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Probability Logic

THEODORE HAILPERIN*

Introduction Among logicians it is well-known that Leibniz was the first to
conceive of a mathematical treatment of logic. Much less known, however, was
his insistence that there was need for a new kind of logic that would treat of
degrees of probability. Although it isn't clear what Leibniz had in mind for such
a logic—understandably, since the subject of probability had just begun in his
lifetime and the florescence of modern logic was not to begin until the 19th
century—he did envision that it would be a means for estimating likelihoods and
a way of proof leading not to certainty but only to probability (see his Nouveaux
Essais, pp. 372-373). Beginning in his day, and extending through the pres-
ent century, a number of mathematicians and logicians, e.g., Jacob Bernoulli,
J. H. Lambert, A. De Morgan, G. Boole, C. S. Peirce, J. M. Keynes,
H. Reichenbach, R. Carnap, and, more recently, D. Scott and P. Krauss have
made either forays or detailed attacks on establishing such a logic, but with
differing conceptions as to its nature. A few brief remarks will give some idea
as to what these were like.

To Bernoulli (as also to Leibniz) probability was degree of certainty, dif-
fering from it as part to whole. In his Λrs Conjectandi (Part IV, Chapter III)
he considers the various kinds of arguments (i.e., grounds) for a conclusion
(opinion or conjecture) and the problem of estimating their weights so as to com-
pute the probability of the conclusion. Situations involving arguments are
divided into three types: those in which the argument is necessarily the case but
indicates (proves) the conclusion only contingently; those in which the argument
is contingent but when present necessarily proves the conclusion; and those in
which the presence of the argument and its proving of the conclusion are both
contingent. The * 'proving power" of an argument is determined by the number
of cases in which the argument is, or is not, present and also by the number of
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cases in which it indicates the conclusion, or doesn't indicate it, or indicates its
contrary. As in games of chance, Bernoulli assumes these cases to be equally
possible. The algebraic formulas he obtains rely on the assumption of equally
likely cases, and also, in some instances, on tacit independence assumptions.

In Lambert's Neues Organon (Vol. 2, Part V, Section 169, pp. 184-186)
we find problems similar to those of Bernoulli's Λrs Conjectandi (Part IV),
which, however, are treated with more sophistication with respect to both logical
and probabilistic aspects. Where Bernoulli talks of the probability of "things"
and of "the matter", Lambert talks of the probability of propositions. The
logical structure of (syllogistic) inference is taken into account, and due attention
is paid to whether or not premises are independent. Where Bernoulli obtains the
worth of an argument for a conclusion by computing expected value (treating
certainty as a prize and counting cases in which the argument exists and proves
the conclusion, or doesn't and proves nothing) Lambert uses the "urn model"
idea, representing arguments by heaps of tickets marked and unmarked in pro-
portion to the number of cases in which the argument for the conclusion is valid
and invalid, and then considers blindfold selections from the heaps to determine
the probability of the argument establishing the conclusion. But, unlike
Bernoulli, Lambert doesn't consider situations in which a conclusion follows
contingently from premises.

In his Formal Logic, subtitled "The Calculus of Inference, Necessary and
Probable", De Morgan contends that making a distinction between drawing con-
clusions from premises whose absolute truth one believes in and those in which
one has only partial belief, was quite arbitrary. His (rather small) chapter on
probable inference contains items of the following nature.

All arguments are supposed to be logically valid, that is their conclusions
necessarily follow from the premises. (This is a restriction in generality from
Bernoulli who treated cases of contingent entailment.) If one has independent
premises with probabilities a, b, c,.. .then for such an argument the product
abc.. .is the probability that "the argument is in every way good". A major part
of the chapter is devoted to questions on combinations of testimonies of
witnesses with given probabilities of being correct, and with combinations of
testimonies with arguments. We take these to be not purely logical or prob-
abilistic in character. However, some he looks at do have such a character:
"Arguments being supposed logically good, and the probabilities of their
proving their conclusions (that is, of all their premises being true) being called
their validities, let there be a conclusion for which a number of arguments are
presented, of validities a, b, c, etc. Required the probability that the conclusion
is proved" [3, p. 201]. This same problem was treated by Bernoulli and Lambert.
We discuss it below in Section 5.

Boole, more than anyone before him, realized and exploited the close
relationship between the logic of not, and, and or and the formal properties of
probability [1], He forced this relationship to be closer than it really is by restrict-
ing himself to or in the exclusive sense (so that probabilities of an or-compound
added) and by believing that all events were expressible ultimately in terms of
independent events (so that probabilities of an ύwd-compound multiplied). As
he saw it, the central problem of the theory of probabilities was to obtain the
probability of an event (the event expressed as a proposition) in terms of the
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probabilities of other events logically related to it in any manner. Though Boole
was not conscious of it as such we have here the nub of a probability logic: by
taking as premises the assertions that the several starting propositions have the
assigned probabilities and as conclusion the assertion that the objective proposi-
tion has the (sought for) probability value, we have, in effect, an inference in
a Leibnizian *'logic of degrees of probability". Boole believed, on the basis of
his view of probability, that he had solved the central problem, and in a general
form which included conditional probabilities (see [7], Chapters 4 and 5).

One of the examples Boole works out ([1], Example 7, p. 284) is that of
finding the probability of the conclusion of a hypothetical syllogism given the
probabilities of its premises. Unfortunately he confuses the probability of a con-
ditional (probability of: if A, then B) with conditional probability (probability
of B, given A) and solves not the stated problem (which nevertheless his method
could handle) but one involving conditional probabilities. While De Morgan
restricted himself to arguments in which the conclusion was a necessary conse-
quence of the premises (though these premises could have less than certainty),
no such restriction is present in Boole's method. Another novel feature of
Boole's work was his general investigation of bounds on probabilities when the
data were insufficient to determine a value. The principal result on which we
base our work (Section 3 below) is a direct outgrowth of these ideas of Boole.

C. S. Peirce was one of the great formal logicians of the 19th century who
also thought intensively about the nature of probability. It is thus surprising that
his long essay "A Theory of Probable Inference" of 1883 [11] has no systematic
consideration of the formal grounds for justifying probable inferences. Indeed,
one gets the impression that he thinks probable inference is not entirely formal.
For example, in citing the wide differences, despite analogies, between
"syllogistic" and probable inference he writes:

(3) A cardinal distinction between the two kinds of inference is, that
in demonstrative reasoning the conclusion follows from the existence of the
objective facts laid down in the premisses; while in probable reasoning these
facts themselves do not render the conclusion probable, but account has to
be taken of various subjective circumstances—of the manner in which the
premisses have been obtained, of there being no countervailing considera-
tions; etc.; in short, good faith and honesty are essential to good logic in
probable reasoning. ([11], p. 435)

By contrast, in Keynes [10], the explicit aim is to formalize the theory of
probability. There is a philosophical analysis of probability as a relation between
propositions—considered by Keynes to be a logical relation—and axioms for it
are presented. This relation behaves similarly to conditional probability which,
like the notions of randomness and statistical independence, will not be part of
our study. We are thus construing 'logic' in a narrow sense which excludes
investigations such as that of Keynes and, similarly where the interest is in
analysing, and obtaining a definition of, 'degree of confirmation'.

After the advent of many-valued logics in the 1920s, with both finite and
infinitely many values, it was natural to associate probability with a logic of
infinitely many values. The period 1932-1936 saw a spate of papers on the
subject. The most zealous proponent of treating probability as a many-valued
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logic was Reichenbach whose first paper on the idea appeared in 1932. A
good account of his work appears in his 1949 book [12]. In opposition to
Reichenbach, Tarski [16], reflecting the ideas of various Polish philosophers,
declared that a revamping of the present system of logic in order to obtain a
methodologically correct foundation for probability (which was Reichenbach's
aim) was neither necessary nor desirable—a chief criticism being the "nonex-
tensionality" of probability as an operator on propositions. For instance, in
many-valued logics the "truths-value of a logical sum (alternation) is determined
by those of its components, whereas the probability of a logical sum is not a
(single-valued) function of the probabilities of its components. Reichenbach
counters this criticism of nonextensionality by what is in essence a hidden
variable argument. Based on the probability formula

P(A v δ ) = P(A) + P(B) - P(A Λ B)
= P{A)+P{B)-P{A)P{B\A) ,

he writes the table

P(A) 1 P(B) I P(B\A) I P(AVB) I P(AAB)

p q u p + q - pu pu

p + q — \ q

restrictive conditions: < u < - ,
P P

thus making P(A V B) depend on three arguments one of which involves
a conditional probability. Derivable formulas of his probability logic are
either formulas stating that a logical expression has probability 1 (e.g.,
P(A V -iA) = 1) or formulas coming from the well-known calculus of prob-
abilities expressing relations between probabilities (e.g., P(B) = P(A)P(B\A) +
P(-iA)P(B\-iA)). Tarski [16] declared that Reichenbach's probability logic is
not a many-valued logic but rather a chapter of the usual two-valued logic.

In Carnap [2], as in Keynes, the central notion is that of a (confirmation)
relation between pairs of sentences and with a function assigning numerical
values to such pairs. Unlike Keynes, there is a deeper analysis of the formal
language.

More directly related to our topic are considerations which assign prob-
ability values to simple sentences and which study its transmission through
to more complicated sentences (as one does for truth in Tarski semantics). In
Gaifman [5] we have a generalization of the semantic notion of a model for a
first-order language in which probability values replace truth-values. Gaifman's
idea is extended to infinitary languages and intensively investigated in Scott and
Krauss [14], where a probability logic is developed on this basis.

At the other extreme, in contrast to the Scott and Krauss work, here we
remain entirely on the propositional level. We develop a probability logic ap-
propriate to this level from a consideration of the truth-table idea, slightly
generalized, along with properties of probability. The notion of probability is
presupposed as part of the semantics, and questions as to its nature will play no
more role than does the nature of truth in usual logic. A small set of proper-
ties, shared by essentially all theories of probability, is all that we shall appeal



202 THEODORE HAILPERIN

to. What we come up with could conceivably be viewed as a many-valued logic
in that propositions take on more than two values—viz., the real numbers in the
interval [0,1]—but it differs from what has been known and studied as many-
valued logic in a number of important details.

For one thing, although the formal language of our probability logic has
the same symbols as that of two-valued logic there is an uncoupling of the
connection between value assigning functions (''truth''-functions) and con-
nectives—values associated with a formula are not strictly determined by its
linguistic structure but by its probability-related structure, namely by its repre-
sentation in terms of basic conjunctions on its variables (corresponding to
'elementary event', 'state-description', and the like, in probability treatments).
Moreover, the logic is not given syntactically, i.e., by specifying some set of
starting formulas and rules of inference for deriving others, but semantically,
by defining 'logical consequence' using the notion of a 'probability model'.
Although the definition of 'modeP for probability logic is pretty much what one
would expect, the definition of 'logical consequence' has an unusual feature in
that its assertions concern formulas having a value in a set of values (rather than
some designated value (or values)), and in such assertions all probability values
are on a par. When the sets of values are subintervals of [0,1] there is a decision
procedure for determining whether or not a logical consequence relation holds.

/ The true-false logic of propositions Although the true-false logic of
propositions is obviously well-known, we nevertheless wish to sketch this elemen-
tary portion of standard logic in a form that will enable us to see how probability
logic generalizes it.

One can either start out by assuming a (potentially infinite) list of un-
analyzed "atomic" sentences of some arbitrary, but fixed, language or, as we
shall be doing, assuming a list of formal propositional variables taking on such
propositions as values. Then, using

(i) propositional variables: Aγ9..., An>.,.
(ii) logical connectives: -i, Λ, V

(iii) parentheses: (, )

we may construct in customary fashion the formulas of the (two-valued)
propositional logic.

The fundamental relation governing inference, the relation of logical con-
sequence, is defined in terms of models. We use a slightly variant definition of
model so as to bring out that the validity of an inference depends only on a finite
number of propositional variables. A model M (adequate for a set of formulas
X\y — -> XN) is a n assignment of values 0 or 1 to propositional variables
A\,. . . , An, where this list is long enough to include all variables present in
Xi> > XTV (The use of a consecutive initial string of variables is merely for
convenience.) The values 0 and 1, rather than atomic propositions, are assigned
to the variables since for the purposes of logical inference there is no need to
distinguish among false, and among true, atomic propositions. We write
VM(A[) for the value assigned to A[ by M. In customary fashion we extend
the value-assigning function υM to all formulas φ on A{,..., An by setting
VM(Φ) = Tfφ(υM{Aχ),..., υM(An))y where Tfφ is the truth-function associated
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with φ, definable by composition of functions from the three truth-functions
normally associated with -ι, Λ, V. If vM(φ) = 1, then we say Mis a model of
φ, or that φ is true in M.

A formula ψ (abstractly or schematically standing for a proposition) is a
(valid) logical consequence of the set of formulas Φ i , . . . , φ m , if:

(1) For all models M (adequate for φx,..., φm, ψ): if vM(φx) = 1, . . . ,

vM(Φm) = 1, then υM(ψ) = 1.

This consequence relation is customarily symbolized by φx,..., φm ι= ψ.
Property (1) can be trivially generalized by allowing 0 in place of any or

all of the Γs (trivially, because vM(φ) = 0 is equivalent to vM(-^φ) = 1), so
obtaining

(2) For all models M (adequate for φu . . . , φm, ψ): if vM(φx) = υu ...,
vM(Φm) = vm, then vM(ψ) = v0, where vu ..., υm, v0 is any fixed (i.e.,
independent of M) selection of 0's and Γs.

We symbolize (2) by writing

(3) V(φι) = vl9...9 V(Φm) = vm^V(ψ) = v(h

the symbol *F' being chosen as suggestive of 'verity5.
If we had a truth-table entered from Au ..., An and computing values for

Φι,..., Φn, ψ, then we can assert (3) if in every row in which the values under
φu..., φm are, respectively, vu..., vm, the value under ψ in each of these
rows is vo. In general, suppose we delete the portion of the table headed by
A\,..., An and in the remaining portion collapse together, or identify, all rows
having the same distribution of truth-values under φu . . . , φm. From this col-
lapsed table we can read off a consequence relation of the form (3) when each
of the identified rows has the same value for ψ, though not if both values 0 and
1 occur. Yet this latter case is information, and we can represent it by writing

(4) V(φx) = υu...9 V(φm) = vm^ V(φ) G {0,1}.

More generally, we can introduce a consequence relation of the form,

(5) V{φ{)e α i , . . . , W J G « ^ W ) E ( 3 ,

where the symbols a {,..., am, β represent any of the sets {0}, {1}, {0,1). As
an example, the eight rows of a truth-table computing values for φ\=Ax ->/l3,
φ2 =A2 V A3, φ = (A i -+A2) Λ (Ai V A2) is, in collapsed form,

Aι-^A3 A2VA3 (Aι-^A2)A (Ax VA2)

(5 rows) 1 1 (0,1)
(1 row) 0 1 1
(2 rows) {0,1} 0 0

leading to three statements of the form (5):

V(Φι)e{l], K ( φ 2 ) E { l j ^ K ( ψ ) G { O , l )
v ( φ x ) e ( 0 ) , V ( φ 2 ) e ( i ) ι = v ( φ ) e { i )
κ ( φ , ) e {0,1}, K(φ 2 )e fθ} t= V(Φ)G {O}.
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This generalized form of logical consequence, while of little interest for
two-valued logic, will serve as a prototype for that of probability logic.

2 Probability-valued logic Purely abstract forms of many-valued logics, in-
troduced by "truth"-tables with either finite or infinitely many values assigned
to propositional arguments, have been known since the 1920s. The subject has
had fairly extensive development: current bibliographies (as in [13]) list hundreds
of items, mainly along lines of a mathematico-structural nature. Application as
usable logic, i.e., for validating inferences, is not very prominent. What hinders
successful application is the semantic problem, crucial to which is the meaning
of the abstract values when there are more than two. Without a clear idea of
what the values stand for there is no firm guidance as to how to define 'model'
and 'logical consequence', notions which, in our opinion, are necessary for
something to be called logic.

In view of difficulties stemming from lack of clarity in this connection, the
possibility of using probabilities as values seems especially attractive; for
although the nature of probability may be in philosophical dispute, we do
have a clear idea of its properties, particularly in relation to not, and, and or.
A comparison of these properties in the two cases, i.e., for truth and for
probability, will suggest an appropriate definition of 'model' for probability
logic. We assume in both cases a common formal language, that described in
Section 1.

For truth-vahie assignments to formulas the properties needed are that each
formula (as representative of a proposition) has either 0 or 1 as a value, and the
logical connectives behave truth-functionally in the well-known manner ex-
emplified by the conventional truth-tables. But it is clear that we cannot, in
general, extend probability values for variables A\9. . ., An to formulas (on
these variables). However, if we restrict ourselves to formulas constructed from
some initial set by means of only negation and alter nation- with-disjoint-
components, then we can extend probabilities from this initial set to all such
formulas. But, as all formulas (on Au ..., An) are expressible as a disjunction
(or negation of a disjunction) of basic conjunctions (on AΪ9..., An), we can,
by taking basic conjunctions as the initial set, extend probabilities to all
formulas. We are thus led to the following definition.

Let kj (j = 1 , . . . , 2n) be real numbers such that for eachy, kj G [0,1], and
such that the sum of all is 1. A probability model M (adequate for a set of for-
mulas χ i , . . . , XΛO is an assignment of the numbers kj to the basic conjunctions
Kj on variables Aχ9. . ., An, where this list of variables is long enough to in-
clude all those occurring in χ l 5 . . . , χN.

We write PM(Kj) for the value assignment by M t o Kj (i.e., PM(Kj) = kj)
and extend PM to all formulas on Au . . . , An by setting PM(Φ) = ΣiΦ)kj, where
the summation is over all j for which Kj implies φ or, lacking such, we set
PM(Φ) = 0. By 'Kj implies φ' we mean with Kj and φ taken as formulas in the
ordinary two-valued sense. Thus we are including two-valued logic as part of
our semantic apparatus. The so-defined function PM satisfies the following
general properties of probability:

P I . (i) P(φ) =0, if φ implies AXΛ ~^AX

(ii) P{φ) < P(φ), if φ implies φ
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P2. P(-^φ) = l-P(φ)
P3. P(φ Vψ)= P(Φ) + P(ψ), if φ Λ φ implies Ax Λ - i ^ .

Note that if in a probability model M some A:/n = 1 (and hence all other
k/s are 0) then for / = 1,...,«, the formula Aj has PM value 0, or 1, according
as Ai appears negated, or unnegated, in KJQ. Such models then coincide with
two-valued models.

We now define logical consequence for probability logic. For this we use
as our prototype the more general form of two-valued logic introduced in
Section 1.

Let otι,...,am, β be subsets of [0,1]. The (probability) logical con-
sequence relation, denoted by

(l) p(φλ) e « , P(Φm) eam^p(ψ) eβ,

is defined as: For all probability models M (adequate for φu.. ., φ m , ψ): if

PM(Φι) Gαi PM(Φm) e am, then PM(φ) E β.
The intuitive picture here is that of a "truth"-table entered from basic con-

junctions Ku . . . , K2n with additional columns headed φ l s . . . , φ m , ψ. The
Ku..., K2n are assigned all possible sets of 2n real numbers from [0,1], the
sum of such numbers in each set being 1. Each assignment (row) determines a
probability model and corresponding values for φΪ9. . ., φ w , ψ. The premise
conditions in (1) select out of the 2*° rows of the table those in which the
probabilities of the φ, are, respectively, in the sets α, , the relation (1) then
holding if for each of these rows ψ has a probability in β.

When a subset a of [0,1] is a singleton, say, a = {a}, then we shall write
P(φ) =ain place of P(φ) e a.

Theorem 2.1 ^P(Φ) = 1 iff φ is a (two-valued) tautology.

Proof: (a) If φ is a tautology then, for any M, PM(Φ) = 1. (b) If φ is not a
tautology then its expansion as an alternation of basic conjunctions (we assume
it has one, otherwise it is equivalent to Ax Λ -ιAy and hence PM(Φ) — 0) is miss-
ing at least one conjunction, say KJr There are models in which kJχ Ψ 0; in any
s u c h P M ( φ ) * l .

Since properties P1-P3 hold for any PM we can list any of the simple
identities derivable from these properties as probability consequence relations.
For example, P(φ V ψ) = P(φ) + P(ψ) - P(φ Λ ψ) can be rephrased as

P(φ) = a, P(ψ) =b, P(φA\ls)=ct=P(φVψ)=a + b-c .

However for the more substantial results we are going to arrive at we need, not
particular identities, but some general theorems. Since these theorems are not
well-known and, also, provide an effective procedure for obtaining the strongest
conclusion from a set of premises, we devote a section to a short exposition.

3 Some theorems about probability algebras In the preceding section we
considered probability measures on sets of formulas built up from the proposi-
tional variables A\,. . ., An and the connectives -ι, Λ, V. But since (by Pl(ii))
logically equivalent formulas have the same probability values, we can simplify
the structure carrying the probability measure by ''identifying" logically
equivalent formulas, namely by going over to the Lindenbaum-Tarski algebra,
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i.e., the Boolean algebra of equivalence classes of logical formulas modulo
logical equivalence. However we shall not bother to change notation, using
-i, Λ, V in place of ~, O, U, (and with 0, the zero element of the algebra being
the equivalence class determined by A{ Λ -L4I) . The general notion here is that
of a probability algebra: an ordered pair (B,P), where B is a Boolean algebra
and P a real-valued function, a probability function, defined on elements of B>
with the properties

(PI) ( i)P(,4)>0
(ii)P(^) = 0 if A = 0

(P2) P(-vl) = 1 -P{Λ)
(P3) P(A V B) = P(A) + P(B) iϊAΛB = 0.

(In strictness the Ψ' should carry an indication, e.g., a subscript, of the Boolean
algebra it is associated with but we shall usually omit it, introducing it only when
necessary.)

Given (P1)-(P3) it is readily shown that1

max[0,P(,4)+P(£) -1} <P(AB) < min{P(A),P(B)} ,

a result giving upper and lower bounds for P(AB) in terms of P(A) and P(B)
which are good for any probability algebra. (For a "primitive" treatment of this
inequality relation see [1], pp. 298-299.)

Are these "best possible", i.e., could there be another function of P(A)
and P(B) giving bounds for P(AB), good for all probability algebras, which
would be narrower in some cases? As Frechet shows (in [4]), these bound func-
tions are indeed best possible since, for example, in the case of the upper bound,
no matter what values P(A) and P(B) may have, there is a probability algebra
and elements A and B in it such that P(AB) = min{P(.4), P(B)}.

This result of Frechet's was generalized in [6], where the following was
established:

Theorem 3.1 Given any Boolean polynomial expression φ(Ax, . . . , An):
(i) there are numerical-valued n-ary functions Lφ and Uφ depending only on the
(Boolean) structure of φ, such that the inequalities

(*) Lφ(au. . . , * „ ) < P(Φ(Al9. ..,An))«* Uφ(au..., an)

hold in any probability algebra for which P(Ai) = ax {i— 1,...,«); (ii) the
bounds in (*) are best possible; and (iii) the functions Lφ and Uφ are effectively
determinable (by solving a linear programming problem) from the structure
ofφ.

Here are a couple of examples of Uφ's. If φ(AuA2) =Aχ V A2, then

Uφ(aua2) =min[\, a{ + a2]

and if φ(A{,A2,A3) = -^AXA2AZ V ->A2AιA3 V ->A3A{A2, then

Uφ(aua29a3) = min ——y——, ax + a2, ax + α3, a2 + a3,

1 - ax + 1 - a2 + 1 - tf3 .
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We give a brief indication of the ideas behind the proof of Theorem 3.1
(full details are in [6]). As an illustration we take the simple example of finding
Uφ for φ(Aι,A2) = ~^A\ V A2 — AλA2M ~^A\A2M -ιA\-^A2. In any probability
algebra in which A\ and A2 are elements we have the quantities k\ = P(AιA2),
k2 = P{Aχ-^A2), k3 = P(-iAιA2), and k4 = P(^AX-^A2), where AXA2, AX-*A2,
-ιAιA29 and -^AX^A2 are the four basic conjunctions on Au A2. Then, as
shown in [6], the least upper bound of the values P(φ(A\,A2))9 as one varies
the probability algebra and the elements Au A2 of the algebra (subject to the
condition that P(Ai) — at (ι— 1,2)) is the same as finding the maximum of
g = k\ + k3 + k4[ = P(φ{Aι9A2))], subject to the constraints

kx + k2 = ax

(1) kx + k3 =a2

kx + k2 4- k3 4- k4 = 1, and kx > 0 (/ = 1, . . . , 4),

or, in matrix notation to bring out the pattern of 0's and Γs,

"l 1 0 O] \x \aλ I1

(2) 1 0 1 0 I2 = a2 , I2 > 0
1 1 1 1 ,3 l γ

that is, finding the maximum of a linear form g = kx + k3 + k4 subject to the
linear inequality constraints (2). By the duality theorem of linear programming
this problem is equivalent to finding the minimum of r = axxx 4- a2x2 4- 1 ΛΓ3

subject to the constraints

"l 1 ll r Ί \\
10 1 ^ 0

(3) Q l ι x2 > j

_o o l j LX3J [ i _

Note that in (3) the initial matrix is the transpose of that of (2), and that the
quantities au a2 no longer appear in the constraint conditions but are coef-
ficients in the form axxλ + a2x2 + 1 x3; also that the matrix on the right-hand
side in (3) reproduces in order the k's associated with P(φ(AuA2))[= \-kx +
0 k2+ 1 -k3 + 1 k4], and is uniquely determined by the structure of φ. From
linear programming theory we know that if conditions (3) are consistent then
the minimum of the linear form r occurs at a corner point {xux2,x3) of the
polytope defined by (3). In our particular case these points are found to be
(-1,1,1) and (0,0,1) giving then

(4) m i n r= Uφ(aua2) = m i n { l -aι-\-a2,l}.

Best lower bounds are found by noting that

L φ ( a x , . . . , a n ) = 1 - U^φ(aι , . . . , a n ) .

Consistency conditions for the linear system (1) are easily seen by inspec-
tion to be 0 < ax < 1, 0 < a2 < 1. In general, there is an effective procedure for
determining consistency of any system of linear inequations which may also in-
clude equations (see, for example, [15], Section 1.1).
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The result of Theorem 3.1 can be considerably extended:

Theorem 3.2 Given Boolean polynomial expressions ψ, Φ i , . . . , Φm in
variables A{,..., An; (i) there are 2m-ary numerical functions L^φ) and U^φ)

depending only on the structures of ψ, φ{,..., φ m , such that the inequalities

(**) L$\au. ..,am9bl9...,bm)< P(ψ(Au..., An))
<U<φ\au...9am>bl9...9bm)

hold in any probability algebra for which

ai<P(φi(Aι,...,An))<bi ( / = l , . . . , m )

(ii) the bounds in (**) are best possible; and (iii) the function L^ and U^φ) are
effectively determinable (by solving a linear programming problem) from the
structures of'ψ, φ\9...,φm.

In this case, unlike for Theorem 3.1 where the consistency conditions
are the simple 0 < at < 1, the requirements here imposed by the constraints
#, < P(Φi) < bx demand considerably more. Nevertheless, the system of linear
inequalities in the kj(j = 1,..., 2n) which expresses the constraints is effective-
ly decidable as to consistency.

A special case of Theorem 3.2 which will be of interest to us is that for
which Φi(Aι,.. ., An) =Ah Here the constraints become

ai<P(Ai)<bi ( / = 1 , . . . , n)

and we are thus considering bounds on P(φ(Aι,..., An)) not in terms of
values aι of the P(Ai), but in terms of intervals [ah b,] within which the P(Aj)
lie.

The guiding ideas for the proof of Theorem 3.2 are similar to those for
Theorem 3.1 (see [6], Section 6).

We point out that, as far as the determination of best lower and upper
bounds for a ψ(Aι,..., An) is concerned, appeal to probability algebras is
replaceable by assignments of values to the kj taken as variables—with, of
course, the requirements

kjG [0,1] and Σkj=\ .

The only way the probability algebras enter into the problem is via the values
kj. Hence varying all possible such values is equivalent to varying all possible
probability algebras. In other words, the full generality of probability algebras
is not needed, as we are concerned only with (finite) Boolean algebras which are
generated by n generators and (call these generators Au..., An) which have
the property that \J' Kj = 0, where V indicates an alternation over a proper
subset of the basic conjunctions on Au . . . , An, namely those having kj — 0.
Such probability algebras correspond precisely to our probability models.

4 Probability logic for intervals By use of the results stated in the preceding
section we can completely characterize the class of valid inference forms for
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probability logic when the sets involved are subintervals of [0,1]. First a special
case.

Theorem 4.1 Let Lψ and Uφ be the functions furnishing lower and upper
bounds as in Theorem 3.1. Define an interval-valued function Pfψ by setting

Pfφ(au. . ., an) = [LΦ(au.. ., an), UΦ(au...9 an)] .

Then for au...9 an<E [0,1],

P(Aλ) = al9...9 P(Λn) =an^ P(φ) e Pf+{au..., an) .

Proof: Let M b e a probability model for which PM{Aι) = ax (i = 1 , . . . , n). By
virtue of the discussion at the end of the preceding section we may consider PM

as a probability function for a probability algebra and hence conclude that
PM(Ψ) Ξ Pfψ(a\9- > <*«)> since the interval Pfψ{aλ,..., an) contains PM(Φ) for
any probability algebra in which P M ( A ) = ff, (/ = 1 , . . . , Λ) .

The consistency conditions for the premises in Theorem 4.1 are simply that
the α, be probability values, i.e., numbers in the interval [0,1]. This can be
proved formally, but is quite evident if one thinks of the A\ as regions of the
unit square, each with area equal respectively to the assigned probability.

For the general theorem we first introduce an interval-valued function
Pfj)Φ) of 2m arguments ct\,..., # m , b\,..., bm but, with an abuse of notation,
write its arguments as α i , . . ., α m , where α z = [ahbj]. Using notation from
Theorem 3.2, we set

Pflφ) (al9...9am) = [Lf\ax,. . ., am, b{,. . ., bm)9

U«Hal9...9am9bl9...9bm)] .

Theorem 4.2 Let au .. ., am, β be probability intervals. Then

(i) P(φ{ ) € « ! P{φm) Eam^ P(φ) G β

if and only if

(ϋ) PflΦ\au..., oίm) c j8, where Pf^φ) is the probability interval-valued func-
tion defined above.

Proof: Immediate by Theorem 3.2.

5 Examples In the following examples of inference forms for probability
logic we restrict ourselves to premises in which the probability intervals contain
a single value and the conclusion interval is the strongest possible, i.e., as given
by Pfjφ). Although unsophisticated techniques would suffice to establish these
simple inferences, we shall nevertheless use the full-blown linear algebra tech-
nique in Example 1 in order to illustrate the general method. In the remaining
examples we merely state results.

Example 1 (Generalizing modus ponens):

P(A{)=p,P(A{^A2)=q\=P(A2)<E [p + q-l,q] ,

with cons i s tency c o n d i t i o n s o n t h e p a r a m e t e r s p a n d q\ p<\, q<\, p + q>\.
T o s h o w this let kx, k2, k3, k4 b e t h e va lues a s s o c i a t e d w i t h t h e bas ic c o n -
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junctions on Λu A2. On expressing the conditions in the premises in terms of
the k's, and adjoining the probability requirements on the /r's, we obtain

kx + k2 -p
kx + k3 + k4 = q

K) kι + k2 + k3 + k4 = l
k\» k2, AΓ3, k4 > 0.

It is readily seen that these imply the stated consistency conditions on p and q.
(In general one can always use elimination techniques, e.g., Fourier elimination,
for determining consistency of systems of linear inequations.) To find the best
upper bound for P(A2) subject to conditions (1) one needs to find max k\ + k3,
subject to

"l 1 0 Ol kχ \pλ k ι

1 0 11 2 = q and 2 > 0 .
l l l l f 3 1 γ

1Λ4J LA*
The dual form for this linear programming problem is to find min pxx +
qx2 + #3, subject to

"l 1 l ] r 1 Γl~

m J i I, \ .
0 1 l j L*3J [o_

By simple algebraic means one finds the one corner point of the polytope
specified by (2), namely, (0,1,0). Hence pΌ + q>\ +0 = q is the minimum
value. The best lower bound is found by use of complementary techniques,
giving the result as stated.

Example 2 (The "hypothetical syllogism"):

P(Aι-+A2)=p, P(A2->A2) =qϊ=P(Aι-+A3) G [p + q - 1,1] ,

with consistency conditions / 7 < l , ^ < l , / ? + g > l .
The next example illustrates the effect of additional information. In

Example 1 the premises show no relation between A\ and A2. If we replace Ax

by A1 M A2 the result remains true, but a sharper result can be given, namely
(dropping the redundant A2 from A\ V A2->A2):

Example 3:

P ( A X V A 2 ) = A P{AX-+A2) =g\= P ( A 2 ) =p + q-l ,

with the same consistency conditions as in Example 1.
In the preceding three examples the formula in the conclusion was a

necessary consequence (in the two-valued sense) of the formulas in the premises.
Here is a simple example where this is not the case:

Example 4:

P{Al-+A2)=pt=P(A2->Al) = [l-p9l] .
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We return to the problem, referred to in our Introduction, of combining separate
arguments for a conclusion. Using De Morgan's language we translate 'A is an
argument for C by Ά -> C ; Ά is logically good (for C ) ' by 'P(A -+C) = V;
'A proves C" by 'A A (A -> C ) ' ; and 'the validity of A9 by 'P(,4)\ Note that
the validity of A is equal to the probability that A proves C if the argument A
is logically good. The problem considered is: given arguments Ax,..., An (for
C), all being logically good, and with respective validities βi, . . . , # „ , what is
the probability that the conclusion is "proved"? Since (Ax ->C) Λ . . . Λ
(An-+C) is logically equivalent to (Ax V . . . V An) -> C the question is
equivalent to asking for P(AX V . . . V ^4rt) given that P(Aj) = ax• (i= 1,..., n).
De Morgan gives the result 1 — (1 — ax)(l — α 2 ) . . . (1 — an), which is correct if
P(^A^A2. ..-^An)=P(-iAι)P(-,A2).. .P(-*An), i.e., if t h e ^ , . . . , An are
stochastically independent. Without this assumption we have

Example 5:

P(A!) = ax,..., P(An) = an ι= P(Ax V A2 V . . . V An)

E [maxftf!,..., an], min{l, a{ + α2 + + ^ ) ]

Our methods readily extend to cases in which the arguments for C can be
contingent (P(At:-> C) = bi), and also to the inclusion in the premises of inter-
relations among the Aι when these can be logically expressed. In contrast to
Riechenbach's having to use an additional variable to express P(AX V A2) in
terms of P(Aι) and P{A2)i note how Example 5 expresses the interval for
P{AX V A2) solely in terms of P(AX) and P(A2).

One might observe that the upper and lower bounding functions occurring
in Examples 1-5 are obtainable by functional compositions from the two
functions

f(x,y) =min{l, 1 -x + y]
g(x) = 1 - x ,

which are the conditional and negation of Lukasiewicz many-valued logic on the
unit interval. However, this is not a general feature. For example, as observed
in Section 3, -iAxA2A3 V -ιA2A{A3 V -^A3A{A2 has for the best upper bound

. (ax + a2 + tf3 , , , )
mm , a x + a 2 i a x + a 3 , a 2 + a 3 , l - a λ + l - a 2 + l ~ a 3 \ ,

which cannot be obtained by composition from the Lukasiewicz functions.

NOTE

1. Henceforth we shall use juxtaposition for conjunction.
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