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1-Consistency and the Diamond

GEORGE BOOLOS

/ Introduction It is well known that the set of (Gόdel numbers of) sentences
of arithmetic that are consistent with classical first-order arithmetic with
induction (Peano Arithmetic (PA)) is Π-l complete. Solovay showed in [5] that
the propositional modal logic characterizing consistency in PA is the system of
modal logic known variously as G, GL> and L: the formulas of modal logic that
are theorems of G are precisely those that are provable in PA under all substi-
tutions of sentences of arithmetic for atoms p0, pu p2... of modal logic, the
diamond 0 and box D of modal logic being respectively interpreted as the
consistency predicate Con(x) and the provability predicate Bew(x) of arith-
metic. 1 In [3], building upon Solovay's work, I showed that the set of sentences
that are ω-consistent with PA is Π-3 complete and that the system G is also the
modal logic characterizing ω-consistency. Thus despite the greater complexity
of its definition, there is a natural and easily definable class of properties in
respect of which ω-consistency does not differ from (simple) consistency.

A theory T in the language of arithmetic is said to be 1-inconsistent if for
some primitive recursive formula Rx, T implies 3x-Rx and also implies Rn,
for every natural number n; Tis 1-consistent if it is not 1-inconsistent. The defi-
nition of ω-consistency thus differs from that of 1-consistency only in lacking
the qualifier "primitive recursive". Obviously, every ω-consistent theory is
1-consistent and every 1-consistent theory is consistent; neither converse holds.

1-consistency was first defined by Kreisel. Some interesting facts about it
are: (i) A modification of the finite version of Ramsey's theorem, due to Paris
and Harrington, turns out to be equivalent in PA to the assertion of
1-consistency, as do a number of other "mathematically interesting, non-self-
referential" undecidable sentences devised by other authors, (ii) In his proof of
the incompleteness theorems, Gδdel constructed a sentence which he showed to
be undecidable in the system under consideration on the assumption that the
system is ω-consistent. As Kreisel observed, however, this assumption is un-
necessarily strong; the assumption that the system is 1-consistent suffices to show
that the sentence Godel constructed is undecidable. (Rosser showed that a certain
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other sentence could be shown undecidable on the assumption of simple con-
sistency.) (iii) The assumption of 1-consistency decides the truth or falsity of
every sentence built up from 0 = 1 by means of truth-functional connectives
and the formula Bew(x), among which are such sentences as -Bew(Γ0 =
l π ) , which is the consistency assertion, and (Bew(Γ — Bew(rO = l π ) π ) -»
Bew(Γ0= Γ) ) .

A sentence S is said to be 1-consistent with a theory Γif the theory whose
axioms are S and the axioms of T are 1-consistent. Henceforth T = PA and
reference to PA will always be tacitly understood. The set of (Gόdel numbers
of) sentences that are {ω-/l-} consistent is at worst Π-3: S is {ω-/l-} consistent
if for all {formulas/primitive recursive formulas} Rx, either there is no proof
of (S -> 3x-Rx) or for some natural number n, for every proof/?, (5 -• Rn) is
not the last line of p. But although the classification of the set of ω-consistent
sentences cannot be improved since this set is Π-3 complete, that of the set of
1-consistent sentences can: we shall show that this set is Π-2, and indeed Π-2
complete.

Furthermore, we shall show that the system G is also the modal logic
characterizing the notion 1-consistency. Thus consistency, 1-consistency, and
ω-consistency are Π-l, Π-2, and Π-3 complete, respectively, but all have the same
propositional modal logic.

2 Π-2 completeness A formula F is called Π-l if F = VxRx, for some
primitive recursive formula Rx (which may contain free variables other than x).
F is Σ-2 if F = SxVγRxγ, for some primitive recursive Rxy.

The following well-known characterization of the notion of a 1-consistent
sentence is the key step in the proof of the Π-2-ness of 1-consistency.

Theorem 1 A sentence S is 1-consistent iff S is consistent with every true Π-l
sentence.

Proof: Suppose that Rx is a primitive recursive formula, VxRx is true, and
(S & VxRx) is inconsistent. Then for every n, Rn is true, Rn is provable (by the
Σ-l completeness of PA), and thus S implies Rn. But S also implies 3x—Rx and
5 is therefore 1-inconsistent.

Conversely, suppose S is 1-inconsistent. Then for some primitive recursive
Rx, S implies 3x—Rx and implies Rn for every n. If Rn is true for every n, then
S is inconsistent with the true Π-l sentence VxRx; if for some n, Rn is not true,
then -Rn is true, hence provable by Σ-l completeness, and 5 is outright
inconsistent.

Theorem 2 The set of (Gόdel numbers of) 1-consistent sentences is Π-2
complete.

Proof: Since the set of true Π-l sentences and the set of consistent sentences are
both Π-l, the set X of sentences S such that for every U (if U is a true Π-l
sentence, then (U& S) is consistent) is visibly Π-2. But by Theorem 1, Xis the
set of 1-consistent sentences.

Let F be a Π-2 set. We must show how to reduce Y to X. Since Y is Π-2,
there is a primitive recursive formula Hxyz such that for any natural number



1-CONSISTENCY AND THE DIAMOND 343

m, m is in Y iff VylzHmyz is true in the standard model. We'll show that m
is in Y iff Vy3zHmyz is 1-consistent.

Suppose m is not in Y. Then for some n, Vz-Hmnz is a true Π-l sentence
with which VylzHmyz is inconsistent. By Theorem 1, VylzHmyz is
1-inconsistent. Conversely, if m is in Y, then Vy3z//mj>z is true and therefore
certainly 1-consistent.

3 The characterization result We shall now show that G is the modal logic
of 1-consistency. Instead of working directly with the notion of 1-consistency
we shall work with the more convenient dual notion of 1-provability (provability
from some true Π-l sentence). To prove the analogue of Solovay's theorem for
1-consistency, we must first establish the analogues for 1-consistency of the usual
derivability conditions. Some preliminaries:

Definition A natural number m is (the Godel number of) a 1-proof of a
sentence S if m is (the Godel number of) a proof of a conditional whose
consequent is S and whose antecedent is some true Π-l sentence.

Definition A sentence S is 1-provable (or a 1-theorem) if some m is a
1-proof of 5.

Lemma 1 S is 1-provable iff -S is 1-inconsistent.

Proof: Theorem 1 and De Morgan.

We write "\-S" as an abbreviation of "S is provable (in PA)". A dictionary of
terms and formulas:

Pf(y): the usual primitive recursive formula for the set of Godel num-
bers of proofs.

LL(y): a primitive recursive term for λj (the Godel number of the last line
of the proof whose Godel number isy if j is the Godel number of
a proof, else 0).

Pf(y, x): the formula (Pf(y) &x = LL(y)).
Bew(x): the formula 3yPf(y, x).
ΓF~]: the numeral for the Godel number of F.
Sub(x, y, z): a primitive recursive term for λijk (the Godel number of the result

of substituting the expression with Godel number / for theyth
variable in the expression with Godel number k).

x: the first variable.
Num(x): a primitive recursive term for λi (the Godel number of the

numeral for /).
Tr(z): the usual Π-l satisfaction formula for Π-l formulas, with the

property that for any Π-l formula F, the biconditional (F «-•
Tr(Sub(Num(x)y 1, Γ F Π ) ) ) is provable.2

Ante(z): a primitive recursive term for \k (the Godel number of the
antecedent of the formula with Godel number k if k is the Godel
number of a conditional, else 0).

Cons(z): a primitive recursive term for λk (the Godel number of the
consequent of the formula with Godel number k if k is the Godel
number of a conditional, else 0).
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1-Pf(y, x): the formula (Pf(y) & Tr(Ante(LL(y))) &x = Cons(LL(y))).
(Notice that 1-Pf(y, x) is (equivalent to) a Π-l formula.)

l-Bew(x): the formula lyl-Pf(y, x). (l-Bew(x) is a Σ-2 formula.)

We can now demonstrate analogues of the derivability conditions for \-Bew(x).

Lemma 2 If \-S, then S is \-proυable.

Proof: If \-S then \-(Vxx = x-+S).

Lemma 3 \-Bew( ΓS~]) -+ \-(Bew( Γ S Π ) .

Proof: Formalize Lemma 2.

Lemma 4 Suppose \-S. Then \-l-Bew(ΓSn).

Proof: If bS, then by one of the derivability conditions for Bew(x),
\-Bew(rSn), whence by Lemma 3, \-\-Bew(ΓS'Ί).

Lemma 5 If S and (S -> S') are l-provable9 so is S'.

Proof: If S and (S-+ S') are implied by true Π-l sentences P and Q, then S' is
implied by (P & Q), which is (equivalent to) a true Π-l sentence.

Lemma 6 \-l-Bew(rSn) & l-5ew(Γ(S-> S')π) -> l-fiew(ΓS/Π).

Proof: Formalize Lemma 5.

Lemma 7 Le/ 5 be a Σ-2 sentence. Then \-S -> l-^w( Γ S Π ) .

Proof: Let 5 = ajcVyZtay, /?xy primitive recursive. For any natural number n,
let r(n) be the result of substituting the numeral for n for the variable x in
VyRxy, i.e., r(n) = VyRny. Now formalize the following argument, using the
terms and formulas in the dictionary: if S holds, then for some n, r(n) is a true
Π-l sentence. For every n, the conditional with antecedent r(n) and consequent
S is provable. Therefore if S holds, S is 1-provable.

Lemma 8 \-l-Bew(rSn) -> l-£ew(Γl-££?H>(ΓSπ)π).

Proo/. By Lemma 7 and the fact that l-Bew(x) is Σ-2.

We turn now to the connection with the systems G and G* of modal logic. The
axioms of the system G are all tautologies, all sentences (D(^4 -*/?)-> (ΏA ->
OB)), and all sentences (D(D^4 -+A)-+ \JA); the rules of inference of G are
necessitation (if A is derivable, then so is OA) and modus ponens. The axioms
of the system G* are the theorems of G and all sentences (ΠA -+A); the sole
rule of inference of G* is modus ponens.

Let "/" be a variable ranging over functions from the atoms of modal logic
to sentences of arithmetic. For each sentence A of modal logic, define Af by:
Af — f{A) if A is an atom; / commutes with propositional connectives; and
( Q 4 ) / = Bew(rAfn). (Thus {§A)f is equivalent to the sentence of arithmetic
formalizing the assertion that Af is consistent.) Similarly, define A ιf by:
Aιf = f(A) if A is an atom; (-A)ιf= -(Aιf); (A & B)ιf= (A{f& Bιf); and
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similarly for the other propositional connectives; and (D^4)1/= l-Bew(ΓAιfn).
((OA) ιf is then equivalent to the sentence of arithmetic formalizing the asser-
tion that A */is 1-consistent.)

The two completeness theorems of Solovay for G and G* are that a modal
formula A is a theorem of G iff Af is provable for all /, and that a modal
formula is a theorem of G* iff Af is true for all /. Artyomov, Leivant,
Montagna, and the author have proved an extension of Solovay's completeness
theorem for G: there is a fixed f such that for all modal formulas A, if A is not
a theorem of G, then 4/is not provable. Of course, since either Pofor —pof
is true, there can be no such "uniform" analogue for the system G*. We shall
now show how to establish analogues of all these results for the notion of
1-consistency.

Our main theorem is the following:

Theorem 3 For every A, f, if A is α theorem of G, then A ιf is provable for
all f; for some f for every A, if A is not a theorem of G, then A ιf is not
provable; and for every A, A is a theorem of G* iffAιf is true for all f.

Proof: Together with the diagonal lemma, Lemmas 4, 6, and 8 ensure the
provability in PA of the analogue for 1-provability of Lob's theorem. It is then
clear that for every /, A ιf is provable if A is a theorem of G, and (since a
1-provable statement is true) that A ιfis true if A is a theorem of G*.

We now show how to amend the proof of the main theorem given in [2],
viz. that for some /, for all A, if A is not a theorem of G, then Af is not
provable, so that it becomes a proof of the analogous result for 1-consistency.
We indicate the changes that must be made in pp. 192-195 of that paper in order
to establish the analogous result. First of all, replace " φ " everywhere by "/" .
Then inset "l-"s before "/", " P / " , "Bew", "proof", "theorem" at the
appropriate places. Replace mention of the Hilbert-Bernays derivability condi-
tions by reference to Lemmas 4, 6, and 8 above; mention of provable Σ-l
completeness, by reference to Lemma 7. The conclusion of the proof should
read, "-l-Bew(rA ιfn) is true, and thus A */is not a 1-theorem of PA, and
hence not a theorem of PA".

The most noteworthy change, however, is in the definition on p. 193 of
0(*i> *2)> which is no longer a primitive recursive term, but, in view of the
Π-l-ness of "1-proof", a Σ-2 term for the function whose value at m,r is y if
r is the Gδdel number of a 1-proof of the formula mentioned in the original
definition of θ, and is 0 otherwise, i.e., there is a Σ-2 formula s(xu x2, z) that
is satisfied by the graph of this function and is such that VxιVx2l\zs(xι, x2, z)
is provable. The new G(#, b) is thus no longer a Σ-l formula, but rather a Σ-2
formula, as can be seen by rewriting B(y, a, b) as:

3x(Lh(s) = a + 1 & (s)o = 0 & (s)a = b&
vx < a{[vz{s(y, x, z) -* p((s)x, z)) -* 3zs(y, x, (s)x+ι)] &

l-iz{s(y, x, z) & p((s)x, z)) - (s)x+ι = (s)x]}) .

These changes made, the proofs of analogues of (A)-(E), the lemma, and the
main theorem, proceed exactly as in [2].
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As for G*, the result that if A is not a theorem of G*, then for some/,
A ιfis not true, may be obtained by making a similar, routine, modification of
the proof of Solovay's theorem for G* given in Chapter 12 of [1].

4 Final remarks

1. Although it is not in general the case that A is a theorem of G iff Af is
1-provable for all/(let A = 07*), our proof and Lemma 2 above show that A
is a theorem of G iff A */is 1-provable for a l l/

2. We call a sentence S of arithmetic extremely undecidable if for all A
containing no atom other than p0, if Ag is not provable for some g, then
neither is Af for any / such that /(p 0) = S. No Σ-l or Π-l sentence can be
extremely undecidable. In [2], we showed the existence of infinitely many Δ-2
extremely undecidable sentences. In fact, if we define F(y) = 3x(S(x) &
Π(x, y)), where S(x) and Π(*, y) are as in that paper, then F(y) is a Δ-2
predicate such that i f / ( A ) = ̂ (i) for all /, then A is a theorem of G iff ^4/is
provable; thus the numerical instances of F(y) are Δ-2 extremely undecidable
sentences. If we define "extremely 1-undecidable" analogously, then no Δ-2 or
Π-2 sentence can be extremely 1-undecidable, but we may use the devices of [2]
to conclude that there is a Δ-3 predicate F'(y) such that if /(/?,) = F'(i) for all
/, then A is a theorem of G iff A {fis provable.

3. An entirely parallel treatment can be given for ω-consistency. By
introducing the Π-2 notion of an ω-proof of S, i.e., a proof of a sentence
(VxFx -> S) such that for all n9 Fn is provable, noticing that -S is omega-
inconsistent iff there is an ω-proof of S, and using a Π-2 formula to formalize
ω-proof one can prove an analogue of Theorem 3 for omega-consistency. (For
further details see [3].) Moreover, there is a Δ-4 predicate with properties
analogous to those of F(y) and F'(y) above.

NOTES

1. [1] provides an account of the relation between the system G and the concepts of
provability and consistency in PA. Notation and terminology not defined in this
paper are explained in that work.

2. Cf. p. 843 of [4].
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