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A Note on Satisfaction Classes
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/ Introduction Let L be the language of Peano Arithmetic (PA). If Mis
a nonstandard model of PA then any arithmetization of L determines a non-
standard language Form (M), consisting of the formulas in the sense of M. In-
vestigation of this language was begun in Robinson's [11]. Satisfaction classes
were introduced by Krajewski in [9] in a study of the semantics of Form (M).

It is a common practice in the literature to give only a "rough idea" of satis-
faction class and refer for a precise definition to [9]. This sometimes leads to
misunderstandings, especially when one has to distinguish full satisfaction classes
from those which are not full. For the reader's convenience in what follows, we
present Krajewski's definition with some minor changes on which we comment
later.

In the definition below, the symbols ->, v, & denote functions on Form
(M) or (Form (M))2, respectively, given by the arithmetization. This applies
also to symbols 3vk, Vvky where υk is a variable of Form (M).

We say that Φ c Form(M) is closed under immediate subformulas if
whenever any of the formulas -iφ, 3vkφ, ^vkφ is in Φ, then φ is in Φ, and
whenever φ v ψ or φ & ψ is in Φ, then so are φ and ψ.

Satisfaction classes on Mare certain sets of pairs of the form (Φ,a), where
φ G Form(M) and a is a valuation for φ. So a is a sequence of elements of M
with domain corresponding to the set of free variables of φ. Using an arith-
metical coding of finite sequences we treat satisfaction classes as subsets of M.

1.1 Definition If M is a model of PA, a subset S of M is a satisfaction
class iff

a. every xG S is of the form <</>,#}, where φ G Form(M) and a is a valuation
for φ
b. the class Φ(S) = {φG Form(M): 3a(φ,a) G S Wα (a is a valuation for φ) =>
<-ιφ,α) G S} is closed under immediate subformulas
c. if Af t= φa and Πjfl is the Gόdel number of φ, then (r<p ,a) G S
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d. if -ιφ E Φ(S) and a is a valuation for φ, then <-iφ,#> E S <* (φ9a) £ S
e. if φ v ψ E Φ(5) and # is a valuation for φ v ψ, then (φv \j/9a) ES & (φ9a

f) E
Sv<φ,#">ES, where #' and #" are suitable valuations for φ and i/s respec-
tively, obtained from a; similarly for φ & ψ
f. If ivkφ E Φ(5), (lvkφ9a) e S o [(u* is a free variable of φ and 3b(φ9ab) E
S) or (vk is not a free variable of φ and <φ,α) E S)], where αδ is a suitable
valuation for φ obtained from a and &, similarly for Vvk.

In part c of the above definition, φ ranges over all formulas of L, while
in Krajewski's original definition φ ranges over atomic formulas of L only. This
change allows us to say just "satisfaction class" where otherwise we would have
to say "satisfaction class deciding all standard formulas". Krajewski's definition
is intended to be as general as possible. In special cases the definition for satis-
faction classes can be made much simpler or at least shorter (cf. [7]; see also [12]
for a stronger but useful definition).

1.2 Definition A satisfaction class S on Mis full if for every φ E Form(M)
and every valuation a for φ we have <φ,α) E S or <-iφ,α) E S.

Notice that S is a full satisfaction class iff Φ(S) consists of all formulas of
Form(M).

In what follows we will often write S(φ9a) instead of <φ,#> E 5.
There are a number of interesting results on full satisfaction classes. The

most significant is the following theorem.

1.3 Theorem

a. (Kotlarski, Krajewski, Lachlan [7]) Every resplendent model of PA possesses
a full satisfaction class.
b. (Lachlan [8]) Every nonstandard model of PA possessing a full satisfaction
class is recursively saturated.

Let Ls be L together with an additional predicate symbol S. Let PA(S) be
a recursive theory consisting of PA, the induction schema for all formulas of
Ls and a set of Ls sentences saying that 5 is a satisfaction class.

If (M9S) ι= PA(S)9 then we say that 5 is an inductive satisfaction class
on M.

1.4 Theorem

a. Every resplendent model of PA possesses an inductive satisfaction class.
b. Every model of PA possessing an inductive satisfaction class is recursively
saturated.

From Theorems 1.3 and 1.4 it follows that a countable nonstandard model
M of PA possesses a full satisfaction class iff it possesses an inductive satisfac-
tion class and both these things may happen if and only if M is recursively satu-
rated.

While the proof of Theorem 1.3 is rather difficult and uses the whole power
of satisfaction classes, the proof of 1.4 is quite easy. In particular for the proof
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of 1.4b we need only c and d of Definition 1.1 and a weak form of induction
(cf. [3] or [4]).

There are uncountable recursively saturated models without full satisfac-
tion classes and without inductive satisfaction classes. A rather classless model
of Kaufmann (cf. [2]) serves as an example here. Again, while it is rather ob-
vious that Kaufmann's model does not have any inductive satisfaction classes,
the proof that it does not have any full satisfaction classes, given recently by
Smith (cf. [14]), is not so easy.

If we mix together two sorts of satisfaction classes mentioned above we will
obtain full inductive satisfaction classes, i.e., those inductive satisfaction classes
which are full.

Let N be the standard model and let Str = {(Γ<p ,a): N ι= φ(a) & φ is a for-
mula of L}. Stn of course, is a full inductive satisfaction class on N. In fact, it
is the only satisfaction class on N. If (M,S) is a proper elementary extension of
(N,Str), then by Theorems 1.3 or 1.4, M i s recursively saturated and, of course,
S is a full inductive satisfaction class on M. But not all countable recursively
saturated models have full inductive satisfaction classes. This follows from the
next proposition.

1.5 Proposition (Krajewski [9]) If M^ PA possesses a full inductive satis-
faction class, then λft= Con(PA).

For other interesting results see also [10] and a recent paper [6].

2 Statement of the results In this note we present three results concerning
the variety of satisfaction classes on countable recursively saturated models of
Peano Arithmetic. The main aim is to show a special method of dealing with
inductive satisfaction classes which allows us to use standard techniques devel-
oped for the study of models of PA based on the existence of universal truth
formulas for Σn formulas of the language of PA. Our results are analogues of
the following three classical theorems on models of PA.

2.1 Theorem A (Jensen, Ehrenfeucht) For every nonstandard countable
model M of PA there is a continuum of pairwise elementarily inequivalent initial
segments of M which are models of PA.

Let L be the language of PA. Let L * be any countable language extend-
ing L and let PA(L*) be PA together with the full induction schema for L*.

2.2 Theorem B (Gaifman) For every nonstandard countable model M of
PA(L*) there is a continuum of pairwise nonisomorphic, countable, elementary
end extensions of M.

A subset SΌf N is said to be representable in a complete theory T if there
is a formula φ such that X= {nGN: φ(n) e T}.

2.3 Theorem C (Scott) For every countable Scott set χ there is a consistent,
complete extension T of PA such that χ is the family of sets representable in T.

From general model theoretic facts it follows that on every countable recur-
sively saturated model of PA there is a continuum of distinct inductive satisfac-
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tion classes. Our results go a bit further. Let us say that satisfaction classes
Si, S2 on a model M are isomorphic {elementarily equivalent) if the structures
(M,SX), (M,S2) are isomorphic (elementarily equivalent).

2.4 Theorem Al Oz every countable recursively saturated model of PA
there is a continuum of inductive, pairwise nonelementarily equivalent satisfac-
tion classes.

2.5 Theorem Bl For every countable recursively saturated model M of PA
and every inductive satisfaction class S on M there is a continuum of pairwise
nonisomorphic satisfaction classes on M which are elementarily equivalent
toS.1

2.6 Theorem Cl Let T be a consistent, complete extension of PA and let
X be a countable family of subsets of N which contains the set of Gόdel num-
bers of the sentences in T. Then χ is a Scott set if and only if there exists a con-
sistent, complete extension T(S) ofPA(S) U T such that χ is the family of sets
representable in T(S).

We shall give an extended sketch of a proof of Theorem Al which is based
on the proof of Theorem A from [1]. The proof of Theorem Cl is a bit more
complicated. One can give a proof of Theorem Cl using ideas behind the proof
of Theorem Al and following a proof of Theorem C. The proof of Theorem
C from [1] is excellent for this purpose but one can use the original proof of
Scott from [13] as well.

Theorem Bl is an easy corollary of Theorem B and the following basic
isomorphism theorem (cf. [15]).

2.7 Theorem Any two countable recursively saturated, elementarily equiva-
lent models of PA with the same standard systems are isomorphic.

Proof of Theorem Bl: Let M be a countable model of PA and let S be an in-
ductive satisfaction class on M. By Theorem B we have continuum many pair-
wise nonisomorphic elementary end extensions of (M,S). If (Mι,Sχ), (M2,S2)
are two such extensions, then Mx and M2 are recursively saturated, elementarily
equilvalent to M and have the same, standard systems as M. So M{ and M2 are
isomorphic to M. This finishes the proof of Theorem Bl.

3 Proof of Theorem Al For the proof of Theorem Al it will be convenient
to use the following Σs

n hierarchy of formulas of Ls.

3.1 Definition Let ΣQ be the set of formulas of Ls containing S and all the
formulas of L, which is closed under -•, v, 3x < y and VΛ: < y. Let ΠQ = ΣQ and
for n > 0 let Σf+1 be the set of formulas of the form 3xφ where ψ E Π j and let
Π£+1 be the set of formulas of the form Vxφ where φ E Σ%.

Let B% be the set of Boolean combinations of Σ^ and Π^ formulas and let
Δ^ be the set of those formulas which are equivalent in PA(S) to some Σ^ and
Π^ formulas.

Observe that every formula of L is in ΣQ.
The next lemma is crucial for our considerations.
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3.2 Lemma For every « G N there is a Δ^+1 formula Tr% such that for
every formula φ of B% we have

PA(S) h- Vx[φ(x) # Trs

n(
r<P,x)],

where Γ(p is the Gόdel number of φ.

One constructs truth formulas Tr% as in the case of truth formulas for Σn

formulas of PA. For the construction of Σξ we use the following fact.
For every formula φ of L:

PA(S)ϊ-Vxφ(x)#S((φ9x)).

We say that a set of sentences A of Ls is /^-complete if for every sentence φ
of B% we have φ GA or -ιφ GA.

Let M be a countable recursively saturated model. For every δ E 2 < ω we
will define inductively a set of Ls sentences Tδ such that for every δ, δ1 ?

δ 2 e 2 < ω :

1. Tδ is consistent with PA (S)
2. 77*(M) c Γ 0 and if $! c δ2 then Tδι c Γδ2

3. If lhδ = n then Γδ is ^-complete
4. Γδ is coded in SSy(M)
5. If δi ̂ δ 2 then Γόl Φ Thγ

For every δ G 2 < ω we will first define a certain theory 7§ c jj^ό which is
consistent with P>4(5) and coded in SSy(M). Then we will take Tδ to be any
jB^δ-complete extension of Tδ which is consistent with PA(S) and coded in
SSy(M). The construction uses the following lemma due to Scott (cf. [13]).

3.3 Lemma If T is a consistent theory coded in a Scott set χ then there is
a complete consistent theory T which extends T and is coded in χ.

Let T0 be any incomplete extension of Th(M), which is consistent with
PA(S) and coded in SSy(M). Assume that we have Tδ for some δ G 2 < ω and
lhδ = n. With the help of Tr% we may obtain a Π^+1-sentence that says "I am
unprovable from PA(S) and whatever ^-sentences hold". Then PA(S)U
TδU {an} and PA(S) U Tδ U {-^an} are consistent (cf. [1] Lemma 2.5) and
we put

TίO = TδΌ{an} and Til = ΓδU {-αΛ}.

If Fis an infinite branch of 2 < ω then TF= U Γδ is a consistent, complete
δeF

extension of PA(S) U Th{M). Let (N,S) be a minimal model of 7> for some
branch F. We may safely exclude the case when TV is standard, then we have:

1. N is recursively saturated.
2 . SSy(N) c SSy(M), since for any set A G SSy(N), A is represented in

7V; hence 4̂ is recursive in 5^Π 7> for some n E N and by the con-
struction B% Π 7> is coded in SSy(M).

3. Λ ^ Ξ M .
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By the above and a suitable variant of the basic isomorphism theorem we may
assume that N<M (cf. [15]).

Now we will use the following result due to Kotlarski [5] and Schmerl [12].

3.4 Theorem If M, N\= PA, X^N, the structure (N,X) satisfies the in-
duction schema and M is a cofinal extension ofN then there exists X^M such
that (N,X)<{M,X).

Let TV = { χ e M : 3 j G i V , x < } ' } . Let S c TV be suchthat (N,S) <(N,S).
So (TV, S) t= TF and by the basic isomorphism theorem N is isomorphic to M.
This finishes the proof of Theorem Al.

Let us also mention in this section the following corollary of Theorem Cl.

3.5 Theorem For every countable recursively saturated model M there exists
a satisfaction class S on M such that (M,S) is a minimal model (i.e., has no
proper elementary submodels).

Proof: Let Γ = Th(M) and χ = SSy(M). Let T(S) be a consistent, complete ex-
tension of PA{S) U T such that χ is the family of sets representable in T(S).
Let (N,S) be a minimal model of T(S). Then, except for the case when TV is
standard, TV is recursively saturated, so TV is isomorphic to M, which finishes the
proof.

4 Nonisomorphic pairs of models Smoryήski in [16] applies certain initial
segment constructions to show that for every recursively saturated model M of
PA there exists a continuum of pairwise nonisomorphic structures of the form
(M,MQ) where M0<eM and Mo is recursively saturated. Here we show a dif-
ferent proof of this result which gives also some additional information.

4.1 Lemma Let M be a countable model of PA and let 21 be an un-
countable family of subsets of M such that for Xx, X2<Ξ% if X\Φ X2 then
(M,XX) φ (M,X2). If for every XG'Ά, M(X) is a countable elementary end
extension of M in which X is coded then the family {(M(X),M) :XE 21} con-
tains an uncountable family of pairwise nonisomorphic pairs.

Proof: It is easy to see that if/is an isomorphism of {MX,M) with (M2,M)
where M <eMh i = 1,2, then the image under / of every subset of M coded
in Mj must be coded in M2. Since for every XG 2ί the family of subsets of
M coded in M(X) is countable, it follows that for every XG% the set
{ F e 21: (M(Y),M) = (M(X),M)} is countable, so the result follows.

Now, let 2ί be an uncountable family of pairwise nonisomorphic inductive
satisfaction classes on a countable model M of PA. For every S G 2ί let
(M(S),S) be a countable elementary extension of (M,S), such that M<eM(S).
Obviously, S is coded in M(S) and by Lemma 4.1 we have an uncountable
family of pairwise nonisomorphic pairs of the form(M(S),M). Moreover, since
5 is an inductive satisfaction class on M(S), M(S) is recursively saturated.
Hence, it is isomorphic to M. Thus we obtain an uncountable family of non-
isomorphic pairs of the form (M,M0), where M0<eM and Mo is recursively
saturated.
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There are many ways of constructing (M(S),S) from (M,5). Using well-
known ultrapower constructions we may get pairs (M(S),M) satisfying various
combinatorial properties (M can be semiregular, regular, strong, etc... . in
M(5)). Hence we have uncountable families of nonisomorphic pairs (M,M0)
with these properties.

Let us recall that an extension M -< N is said to be conservative if every
subset of M which is coded in N is definable in M. By the MacDowell-Specker
theorem every model of PA(L*) has an elementary end extension which is con-
servative.

Suppose that a countable model Af ι= PA has a full, inductive satisfaction
class. Then by Theorem Bl there is an uncountable family 33 of pairwise non-
isomorphic full inductive satisfaction classes on M. If for every S E 33,
(M(5),S) is a conservative extension of (M,S), then it is easy to show that in
fact for all Su S2G33, such that S{ Φ S2, (Af(Si),Af) and (Af(S2),M) are
nonisomorphic. Now we shall prove a slightly stronger result.

Let us say that a pair {M,M0) is not embeddable in (N,N0) if for every
elementary embedding f of M into N the image of Mo under /, / * Mo, is not
cofinal in No.

4.2 Theorem If a countable model M of PA possesses a full, inductive satis-
faction class then there exists a continuum of pairwise not embeddable struc-
tures of the form (M,M0), where M0<eM and Mo is recursively saturated.

For the proof of this theorem we shall need the following fact.

4.3 Lemma (Krajewski [9]) Let Si and S2 be full satisfaction classes on M.
If the structure (M,Si,S2) satisfies the induction schema {or even the
Σrinduction schema) then Si = S2.

In particular it follows that ifS is a full inductive satisfaction class, then
the family of sets which are Ls-definable in (M,S) contains no other full satis-
faction class.

Now the proof of Theorem 4.2 is quite easy. If M has a full, inductive satis-
faction class, then in the proof of Theorem Al we may replace PA(S) by the
theory PA(S) + "S is full" and obtain an uncountable family of pairwise
nonelementarily equivalent full inductive satisfaction classes. Let 6 be such a
family. For every S E © let (M(S),S) be a countable, conservative extension of
(M9S). Suppose that for SΪ9 S2G ®, Si Φ S2,/is an elementary embedding of
M{SX) into M(S2). We show that/* Mcannot be cofinal in M. Suppose, on
the contrary, that it is. Then by the Kotlarski-Schmerl theorem we have S3QM
such that (/* M,/* Sx) < (M,S3). The set/* S{ is coded i n / * M(S{). From
the definition of S3 (cf. [5] or [12]) it is clear that S3 must be coded in M(S2).
But then S3 is definable in (M^S^, hence S3 = S2. This gives a contradiction
and finishes the proof.

NOTE

1. It should be acknowledged that both these results (Theorems Al and Bl) were
suggested to the author by Henryk Kotlarski.
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