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A Shorter Proof of α Recent Result

by R. Di Pαolα

CLAUDIO BERNARDI*

In a recent paper [2] Di Paola has proven that a formula F(x) exists which
is nonextensional in a very strong sense, despite its relatively simple structure
(in particular, F(x) is equivalent to -ifhm(t(x)), where thm is the standard
(extensional) /?is-formula numerating the set of theorems of PA and t(x) is a
fixed term). As is shown in [2], the result is relevant for an algebraic approach
to incompleteness phenomena; especially when an attempt is made to extend the
theory of the so-called diagonalizable algebras by considering structures in which
formulas with free variables and quantifiers are representable. (See [2] for
general motivations, remarks, and consequences.)

In this paper another proof of the result is presented, which is shorter than
Di Paola's; moreover, unlike Di Paola's paper, no prerequisites are required.
A generalization is also discussed.

We recall the statement of the theorem.

Theorem There is a Iίx formula F(x) of PA such that

(i) there is an infinite recursive set $ of fixed points ofF(x) in PA and the set
δ = {φ/φ G $ and ωϊ=φ} is not recursive
(ii) for every recursively enumerable Σrsound extension T of PA and almost all
φ E δ , φ is undecidable in T
(iiϊ) for every T as in (ii) and for every φ e δ , almost all sentences ψ which are
provably equivalent to φ in T are not fixed points of F(x) in T.

Moreover there is a fixed term t(x) of a PR-extension PA+ of PA such
that^+^ThmitixV^Fix).
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Remark 1: In [2] a relation Eτ is mentioned and at first glance the statement
there seems to be weaker. Actually, since the following argument applies also
to the formula constructed in [2], the two statements are equivalent, even if this
is not entirely evident in Di Paola's proof (in particular, the hypothesis stated
in [2] that Eτ is an r.e. relation is unnecessary).

Proof: We identify sentences with their Gόdel numbers; in particular, we assume
that 1 is a theorem of PA and 0 its negation.

Let S be a simple set and let A(x) be a Σi formula which numerates it in
PA in the sense that n G S iff \rp%A(n). Let S(x) be a formula equivalent to
fhm(A(x)) for every x\ note that S(x) is a Σx formula which numerates S in
every T as in (ii) and that YψSin) iff ^S(ή) (iff neS).

Define £F as follows: $F = {^S(n)/n G ω}; therefore ε = {^S(n)/n G S}.
Note that δ is an immune set since, if W were an infinite r.e. subset of δ,
{n/-ιS(n) G W} would be an infinite r.e. subset of S.

Define a total (primitive) recursive function h as follows:

(A(n) if φ G ίF and φ = ^S(n)
hφ ~~ [l (or any theorem of PA) if φ <£ 5.

Let H(xyy) be a Σλ formula which binumerates h (as a set of pairs) in PA and,
hence, also in T. Now, define the required U\ formula F(x) as follows:

F(x) = vz(H(x9z) -> ̂ fhm(z)) .

It is easy to^verify that for every φ the formula F(φ) is provably equiva-
lent to -ifhm(hφ); so the term t(x) mentioned in the last part of the statement
is readily constructed. It follows that

(a) every φ G ίFJs a fixed point of F(x): if φ G 5S by the definition of
Λ, -ifhm(hφ) is provably equivalent to φ

(b) a sentence φ not belonging to ^ is a fixed point of F(ΛΓ) in T iff it is
the negation of a theorem of T: if φ £ ίF, F(φ) is provably equivalent
to -ΠΓΛAT?(Ϊ), i.e., to 0.

Moreover, we have

(c) every sentence belonging to ^ — δ is the negation of a theorem of T:
indeed, if φ G 2 F - δ , say φ = -iS(ή), we have t=S(n) and hence
hrS(n), i.e., \γ-iφ. In view of (b), we can conclude

(d) a sentence not belonging to δ is a fixed point of F(x) in T iff it is the
negation of a theorem of T.

Now consider a theory T as above and the set 3 of the theorems of Γ; by
(c) we have 3 Π δ = 3 Π ίF: hence 3 Π δ is an r.e. subset of δ and therefore is
finite. On the other hand, an element of δ cannot be the negation of a theorem
of T since Γis Σrsound (if φG&, ~>φ is a false Σι sentence). So (ii) is proven.

In order to prove (iii), consider a sentence ψ which is provably equivalent
to φ in T and is a fixed point of F(x) in Γ. Note that ψ cannot be a refutable
sentence: if ly-n/s it would follow that \γ-iφ, contradicting the fact that Γis
Σ{-sound. So, by (d) the considered ψ must belong to δ, but the set of fixed
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points of F(x) which are provably equivalent to φ is an r.e. set and, being en-
closed in δ, is finite.

Remark 2: By (d) it immediately follows that, if Γis sound, then δ is the set of
all true fixed points of F(x) in T.

Remark 3: As in Di Paola's proof, the described construction is quite general
and some variations are possible in order to satisfy further side conditions. In
particular the choice of the simple set S (and therefore the choice of the co-r.e.
immune set δ) is completely arbitrary. On the other hand, if we start from
another kind of set (instead of from a simple set), by a quite similar construc-
tion we get again a formula F(x) and a corresponding set of fixed points of
F(x).

If we limit ourselves to a fixed Σ rsound r.e. extension T of PA, state-
ments analogous to Di Paola's theorem are easily found. For instance, let us
define the formula F{x) to be provably equivalent to ~ythmτ{x Φ c) for every
x, where c is the Godel number of the sentence -^fhmτ(Q) which expresses the
consistency of T within the same T. It is readily seen that the set $ of all fixed
points of F(x) is constituted by the sentence whose Gόdel number is c and by
all refutable sentences. So, on the one hand the set δ is recursive (and in fact
it is a singleton); but, on the other hand, every ψ provably equivalent to the ele-
ment of δ (but different from it) is not a fixed point of F(x).

The situation is much more complex if nonsound theories are considered
also. In this case the formula F(x) cannot be equivalent to -ιfhm(t(x)) for
some term t{x), because it may happen that \γ\fx(fhm(x)). However, if in-
stead of the standard formula fhm(x) other extensional formulas numerating
the set of theorems of PA are considered, similar constructions are still possi-
ble. For instance, let us refer to the variant of Rosser predicate Rf(x) which is
defined in [1]: we recall that it is an extensional Σ{ formula such that \-pjRf(ϊ)
and ϊpχ^Rfφ).

We can prove the following statement.

There is a U{ formula F(x) of PA such that

(i) there is an infinite recursive set $ of fixed points ofF(x) in PA and the set
g = {φ/φ E $, \=φ and not ^ Φ } is not recursive
(iϊ)for each r.e. consistent extension TofPA and almost all φ G δ, φ is undecid-
able in T
(m)for every T as in (ii) and almost all 0 G δ, almost all sentences ψ which are
provably equivalent to φ in T are not fixed points of F(x) in T.

Moreover there is a fixed term t(x) of a PR-extension PA+ of PA such
that*pz^Rf(t(x))"F(x).

We only sketch the proof. Consider a maximal set M and apply Friedberg's
decomposition theorem to obtain two disjoint r.e. sets A and B which are not
recursive and whose union is M. Note that if A' and Bf are disjoint r.e. sets con-
taining A and B respectively, then both A'—A and B'—B are finite.

Let A (x) be a Σ{ formula which exactly separates A and B in PA (that is,
n GA iff Yp^A{n) and n G B iff Yp^-^A(n))\ let S(x) be a formula provably
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equivalent to Rf(A(x)) for every x. Define as in the previous proof the set ^ ,
the function h, and the formula F(x) (replacing fhm(z) by RJ(z)).

The claim follows. As regards (iii), note that the fixed points of F(x) in T
are the elements of δ, the negations of the theorems of T, and some theorems
of T. So, if φ G δ and \ψj> or \ψ~ιφ9 in T there exist infinitely many fixed points
ψ of F(x) which are provably equivalent to φ; but if φ G δ and φ is undecίd-
able in T (and this is the case for almost all φ G δ) only finitely many ψ as
above can exist.
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