioned above, J is
syntactically inconsistent in QC*= if and only if the routine for TQC*=+
declares J to be inconsistent. Since the computation of g(B.^_^) is
effective, the finite character of TQC*= in the generation of closed trees is
retained in TQC*=+. So, TQC*=+ is strongly complete and strongly sound
with respect to the power set of the set of wffs of QC*=, i.e., TQC*=+ is
strongly complete and strongly sound.

4 The extended joint consistency theorem We shall use TQC*= (and not
TQC*=+) in proving the extended joint consistency theorem. Let J be an
infinitely extendible set of wffs of QC*=, and let e(J) be an enumeration of
J. If the routine for TQC*= declares J to be inconsistent, understand the
length of a closed tree for J under the enumeration e(J), l(e(J)), to be
n - (j + 1), where n is the largest m such that m is the number of nodes
(wffs) on a branch and B.j in the enumeration e{J) is the root node (wff at
the top) of the tree.15

Let O{J) consist of all and only those individual, sentence, and
predicate parameters that belong to J. In case J is the singleton {A}, we
write C(A) as short for C({Λ}). Call A a quasi-wff if A = B{xu x2, . . ., xj
Tl9 T2, ., T j , B is a wff, n > 1, and {τl9 T2, . . ., Tn} c c(B). Let / be a
predicate or sentence parameter, and let A, B, C be wffs or quasi-wffs of
QC*=. / occurs positively in A and / occurs negatively in A are defined
recursively as follows:

(1) A = f(T19 T2, . . ., Tj,x19x2, .,#*), where j > 0 and k > 0. / occurs
positively in A.
(2) A= ~J3or A = B D C.
(a) If/occurs positively in B, then/ occurs negatively in A.
(b) If/ occurs negatively in B, then/ occurs positively in A.
(3) A = B^C or A = VxC.
(a) If/occurs positively in C, then/ occurs positively in A.
(b) If/ occurs negatively in C, then/ occurs negatively in A.

Understand that if a wff A belongs to a set of wffs J, then (a) if / occurs
positively in A, f occurs positively in J, and (b) if/occurs negatively in A,
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/ occurs negatively in J. Also understand that (a) if / occurs positively

(negatively, positively and negatively) in J when / occurs positively (nega-

tively, positively and negatively) in A, foccurs the same way in J as in A,

and (b) if/occurs negatively (positively, positively and negatively) in J when

/ occurs positively (negatively, positively and negatively) in A, f occurs the

opposite way in J as in A.

Extended Joint Consistency Theorem (Craig-Lyndon-Robinson) The set of

wffs ^ι u ^2 is inconsistent if and only if there is a wff F such that:

(1) J/JU {F} and J2 U {~F} are inconsistent,

(2) c(F) ςcUJncW,

and

(3) for every predicate and sentence parameter feC(F), f occurs in Jλ the

opposite way as in F, and f occurs in J2 the same way as in F.

Proof16: The "if" part of the proof is immediate and we turn to the "only

if" part.

Case 1: WΊ U J2 is infinitely extendible. The proof proceeds by induction

on l(e{Jλ U B/2)) When it is said regarding an application of rule (1), rule

(5), or rule (6) that the induction hypothesis is applied to enumerations of

the form e(Jι\j{G\\J J2), where G is on the first line under Bo (the node

labeled Bo is the father of the node labeled G) in the closed tree for J under

the enumeration e ( ^ U J2) = Bo, . . ., understand e ^ U {G}u J2) to be B[,

BLl9 . . . = G, Bo, . . .. Hence, l(e{JγVJ J2)) = / ( e ^ U {G} U J2)) + 1. When

rule (2) is applied, the tree branches, and G is one of two wffs on the first

line under Bo. In this case, l{e{Jλ\J J2)) ^ l(e(Jι\j {GJU J2) + I . 1 7 Similar

remarks hold when it is said regarding an application of rule (3) or rule (4)

that the hypothesis of induction is applied to enumerations of the form

e(J1 U {G,H}U B/2), where G is the first line and H is the second line under

Bo in the enumeration e(jλ U J2) = Bo, . . .; understand e(J1\J {G,H} U J2) to

be G, H, Bo, . . ., and l(e(Jι U J2)) = l(e(Jι U {G,H} U J2)) + 2.

Basis: l{e{Jι U J2)) = 0 There is an atomic wff G = h(Tl9 T2, . . ., Tm) such

that m^O and (1) ~G=~h(T1) = ~(7\ = Tj e Jx U J2 or (2) {G,~G} =

{HT19 T2, . . ., Tm), ~h(Tu T2, . . ., Tj} c J, U J2. Suppose ~(TX = Tj e J,

or {G,~ G} C Jγ. Since Jγ is inconsistent, Jι U {Vx(x = x)} and J2 U

{^Vx(x = x)} are inconsistent. Since C(Vx(x = x)) is null, C(Vx(x = x)) Q

C(Jd Π C(B/2)> and every predicate and sentence parameter fe C(Vx(x = Λ;))

occurs in Jx the opposite way as in Vx(x = x) and the same way in J2 as in

Vx(x = x). Take F to be V^(ΛΓ=ΛΓ). The case when ~(T 1 =T 1 )e f i / 2 or

{G,~G} C a/2 is similar.

Suppose Ge Wi and - G e */2. Since C(G) = C(~G) = {Λ, T1? T2, . . ., Tw} -

{=}, C(~G) c CίWΊ) ΓΊ C(J2), and every /e C(~G) occurs the opposite way in

JΊ as in ^G and the same way in J2 as in ~G. Take F to be ~G. The case

when ~Ge J! and G e */2 is similar.

Induction Step: l{e(Jγ U */2)) ^ 1.
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The proof is by cases, depending upon what rule of TQC*= was applied
in obtaining the first line under Bo.

Case 1.1: Rule (1) applied to ~ ~ G . The first line under Bo is a wff of the
form G which was obtained by applying rule (1) of TQC*= to a wff of the
form ^ ^ G e ^ U ^ Suppose ~~GeJi. Then, applying the hypothesis of
induction to e(J\ U {G}U */2), there is a wff H such that Jι U {G} U {H} and
J2Ό{~H} are inconsistent, C(H) ccUiU{G}) Γ)CiJ2), and each predicate
or sentence parameter fe C(H) occurs the opposite way in Jγ U {G} as in H
and occurs the same way in J2 as in H. Since ~~ G e Jι and Jγ U {G} U {H}
is inconsistent, Jι U {H} is inconsistent. Since ~~Ge Jl9 C(JJ = C(Jt\j {G})
and C(B) QCiJi) ΠC(J2). Since ~~GeJx and every feC(H) occurs the
opposite way in Jι U {G} as in H, every/e C(#) occurs the opposite way in
Jx as in H. Take F to be H. The case when ~~ Ge J2 is similar.

Case 1.2: Rule (2) applied to G^> H. The first line under Bo on the left
branch is ~G, and the first line under Bo on the right branch is H, where
~G and H were obtained by applying rule (2) of TQC*= to G ̂  He Jx U «/2.
Suppose G^HeJi. Applying the hypothesis of induction toe(a/iϋ{^G}u
B/2), there is a ,wff / such that 1 ^ U {~ G} U {/} and J2 U {~/} are inconsistent,
0(7) c C(B/I U {̂ G}) Π C(J/2)> and every /e C(7) occurs the opposite way in
B / ^ I ^ G } as in I and the same way in J2 as in /. Since G^>HeJl9

C(Jd = C{J1U {~ G}) and C(7) c Cί^/J Π C(Λ) Since G^> He Jλ and every
feC(l) occurs the opposite way in »/iU{~G} as in /, every feC(l) occurs
the opposite way in JΛ as in I. Similarly, applying the induction hypothesis
to e(Jι U {H} U Λ), there is a wff J such that Jγ u {#} U {j} and B/2 U {~ j}
are inconsistent, C(J) c C(»/i U {fί}) Π C(J2), and every feC(J) occurs the
opposite way in Jλ U {#} as in J and the same way in J2 as in J. So, by
essentially the same arguments as above, C(J) c 0(aΛ) Π C W and every
/e C(J) occurs the opposite way in Jγ as in J. Since G^> He Jx and ^ U»/2,
J\ U {- G} U {/}, p/i U {H} U {j}, Λ U {~ /}, and ^ U {~ J} are inconsistent,
^ U {~(/=> ^J)} and fi//2 U { — ( / D ^ J ) } are inconsistent. Since C(/) c
C(Jύ Π C(»/,2) and C(J) c c ί ^ J Π CU2), C(- (/ => - J)) c CWJ Π CU2). Since
every fe C (/) occurs the opposite way in Jx as in / and the same way in J2

as in / and every fe C(J) occurs the opposite way in J\ as in J and the same
way in Ji2 as in J, every fe C(~ (/ ^ ~ J)) occurs the opposite way in Jγ as in
^ ( / D ~j) and the same way inj2 as in ^ ( / ^ ^ J ) . Take F to be ~ ( / ^ ~J) .
The case when G ^> He J2is similar.

Case 1.3: Rule (3) applied to ~(G^> H). The first and second lines under
Bo are G and ~i/, respectively, which were obtained by applying rule (3) to
~(G ^ H)e JΛ U s//2 Suppose ~(G^> H)e J^. Applying the hypothesis of
induction to e(Λ U {G,~H} U J<2), there is a wff I such that Λ U {G,~H} U {/}
and **2u{~/} are inconsistent, C(/) c C(Jλ u {G,'- ίί}) Π C(a/2), and every
/ e C(/) occurs the opposite way in Jγ U {G,~H} as in /and the same way in
J2 as in /. Since ~(G^> tf)e J± and a/-! U {G,~H} U {/} is inconsistent, Jγ U {/}
is inconsistent. Since ~(G => H)eJ1} C(Jd = C'Ui U {G,~£Γ}) and C(/) c
CCB/J n c U ) . Since ~(G^> H)e Jx and every feC(l) occurs the opposite
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way in Jι U {G,~H} as in /, every fe C(/) occurs the opposite way in Jx as in
/. Take F to be /. The case when ~(G^> H)e J2 is similar.

Case 1.4: Rule (4) applied to ~V#G. The first and second lines under Bo

are 3x(x = T) and ~G(T/x), respectively, which were obtained by applying
rule (4) to ~VxGe ^ U J29 where T/CίJΊu J2). Suppose ~VxGe Jγ. Ap-
plying the induction hypothesis to e(JιΌ{3x(x ^ T), ~G(T/x)}u J2), there
is a wff H such that Jιu{3x(x = T), ~ G(T/x)}u {H} and B / 2 U { ~ # } are
inconsistent, C(H) c C(Λ U {3#(# = T), - G(rA)}) Π C(*/2), and every /e C(H)
occurs the opposite way in J\ u {3#(# = T), ~ G(T/ΛΓ)} as in H and the same
way in J2 as in #. Since T{C(JU U C(B/2), Tf(C(H). Since Λ U {3#(# = T),
~G(T/ΛΓ)}U{#} is inconsistent, ^ u {Vy3x(x = y), ~VyG(y/x)}u{H} is in-
consistent for some individual variable y foreign to 3x(x = T) and ~G(T/x).
Since ~V#Ge Ji and Vy3%(x = y) is an axiom of QC*=, J1\j{H} is incon-
sistent. Since 7YC(#) and C(*/J = C ^ U ^ φ r = T), ~G(ΓA)}) - {T},
C(/ί) c C(B/I) Π C(*/2). Since - VΛΓGC ^ and every /e C(/ί) occurs the oppo-
site way in p/i U {3*(# = T), ^G(T/Λ:)} as in H, every feC(H) occurs the
opposite way in Jλ as in H. Take i7" to be H. The case when ~ VxGe J2 is
similar.

Case 1.5: Rule (5) applied to VxG and 3;y(;y = T). The first line under Bo

is G(T/x) which was obtained by applying rule (5) to {VxG, 3y(y = T)} c
Jι U B/2. There are three cases.

Case 1.5.1: VxGe Jγ and 3̂ (3̂  = T) e Jx. Applying the hypothesis of induc-
tion to e(J, u {G(T/x)}\j J2), there is a wff H such that Jγ U {G(ΓA)}u{jy}
and J2 U {~IΓ} are inconsistent, C{H) c C f ^ U {G(T/Λ:)} n C ί ^ ) , and every
fe C(H) occurs the opposite way in Jγ U {G(T/x)} as in H and the same way
in J2 as in H. Since {VΛ G, 3^(3; = T)} c Jl9 VxG =) (3y(y = T) => G(T/ΛΓ)) is a

theorem of QC*=, and Jx U {G(T/x)}u {H} is inconsistent, Jx U {jy} is incon-
sistent. Since 3^(3; = T) e Jl9 C(Jd = C(JV U {G(T/x)}) and C(^) c C(JJ Π
C(J2). Since VxGe Ji and every feC(H) occurs the opposite way in
JΊ U {G(T/Λ:)} as in ί̂ , every /e C(^) occurs the opposite way in Jγ as in H.
Take F to be H. The case when VxG e J2 and 3^(3; = T) e J2 is similar.

Case 1.5.2: VxGe */i, 3y(y = T)iJu and T{Z(J). Applying the induction
hypothesis as in Case 1.5.1, there is a wff H with the properties listed
above. Since TfίCiJd, VxGeJi and Jγ u {G(T/x)}u {H} is inconsistent,
B̂ I U {V^G(3;/Λ;)} U {3yH(y/T)} is inconsistent for some individual variable y
foreign to G(T/x) and H, and hence Jλ\J {3yH(y/T)} is inconsistent. Since
C(3yH(y/T)) = C(H) - {T} and C(Jd = C ( ^ U {G(T/x)}) - {τ\, C(3yH(y/T)) C
C(B/Ί) Π C(B/2). Since VA G e Jλ and every /e C(̂ Γ) occurs the opposite way in
Jι U {G{T/x)} as in H, every /e C(3^(3;/T)) occurs the opposite way in Jι

as in 3yH(y/T). Since 33;(̂  = T) e J2 and J2u{~H} is inconsistent, */2 U
{~3y(H(y/T)} is inconsistent. Since every feC(H) occurs the same way in
J2 as in H, every fe C(3yH(y/T)) occurs the same way in*/2 as in 3yH(y/T).
Take F to be 3yH(y/T). The case when VxGeJ2, 3y{y = T)iJ2, and
Tfέc(J2) is similar.

Cαs^ i.5.5: VΛ G e Λ, 33;(̂  = T){ Ju and TeCίJΊ). Applying the induction
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hypothesis again as above, there is a wff H as in Case 1.5.1. Since
VxGe Ju VxG 3 (3y(y = T) 3 G(T/x)) is a theorem of QC*=, and Jι U
{G(T/x)}u{H} is inconsistent, Jx u {~(3y(y = T) 3 ~H)} is inconsistent.
Since V#G e Ju T e C W , and 3y(3> = T) e J2, C{~(3y(y = T) 3 -#)) c CM) Π
C(B/2) Since VxGeJ1 and every feC(H) occurs the opposite way in
a/i U {G(T/x)} as in #, every fe C(~(3y{y = T) 3 ~H)) occurs the opposite
way in Jx as in ~(3y(y = T) 3 ~H). Since 3y(^ = T) e J2 and *f2 U {~#} is
inconsistent, J2 U {~~(3;y(;y = T) 3 ~i/)} is inconsistent. Since every
/e C(#) occurs the same way in J2 as in H, every/e C(~(33>(:y = T) 3 ~#))
occurs the same way in J2 as in ~(33>(y = T) 3 ~ # ) . Take i*1 to be
~(3y{y = Γ) 3 ~ # ) . 1 8 The case when VxGe J2, By(y = T)/«/2, and Te C(»/2)
is similar.

Case 1.6: Rule (6) applied to G and 7\ = T2. The first line under Bo is
G(T2//TJ which was obtained by applying rule (6) to {G, 7\ = T2} ς ^ u J2,
where G is an atomic wff and T2 occurs at least one time more in G(T2//T^
than in G. There are three cases.

Case 1.6.1: G e Jλ and Tλ = T2e Jγ. Applying the hypothesis of induction to
e Ux U {G{T2//Tύ} U J2), there is a wff H such that Jλ u {GtΓa/ΓJ} U {H} and
W2u{~ii} are inconsistent, C(H) Q CiJ^ {GiTjTj}) nc(j2), and every
feC(H) occurs the opposite way in Jι U {G(T2//Tj)} as in H and the same
way in J<2 as in #. Since {G, Tx = T2} c Jl9 G 3 (TL = T2 3 G{T2//T^) is a
theorem of QC*=, and WΊ U {G(T2/τj} U {̂ } is inconsistent, ^ U {̂ } is
inconsistent. Since Tx = T2e Ju C(a/i) = C(Λ U {GίTj/TJ}) and C(/0 c
C W Π C W Since GeJx and every /e C(H) occurs the opposite way in
J1 U {G{T2//T^i] as in H, every /e C(-ίO occurs the opposite way in Jι as in
H. Take F to be .fί. The case when Ge */2 and Tx = T2e B/2 is similar.

Cαs^ i.^.^; Ge^i, T 1 = T 2 / B / 1 , and T2fίC{Jι). Applying the induction
hypothesis as in Case 1.6.1, there is a wff H with the properties listed
above. Since T2tC{Jύ, GeJl9 and Jί U p(T2//Tj}u {H} is inconsistent,

B/1u{G}u{^(T1/T2)}= ^ i U ^ ί r y r , ) } is inconsistent. Since C(#(7V72)) =
C(iϊ)-{T2} a n d c W = C(Λi U {GίT./Tj} - {T^CiMryT,)) c C(JJ ΠCUJ.
Since Ge J1 and every/e C(#) occurs the opposite way in ^ U {GίTa/Tj} as
in H, every /eC(M^i/^2)) occurs the opposite way in Jx as in H{TjT2).
Since 7\ = T2 e a//2 and Ji2 U {^/ί} is inconsistent, J2 U {̂  ^(Γj/Ta)} is incon-
sistent. Since every feC(H) occurs the same way in d2 as in H, every
feCiHiTjTj) occurs the same way in J2 as in H{TjT2). Take F to be
H(TjT^ι. The case when G e */2, 7\ = T 2 / */2, and T2fίC(J2) is similar.

Cαs^ i.6.3: GeJ:u T1=T2jίJu and T2e €(»/!). Applying the induction
hypothesis as above, there is a wff # as in Case 1.6.1. Since GeJly

G 3 (Tx = T2 3 G{T2//Tύ) is a theorem of QC *=, and ̂  u {GtΓa/Tj)} U {ZΓ} is
inconsistent, J,\ U {^(Tx = T2 3 ^^)} is inconsistent. Since Ge a/Ί, T2e Cd^i),
and Ti = T2e Λ^Cί^ίTx = T2 3 ^ίf)) c CίΛ) Π C(a/2)

 s i n c e G e ^1 a n d every
feC(H) occurs the same way in Λ U {G{TjT^\ as in ,ff, every fe C(^{T1 =
T2 3 ~H)) occurs the opposite way in Jx as in ~(T1= T2 3 ~H). Since
T : = T2eJ2 and /̂2 u {-H} is inconsistent, J.2 U {~~(Tχ = T2 3 ^iί)} is
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inconsistent. Since every fe C(H) occurs the same way in J2 as in H, every
fe C(~(TΊ = T2̂ > ~H)) occurs the same way in J2 as in ~(Tί = T2 ^ ~i7).
Take F to be ~(Ti = T2 => ~H). The case when GeJ2, Tι=T2^J2, and
T2e C(J2) is similar.

Case 2: Jλ u J2 is not infinitely extendible. Suppose Jι U J2 is inconsistent
in QC*=, but Jι U J2 is not infinitely extendible. Let g and ^ be as
described in the preceding section. Since ^ U J2 is inconsistent in QC*=,
as noted in the preceding section, ^ ( ^ U J2) = g(JJ Ug(J2) is also. Since
^(WΊ)U^(B/2) is infinitely extendible, by Case 1 there is a wff G such that
g(JJ U{G} and g(J2) U {~G} are inconsistent, C(G) c C(g(;JJ) Π C(^(J2)),
and, for every predicate or sentence parameter /eC(G), / occurs the
opposite way ing(Jλ) as in G and /occurs the same way ing(J2) as in G.

Let C(G) Π ί> = {T1? T2, . . ., Tn}, where w ̂  0. Since ^ is one-one the
wff g-\G) = G(g~\Td, g~\T2), . . .,g-\Tn)/Tu T2, . . ., Tn) is such that
Ji U {£ -1(G)} and ^2 U {~^"1(G)} are inconsistent, Cig'^G)) c Cίs/J Π C(^2),
and every /e C(g~\G)) occurs the opposite way in Jx as in g~\G) and the
same way in J2 as in^-^G). Take F to be g~\G).

NOTES

1. See [1], pp. 13-14.

2. See Case 1.5.3 in the proof of the extended joint consistency theorem, section 4 of this
paper, and note 18, below.

3. See [4], pp. 47-68 and 174-197. I am indebted to Hugues Leblanc for many of the basic
concepts and techniques employed in this paper, and I have benefitted greatly from his
comments on an earlier version of this paper.

4. For a description of QC*=, see [3].

5. See [4], pp. 55 and 180.

6. Rule (4) is not applied to wffs of the form 3x(x = 7\), so that 3x(x = T) and ~~(Γ = 7 )̂ are
not added to the branch. If 3x(x = T) were to be added, then rule (4) would be, in turn,
applicable to it, and the routine would never leave step 3.

7. See [4], p. 188.

8. If a rule were to be added to the rules of TQC*= specifying that, if a wff of the form
3x(x = T) occurs on a branch, then a wff of the form — ( T = T) is to be added to the branch,
the routine for TQC*= would generate free logic model sets satisfying a set of conditions
similar to one set presented in [2]. See also the somewhat different conditions for QC*=
model sets presented in [3].

9. See [4], p. 189.

10. Strictly speaking, the routine for TQC*= presented below is not an algorithm. First, the
routine is not "definite" in the sense that it does not specify, e.g., which rule to apply first
when two or more truth-functional rules are applicable. However, by appropriately expanding
the specification of the steps in the routine, the routine can be made completely definite.
This can be done, for example, by requiring in step 3 and step 4 that branches be processed
from left to right, that each branch be processed from the bottom up, and that in step 3
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rules (l)-(4) have precedence over rule (6). The routine presented by Leblanc and Wisdom in
[4] has been given definite form in a program which I have written in the programming
language SNOBOL and run on a CDC 6400 computer. A similar program could be written for
the routine for TQC*=. The routines as presented in [4] and in this paper lack definiteness
because they were intended for application by hand in a pedagogical role. The student apply-
ing one of these routines employs insight in determining the order in which to apply some of
the rules, attempting to close a branch as soon as possible. A second characteristic of algo-
rithms which the routine for TQC*= lacks is "finiteness". That is, the routine for TQC*=
does not terminate in a finite number of steps when applied to an infinite set of wffs which is
consistent, to a set of wffs which has only infinite models, etc. Algorithms and routines
which have all of the characteristics of algorithms except for the property of being finite
are called "computational methods". So, the routine for TQC*=, appropriately expanded to
become completely definite, is a computational method.

11. Proof that the derived ground rule adds nothing to the deductive power of TQC*= is similar
to those proofs to be found in the literature.

12. See [3].

13. Where Γ, is the z-th (z > 0) individual parameter in an enumeration e(P) of -P, g(Ti) =T 2 , is
such a function. See [4], p. 319.

14. See [3].

15. In the literature, n is sometimes called the height of the tree. B-j is the wff at the top of the
closed tree and was the last wff in J activated and added to the tree by the routine for
TQC*= before the routine halted in step 6 during iteration k>j+ 1. More intuitively, the
length of a closed tree for J under the enumeration e(J) is the largest integer used in num-
bering the lines of the proof. For example, in the closed tree corresponding to the first
quantificational axiom, /(~(V*04 DB)D (\/xA D Vxδ))) = 9 when A(T/x) and B(T/x) are
distinct atomic wffs which are not identities. A wff B-i (/</) in the enumeration e(J) is
conveniently given the line number -/ when it is activated and placed at the top of the tree
during the i + 1-th iteration in step 2 of the routine for TQC*=. Note that, in each of the
proofs of the quantificational axioms of QC*= given in the preceding section, / = 0.

16. The basic technique of the proof is due to Hintikka [1]. As Hintikka points out, given a
closed tree for Jx U J2, the proof provides an effective means of constructing F.

17. G is the first line under Bo in the closed tree for Jγ U J2 under the enumeration e(Jλ U J2).
By putting G as the first wff in the enumeration e(Jχ U \G\ U J2), the routine for TQC*=
will activate G first and hence not add it on a line underneath. We presume here that the
routine for TQC*= is applied to e(Jί U {G\ U J2) in the same way it is to e(*/i U J2). That is,
we take the routine for TQC*= to be "definite" in the sense discussed in note 10—at least for
the generation of the two trees under consideration.

18. Note the crucial presence of = in F in one case of the basis and in this case. The following
clause which could be added to the statement of the theorem in standard first order logic
does not hold in free logic: if neither a/1 nor J2 is inconsistent and = occurs in neither Jι

nor J2, = does not occur in F. Consider Jx = {Vx ~ (A D A)\ and J2 = \3xB\.
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