
95
Notre Dame Journal of Formal Logic
Volume XX, Number 1, January 1979
NDJFAM

A SIMPLE GENERALIZATION OF TURING COMPUTABILITY

WILLIAM J. THOMAS

1 Introduction In the present paper,* the notion of a Turing machine is
generalized as follows: the notion of an ideal computation is defined to be a
finite sequence of expressions of some arbitrary language. An ideal
machine is then defined to be a set of ideal computations such that
functionality from first to last elements of the ideal computations in the
ideal machine obtains. Then, using the devices of Gόdel numbering, a
length function (applied to ideal computations) and input and output functions
(which, when applied to ideal computations, select their first and last
elements, respectively), a generalized analogue of the Kleene T-predicate
is defined. A class of ideal machines is then said to be an R-class just in
case it is Gδdel numerable and contains an ideal machine which, in a
sense made precise, decides the generalized T-predicate analogue.

The following results will be obtained: (1) The classes of Turing
machine computations and Post normal system proofs are R-classes.
(2) There exist R-classes which properly include the class of Turing
machines. (3) For any M, where M is an R-class, there exist functions
which are not computable by M. This theorem generalizes the Turing
unsolvability of the ''halting problem", and its proof makes use of the
familiar diagonal procedure. Defining M-decidability for R-classes IM in
the natural way, we have that: (4) In general, the class of M-decidable sets
is not closed under Boolean operations on pairs of sets. (5) There exist
trivial R-classes, indeed R-classes which contain only one ideal machine.

(6) In general, R-classes are not invariant with respect to Gδdel numbering.
(7) Mostowski's generalization of recursive function theory, $-definability
(developed in [1]), is properly included in the notion of R-ness.

*Presented to the 1973-74 Annual Meeting of the Association for Symbolic Logic, Atlanta,
Georgia, December 27-28, 1973. This paper is based on material included in Chapter V of my
Ph.D. Dissertation Church's Thesis and Philosophy. Special thanks are due to my advisors, Profes-
sor Raymond J. Nelson and Professor Howard Stein.

Received January 3, 1974

96 WILLIAM J. THOMAS

Finally, the philosophical significance of these results will be dis-
cussed. It will be observed that, for certain purposes, a hypothesis (viz.
that any formal reconstruction of the notion of effective computation can be
cast as an R-class) weaker than the conjecture that all computable func-
tions are recursive suffices. It will be argued that this weaker hypothesis
strains our intuitions less than does Church's Thesis. An optimistic
conjecture about the pedagogical usefulness of the simple generalization
will be offered.

2j Mathematical development and results It should be understood at the
beginning that what we shall be formalizing here are some necessary
conditions for an adequate theory of effectiveness. Our generalization is
demonstrably not sufficient for such a theory.

Definition 1 By an ideal computation (i.e.) we understand a sequence
(4? #!, . . .j £«> Oj), where the eϊ are understood to be expressions of some
language J£9 ik and o; are elements of «Cf c «£, such that there exists a
function /: Jί^o N, (where iVis the set of natural numbers). We shall, for
convenience, take the elements of jQr to be numerical representations of
natural numbers, where /(e,) =n iff ei represents n.

A "language" is understood here in the familiar way as some chosen
subset of the set of all finite sequences on some chosen alphabet (set of
symbols). In what follows, what is important about the sequence (e1? . . . , en)
is just its ordinal length. Thus the particular language chosen is of no
consequence for our concerns here. The sequence (elf . . ., en) is intended
to generalize the evolution of a formal computation, or, when the theory we
are developing is applied to formal proofs, rather than computations,
(el9 . . ., en) generalizes the notion of a proof. It will of course be noticed
that there is no requirement that the sequence (eu •> £«) be effective,
whereas an actual formal computation will be an effective sequence, in that
the transition function from the e^s up to k, to e^ will, in the case of an
actual computation, be effective. All that is asked of the reader's intuitions
at this juncture is an acceptance of the claim that all computations
are i.c.l's.

Definition 2 An ideal machine (i.m.j) is a set M of i.e. 's such that:

(a) If (4, ev . . ., em ofie M and (ih eh, . . ., ei9 oJeM then Oj = o^ (This
requirement might be termed the "monogenicity requirement".)
(b) If (4 , em, . . ., en, Oj) e M and (ikp eif . . ., ehk oft)e M then {em;, . . ., en) =
(βij, . . ., e^). (This requirement may be termed the "determinacy of
operation" requirement.)
(c) The βi of the i.c.'s belonging to M all belong to some finite set of
expressions.

The "determinacy of operation" requirement (b) may be dropped and
the rest of the theory modified slightly, giving a nice generalization of
non-deterministic machines. To do so complicates matters somewhat, and
is not germane to our present project, and so the development will be
postponed.

A SIMPLE GENERALIZATION 97

Definition 3 The input function, i, is defined: \(ik, elf . . ., en, o7) = 4> and
the output function, o is: 0(4, e1} . . ., en, Oj) = Oj.

Definition 4 The length function I, applied to (4, em, . . ., en, o;) is just the
length of the sequence (em, . . ., en).

Definition 5 Let g'(x, y,z) be some standard Gϋdel- number ing of ordered
triples of natural numbers.

Definition 6 A class M of i.m. 's is an R-class iff.

(a) There exists a map g: M ̂ N, (so that each i.m. in M has a numerical
name, called that machine's index. We will denote the i.m. having index i
by MΪ.)

and,

(b) (For convenience, let us write ' !>(#,y,z) 9 to indicate that (Eu)[ue M &
g(u) = x & (Ew){we u & \(w) = y & \(w) = z)]. T|M is an analogue, generalized
to M, of the Kleene T-predicate.)

(Eu)(x)(y)(z){ue M & [Tu{x,y,z) - (Es)
(seu&\(s)< g'(x,y,z) & o(s) = 1)] & [Vφ,y,z)

— (Es)(s e u & i (s) = g '(#, y, ̂) & 0(5) = 0)]}

This condition amounts to a provision that R-classes must be Godel
numerable, and that they must contain a machine which is a generalized
analogue of the Turing machine which decides the Kleene T-predicate.

Theorem 1 The classes of Turing machine computations and Post normal
systems proofs are R-classes.

Proof: Let M be the class of Turing machine computations (or Post normal
system proofs). M is Godel numerable, by assigning the Godel number
(under some standard system of Godel numbering) of each Turing machine
(formulated in one of the standard ways, say as a set of quadruples) to its
associated set of computations. Thus condition (a) of Definition 6 is
satisfied. It is a basic theorem of recursive function theory that T^ is
recursively decidable, and so condition (b) is satisfied.

Theorem 1 suggests a construal of Turing machines and other known
formalized conceptions of algorithms as sets of computations, or algo-
rithmic procedures. So construed, Turing machines, and other equivalent
concepts, constitute R-classes. In the results that follow, we shall speak of
Turing machines as sets of i.e. 's.

Theorem 2 There exist R-classes which properly include the class of
Turing machines.

Proof: Let M be the union of the set of Turing machines (construed as sets
of i.e. 's) with the unit set containing R, a set of triples (x,e,y), where e is
some arbitrarily chosen constant expression, and where, for some chosen
non-recursive total function/, f(x)=y. It is obvious that M properly

98 WILLIAM J. THOMAS

includes the class of Turing machines. It remains only to show that M is
an R class.

The class M is certainly a class of i.m. 's. Let the index of R be 0, and
let the index of each Turing machine be just its Godel number, as in
Theorem 1. The result is a map from M to N. We now need to establish
that condition (b) of Definition 6 obtains of M. We shall argue informally
that a u of the required kind belongs to the class of Turing machines, and
so to the union of that class with R. Consider an arbitary triple {x,y,z) of
natural numbers. In the cases where x Φ 0, the Turing machine which
decides the T-predicate will decide TM(#, y,z). In case x = 0, the required
machine must simply decide whether z = 1, producing a T if it does, and a
'0? otherwise. It is clear that there is a Turing machine which decides
whether or not # = 0, and then, if it does not, mimics the T-predicate
deciding machine, and if it does, decides whether z = 1 or not.

Definition 7 We say that a function / is M-computable just in case:

(Έm)(x)[me M & (xe dom(/) — (Ey)(ye m & \(y) = x & o(y) =/(*)))]

Definition 7 is a straightforward generalization of the standard notion
of Turing computability.

Theorem 3 For any M, where M is an R-set, there exist functions which
are not M- computable.

Proof: Let M be an R set. It is a consequence of Definition 2 that the
relation consisting of all and only the inputs with the outputs of the i.c.'s in
an j.m. is a partial function. By Definition 6, the i.m.'s in M have indices;
let us call those i.m.'s in M Mt . Let us call the function consisting of all
and only the inputs with the outputs of the i.c.'s in Mf 0f . We shall say that
Mi computes φ{. Let:

θ(y) = φ(y) + 1 if (E#)(TM(;y,;y,#)), and = 0 otherwise.

Then θ is not M-computable. Suppose, with a view to reductio, that θ is
M-computable. Then, by Definition 7, there exists an Mi e M which
computes θ. Let us call that M{ Mq. Then:

(i) (x)(θ(x) = φq(x))

But substituting for x in (i), in accord with the definition of θ, we have:

(ϋ) θ(q) = φq(q)

But, on the hypothesis that Mq computes θ, we have:

(iii) θ(q) = όq(q) + 1

The result of conjoining (ii) and (iii) is a contradiction. Therefore, by
reductio ad absurdum, θ is not M-computable. Such are the hazards.

Theorem 3 generalizes the unsolvability of the "halting problem".
The diagonal procedures used in the proof of the unsolvability of the

A SIMPLE GENERALIZATION 99

"halting problem" and in the proof of Theorem 3 are essentially the same.
Again, defining M-decidability and M-enumerability in ways analogous with
the standard definitions of the corresponding recursive function theoretic
notions, our Theorem provides examples of M-enumerable but not M-
decidable sets, where M is any R class. While we shall want to argue (in
section 3) that the notion of R-ness is a necessary condition for a formal
reconstruction of effectiveness, it is easily shown that, in general, R-sets
lack some properties which we would expect the class of algorithms to
have. The basic theorem is this:

Theorem 4 There exist R-classes M each that the class of functions ψ;
associated with the Mi of M is not closed under addition of a constant.

Proof: Consider the M constructed in the proof of Theorem 2. It is clear
that / + 2 Φ φi, for all i, where M(e M.

Beginning with this result, it is easily shown that, where M is an R-class,
the class of M-decidable sets need not be closed under Boolean operations
on pairs of sets. There is too little structure imposed by the weak
conditions of Definition 6 to give rise to a really interesting theory. There
exist trivial R-sets:

Theorem 5 There exist R-sets which contain only one i.m.

Proof: Consider the M which contains as its sole element the M which
computes the function f(x) = 1 if x = 1, and 0 otherwise. All i.e. 's in M are
of length 1. Set g such that g(M) = 1, g1 such that g' (1, 1, 1) = 1, and M
may be seen to be an R-set. R-sets disjoint from M can be constructed
from M by substituting a numeral denoting n (n Φ 1) for each occurrence of
'V in the description of M.

R'-sets are not invariant with respect to Gδdel numberings (i.e., the
functions g and gf). Most interesting closure properties are lacking, in
fact, we have:

Theorem 6 ,£!-definability is properly included in the notion of R-ness.

Proof: Systems of equations are i.e. 's having the properties required by
Definition 6. The example used in the proof of Theorem 2 suffices to show
that the inclusion is proper.

On the other hand, there are some obvious analogies between the theory of
R-sets and the theory of recursive functions which might be interesting to
study. One might, for example, try to construct an R generalization of the
Kleene hierarchy, or a theory of degrees of R-undecidability.

The theory of R-ness, as developed here, depends heavily on standard
recursive function theoretic results, in that we have, in our proofs, made
heavy use of such results. It would be interesting to explore the logical
relationship between R-ness and general recursiveness much more deeply
than we have done here. Our Theorems 1 and 2 answer only the most
obvious of the natural questions about this. For example, it would remove

100 WILLIAM J. THOMAS

most of the purely mathematical interest which R-ness might have if it
should turn out that the R-sets are familiar pieces of furniture in the
recursive function theorist's universe. Supposing no such result as that to
be forthcoming, it would be good to have some more results about which
recursive function theoretic entities are R-classes. It could be shown, for
example, that degrees of recursive unsolvability are R-classes, when-
degrees are construed analogously to the construal of Turing machines in
Theorem 1. (Construe a degree as a class of Turing 'Oracle" machines,
and an "oracle" machine as a class of i.e. ?s.)

3 Philosophical conclusions Church's Thesis ('CT' hereinafter), being
a biconditional, may be thought of as a conjunction of two conditionals. I
shall now argue that our generalization of the basic part of elementary
recursive function theory provides some of those philosophical con-
sequences of CT sometimes called "unfortunate" without burdening our
intuitions to the extent that GT does. Let us focus attention on the following
thesis:

RT: The set of all effectively computable functions of natural numbers is
an R-class.

RT is analogous to (and is a generalization of) the "problematic" conjunct
of CT. By our Theorem 1, if the "problematic" conjunct of CT is true,
then RT is true. Thus, whatever basis one has for believing CT is also a
basis for accepting RT. Further, our Theorem 2 shows that RT is, in a
certain formal sense, a weaker hypothesis than the "problematic" conjunct
of CT.

I have argued elsewhere (in [2]) that there are no very good reasons
known for believing the "problematic" conjunct of CT. I think that there
are good reasons for believing RT, though not compelling ones. Essentially
just two propositions must be accepted: that something like a Godel
numbering will be available for any formal reconstruction of effective
computability that we would seriously entertain, and the somewhat more
complex assertion that there ought to be an algorithm which decides
whether an expression is representative of an algorithm, and if it is,
whether the function computed by that algorithm is defined at a certain
argument or not, and if it is, whether a given number represents the length
of that computation or not.

In recursive function theory, as given in terms of various notions
(Turing machines, λ-definability, normal systems, or whatever), algorithms
are regarded as sets of expressions which may be thought of as instructions
for dealing with various inputs. In our generalization, there is nothing that
really corresponds to the intuitive idea of an instruction. The notion of
R-ness is, however, a notion of higher type than any specific reconstruction
of the notion of effective computability that one might wish to consider. Our
generalization does not deal with how one might actually describe an
algorithm, or i.m. But surely one thing that we require of a formal notion
of an algorithm is that we be instructed as to how computations are to be

A SIMPLE GENERALIZATION 101

carried out. That would seem to entail each algorithm corresponding to (if
not being composed of) 2L set of instructions, and a finite set at that, since
we surely will want to require that algorithms be in principle executable.
Now these instructions will be expressions in some language, where a
"language" cannot be just an arbitrary set of expressions, but must be
accompanied by a semantics, in order that we may know what the instruc-
tions require of the computer. It must be admitted that all known languages
sutiable for the expression of algorithmic instructions are primitive
recursive in their elementary steps, and so algorithms expressed in them
are algorithms for recursive functions. But to insist that all possible
languages for expressing algorithms must be like the known languages in
this respect is to insist upon CT. While a language suitable for the
presentation of a non-Turing realizable algorithm would have to be unlike
known languages, it would have this in common with them: there would be a
decision procedure for the set of meaningful expressions of the language.
We want algorithms to be recognizably algorithmic. Moreover, decidability
of a set would seem to imply the effective enumerability of that set, and so
its amenability to Gϋdel numbering. While this argument cannot be
regarded as conclusive, I claim that the first proposition to which
acceptance of RT requires our assent has been rendered highly plausible by
it. Certainly no greater strain is imposed on our intuitions by this
proposition than is done by CT.

The second proposition which RT requires that we accept amounts to
the requirement that, for any formal reconstruction M of computability that
we adopt, we can decide TM. We have just argued that each Me M will be
described in terms of (and so will correspond to) a set of instructions.
These instructions will all have to be of a certain sort (or will have to
belong to a decidable class). Accordingly, we ought to be able to decide,
for any number, whether that number is the index of an Me M or not. In
cases where it is not, our decision machine for TM will simply indicate a
negative answer. In cases where it is, we require of our decision machine
that it decide whether there is an output in the number of steps which the
third argument place of TM gives, when M is presented with the input given
in the second argument place. While our formalization of the notion of
R-ness gives no clue as to what "steps" are like for any particular M,
I would claim that the intuitive notion of effectiveness presupposes an
intuitive notion of a "step", since we conceive an effective procedure, as
applied to any particular problem in the class of problems which it solves,
as a "step-by-step" operation, or a finite sequence of discrete operations
which we may term "steps". One has only to consult any standard
introductory text on recursive function theory to see an intuitive motivation
given in these terms.

Now, from the index given in the first argument place, we can
construct the set of instructions which describes the M. We can then apply
those instructions to the input given in the second argument place and count
the "steps" (whatever they are like in M) up to the number given in the

102 WILLIAM J. THOMAS

third argument place. If, after precisely that number of steps, there is an
output, then our machine that decides TM will indicate an affirmative
answer, and otherwise a negative one.

I have argued that any class of machines (or algorithms) which we
would accept as an adequate reconstruction of the notion of effectiveness
must contain a universal machine (or algorithm). Now, that there is a
universal Turing machine is a result which is shown only with much formal
apparatus and hard work, whereas we have made the existence of such a
machine for any reconstruction of effectiveness a part of our definition of
what is to count as such a reconstruction. One may reasonably ask whether
the incorporation of this proposition into our definition is not open to the
charge that we have trivialized a highly non-trivial matter. But we have
not made the constructive proof of the existence of a universal machine in
any particular formal reconstruction a trivial matter. We have merely
formalized the intuition that any adequate reconstruction of effectiveness
would contain a universal machine. I would claim that if one could not
prove the existence of a universal Turing machine, for example, that fact
would be a compelling reason to reject Turing computability as an adequate
reconstruction of effective computability.

In addition to the philosophical interest I claim for R-ness, it seems to
me to have some pedagogical usefulness. It is commonly thought useful to
instruct beginning students in the method of the standard unsolvability
results, without troubling them with all the formal details. In so doing, one
makes free use of CT, but without really identifying the exact meaning of
"recursive" or "Turing computable" or whatever. Our generalization
formalizes this pedagogical procedure, and clearly identifies the underlying
assumptions associated with it. Perhaps most importantly, our proofs
alleviate the excessive informality (or "hand-waving" character) of the
standard informal expositions of these results, thereby lending them a bit
more security.

REFERENCES

[1] Mostowski, A., Sentences Undecidable in Formalized Arithmetic, North-Holland, Amsterdam
(1964).

[2] Thomas, W. J., "Doubts about some standard arguments for Church's thesis," in R. J. Bogdan
and I. Niiniluoto (eds.), Logic, Language, and Probability, D. Reidel, Dordrecht, Holland
(1973).

Davidson College
Davidson, North Carolina

