Notre Dame Journal of Formal Logic Volume 25, Number 4, October 1984

A Shorter Proof of a Recent Result by R. Di Paola

CLAUDIO BERNARDI*

In a recent paper [2] Di Paola has proven that a formula F(x) exists which is nonextensional in a very strong sense, despite its relatively simple structure (in particular, F(x) is equivalent to $\neg Thm(t(\bar{x}))$, where Thm is the standard (extensional) *RE*-formula numerating the set of theorems of *PA* and t(x) is a fixed term). As is shown in [2], the result is relevant for an algebraic approach to incompleteness phenomena; especially when an attempt is made to extend the theory of the so-called diagonalizable algebras by considering structures in which formulas with free variables and quantifiers are representable. (See [2] for general motivations, remarks, and consequences.)

In this paper another proof of the result is presented, which is shorter than Di Paola's; moreover, unlike Di Paola's paper, no prerequisites are required. A generalization is also discussed.

We recall the statement of the theorem.

Theorem There is a Π_1 formula F(x) of PA such that

(i) there is an infinite recursive set \mathfrak{F} of fixed points of F(x) in PA and the set $\mathcal{E} = \{\phi/\phi \in \mathfrak{F} \text{ and } \omega \vDash \phi\}$ is not recursive

(ii) for every recursively enumerable Σ_1 -sound extension T of PA and almost all $\phi \in \mathcal{E}$, ϕ is undecidable in T

(iii) for every T as in (ii) and for every $\phi \in \mathcal{E}$, almost all sentences ψ which are provably equivalent to ϕ in T are not fixed points of F(x) in T.

Moreover there is a fixed term t(x) of a PR-extension PA^+ of PA such that $\vdash_{PA^+} \neg \dot{T}hm(\overline{t(\bar{x})}) \leftrightarrow F(x)$.

390

^{*}Partially supported by a grant from the Italian CNR (U.S.-Italy Cooperative Science Program supported by CNR and NSF).

Remark 1: In [2] a relation E_T is mentioned and at first glance the statement there seems to be weaker. Actually, since the following argument applies also to the formula constructed in [2], the two statements are equivalent, even if this is not entirely evident in Di Paola's proof (in particular, the hypothesis stated in [2] that E_T is an r.e. relation is unnecessary).

Proof: We identify sentences with their Gödel numbers; in particular, we assume that 1 is a theorem of PA and 0 its negation.

Let S be a simple set and let A(x) be a Σ_1 formula which numerates it in PA in the sense that $n \in S$ iff $\vdash_{\overline{PA}} A(\overline{n})$. Let $\dot{S}(x)$ be a formula equivalent to $\dot{T}hm(\overline{A(\overline{x})})$ for every x; note that $\dot{S}(x)$ is a Σ_1 formula which numerates S in every T as in (ii) and that $\vdash_{\overline{T}} \dot{S}(\overline{n})$ iff $\models \dot{S}(\overline{n})$ (iff $n \in S$).

Define \mathfrak{F} as follows: $\mathfrak{F} = \{\neg \dot{S}(\bar{n})/n \in \omega\}$; therefore $\mathcal{E} = \{\neg \dot{S}(\bar{n})/n \in \bar{S}\}$. Note that \mathcal{E} is an immune set since, if W were an infinite r.e. subset of \mathcal{E} , $\{n/\neg \dot{S}(\bar{n}) \in W\}$ would be an infinite r.e. subset of \bar{S} .

Define a total (primitive) recursive function h as follows:

$$h\phi = \begin{cases} A(\bar{n}) \text{ if } \phi \in \mathfrak{F} \text{ and } \phi = \neg \dot{S}(\bar{n}) \\ 1 \text{ (or any theorem of } PA) \text{ if } \phi \notin \mathfrak{F}. \end{cases}$$

Let H(x, y) be a Σ_1 formula which binumerates h (as a set of pairs) in PA and, hence, also in T. Now, define the required Π_1 formula F(x) as follows:

$$F(x) = \forall z (H(x,z) \to \neg \dot{T}hm(z)) .$$

It is easy to verify that for every ϕ the formula $F(\overline{\phi})$ is provably equivalent to $\neg Thm(\overline{h\phi})$; so the term t(x) mentioned in the last part of the statement is readily constructed. It follows that

- (a) every $\phi \in \mathfrak{F}$ is a fixed point of F(x): if $\phi \in \mathfrak{F}$, by the definition of $h, \neg Thm(h\phi)$ is provably equivalent to ϕ
- (b) a sentence \$\phi\$ not belonging to \$\F\$ is a fixed point of \$F(x)\$ in \$T\$ iff it is the negation of a theorem of \$T\$: if \$\phi\$ \$\not\$ \$\Pi\$, \$F(\$\vec{\phi}\$)\$ is provably equivalent to \$\neg Thm(\$\overline{1}\$), i.e., to 0.

Moreover, we have

- (c) every sentence belonging to F E is the negation of a theorem of T: indeed, if φ∈ F E, say φ = ¬S(n̄), we have ⊨S(n̄) and hence ⊢_TS(n̄), i.e., ⊢_T¬φ. In view of (b), we can conclude
- (d) a sentence not belonging to \mathcal{E} is a fixed point of F(x) in T iff it is the negation of a theorem of T.

Now consider a theory T as above and the set 3 of the theorems of T; by (c) we have $3 \cap \mathcal{E} = 3 \cap \mathcal{F}$: hence $3 \cap \mathcal{E}$ is an r.e. subset of \mathcal{E} and therefore is finite. On the other hand, an element of \mathcal{E} cannot be the negation of a theorem of T since T is Σ_1 -sound (if $\phi \in \mathcal{E}$, $\neg \phi$ is a false Σ_1 sentence). So (ii) is proven.

In order to prove (iii), consider a sentence ψ which is provably equivalent to ϕ in T and is a fixed point of F(x) in T. Note that ψ cannot be a refutable sentence: if $\vdash_T \neg \psi$, it would follow that $\vdash_T \neg \phi$, contradicting the fact that T is Σ_1 -sound. So, by (d) the considered ψ must belong to \mathcal{E} , but the set of fixed

CLAUDIO BERNARDI

points of F(x) which are provably equivalent to ϕ is an r.e. set and, being enclosed in E, is finite.

Remark 2: By (d) it immediately follows that, if T is sound, then \mathcal{E} is the set of all true fixed points of F(x) in T.

Remark 3: As in Di Paola's proof, the described construction is quite general and some variations are possible in order to satisfy further side conditions. In particular the choice of the simple set S (and therefore the choice of the co-r.e. immune set \mathcal{E}) is completely arbitrary. On the other hand, if we start from another kind of set (instead of from a simple set), by a quite similar construction we get again a formula F(x) and a corresponding set of fixed points of F(x).

If we limit ourselves to a fixed Σ_1 -sound r.e. extension T of PA, statements analogous to Di Paola's theorem are easily found. For instance, let us define the formula F(x) to be provably equivalent to $\neg Thm_T(\bar{x} \neq \bar{c})$ for every x, where c is the Gödel number of the sentence $\neg Thm_T(\bar{0})$ which expresses the consistency of T within the same T. It is readily seen that the set \mathfrak{F} of all fixed points of F(x) is constituted by the sentence whose Gödel number is c and by all refutable sentences. So, on the one hand the set \mathcal{E} is recursive (and in fact it is a singleton); but, on the other hand, every ψ provably equivalent to the element of \mathcal{E} (but different from it) is not a fixed point of F(x).

The situation is much more complex if nonsound theories are considered also. In this case the formula F(x) cannot be equivalent to $\neg Thm(t(\bar{x}))$ for some term t(x), because it may happen that $\vdash_{\overline{x}} \forall x(Thm(x))$. However, if instead of the standard formula $\dot{T}hm(x)$ other extensional formulas numerating the set of theorems of PA are considered, similar constructions are still possible. For instance, let us refer to the variant of Rosser predicate $R^{f}(x)$ which is defined in [1]: we recall that it is an extensional Σ_1 formula such that $\vdash_{\overline{PA}} R^f(\overline{1})$ and $\vdash_{\overline{PA}} \neg R^{\bar{f}}(\bar{0})$. We can prove the following statement.

There is a Π_1 formula F(x) of PA such that

(i) there is an infinite recursive set \mathcal{F} of fixed points of F(x) in PA and the set $\mathcal{E} = \{\phi/\phi \in \mathfrak{F}, \vDash \phi \text{ and not } \vdash_{\overline{PA}} \phi\}$ is not recursive

(ii) for each r.e. consistent extension T of PA and almost all $\phi \in \mathcal{E}$, ϕ is undecidable in T

(iii) for every T as in (ii) and almost all $\phi \in \mathcal{E}$, almost all sentences ψ which are provably equivalent to ϕ in T are not fixed points of F(x) in T.

Moreover there is a fixed term t(x) of a PR-extension PA^+ of PA such that $\vdash_{\overline{PA}} \neg R^{f}(\overline{t(\overline{x})}) \leftrightarrow F(x)$.

We only sketch the proof. Consider a maximal set M and apply Friedberg's decomposition theorem to obtain two disjoint r.e. sets A and B which are not recursive and whose union is M. Note that if A' and B' are disjoint r.e. sets containing A and B respectively, then both A'-A and B'-B are finite.

Let A(x) be a Σ_1 formula which exactly separates A and B in PA (that is, $n \in A$ iff $\vdash_{\overline{PA}} A(\overline{n})$ and $n \in B$ iff $\vdash_{\overline{PA}} \neg A(\overline{n})$; let $\dot{S}(x)$ be a formula provably equivalent to $R^{f}(\overline{A(\overline{x})})$ for every x. Define as in the previous proof the set \mathfrak{F} , the function h, and the formula F(x) (replacing $\dot{T}hm(z)$ by $R^{f}(z)$).

The claim follows. As regards (iii), note that the fixed points of F(x) in T are the elements of \mathcal{E} , the negations of the theorems of T, and some theorems of T. So, if $\phi \in \mathcal{E}$ and $\vdash_{\overline{T}} \phi$ or $\vdash_{\overline{T}} \neg \phi$, in T there exist infinitely many fixed points ψ of F(x) which are provably equivalent to ϕ ; but if $\phi \in \mathcal{E}$ and ϕ is undecidable in T (and this is the case for almost all $\phi \in \mathcal{E}$) only finitely many ψ as above can exist.

REFERENCES

- [1] Bernardi, C. and F. Montagna, "Equivalence relations induced by extensional formulae: classification by means of a new fixed point property," to appear in *Fundamenta Matematica*.
- [2] Di Paola, R., "A uniformly, extremely nonextensional formula of arithmetic with many undecidable fixed points in many theories," to appear in *Proceedings of the American Mathematical Society*.

Università di Siena Dipartimento di Matematica 53100 Siena, Italy