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The Predicate Modal Logic

of Provability

FRANCO MONTAGNA*

Introduction The propositional modal logic of provability GL and its
arithmetical interpretations have been studied by various logicians: among
others, Boolos, De Jongh, Magari and his school, including the author,
Smorynski, Solovay, and Visser. As observed by Boolos in the introduction of
[4], the arithmetical interpretation of GL can be extended to its extension to
the language of modal predicate calculus, denoted by QGL. By this observation,
one might reasonably expect that QGL can offer a more complete description
of the logic of provability. Unfortunately, however, many desirable properties
of GL do not extend to its predicate version; for example, in [ 1 ], Avron shows
that the most natural sequential formulation of QGL does not admit cut-
elimination (where a similar sequent calculus for GL does: see [8], [14], and
[19]). In this paper, we show that other important results about GL fail to
hold for QGL; for example, QGL is not complete with respect to any class of
Kripke frames; moreover, QGL is not arithmetically complete, and does not
enjoy the fixed point property.

In spite of these negative results, we believe that many aspects of the
predicate logic of provability are worthy of further investigation; in particular,
since QGL is not arithmetically complete, one could try to find new significant
provability principles which are arithmetically valid, but not provable in QGL.
In any case, even if most important problems on QGL have a negative solution,
there are also positive results: for example, in [1], Avron shows that QGL
enjoys some closure properties, and that the notion of PA validity satisfies
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some kind of disjunction property. In this paper, other positive results, con-
cerning self-reference, are shown; for example, fixed points, when they exist,
are unique up to provable equivalence; moreover, the theorem on uniqueness
of fixed points for formulas of PA arising from modal formulas A(p) in which
p is modalized can be extended in its full generality to the predicate case.

1 Preliminaries QGL is the predicate version of the modal logic GL the
formulas of QGL are those of the modal predicate calculus (for simplicity, we
assume that our language does not contain constants or function symbols); the
axioms are those of the predicate calculus for all formulas of QGL together
with the schemata

DA ΛΠ(A-+B)^ΏB and Π(ΠA-+A)^ΠA.

The rules are those of predicate calculus plus the rule MN: =r-τ , where all

assumptions on which A depends are axioms of QGL. As in the propositional
case, one can show that QGL contains the schema ΏA -> D D ^ and is closed
under Lob's rule: if \~QQI BA -+A, then \~QGIA.

Let T be an r.e. extension of PA, and let us associate with every atomic
formula P of QGL a formula fP of T whose free variables are exactly those
occurring in P; assume that / commutes with the operation of substitution of
variables; that is, if f(P(uu . . ., un)) = A(uu . . ., un) then f(P(vu . . ., υn)) =
A(υlf . . ., υn). (We assume, without loss of generality, that no occurrence of
vu . . ., υn in A is bound; if it is not the case, we replace each bound variable in
A by a variable distinct from vu . . ., υn). Then, we define a function / from
QGL formulas into PA formulas in the following inductive manner:

1. fP = fP if P is atomic
2. /commutes with all logical connectives and quantifiers
3. f\3B(υu . . ., υn) = PrγifBiυ^ . . ., ϋn)), where Prj is the usual provability

predicate for T, and, for every formula C(υu . . ., υn), Ciυ^ . . .,vn)
denotes a term for the primitive recursive function λvu . . ., υn.

fA is called "the value of A under the interpretation f". A is called T-valid
iff, for every interpretation /, fA is a theorem of T; it is easily seen that every
theorem of QGL is Γ-valid. If QGL' is an extension of QGL, we say that QGL1

is T-complete iff the converse holds too, that is if the theorems of QGL' are
exactly the Γ-valid formulas.

The Bar can Schema (in short: BS) is the schema \fuΠA(u,υ) -* Π\/uA(u,v\

where v denotes a (possibly empty) sequence of variables. BS is not PA -valid,

because, for every PA sentence φ, one has: l^j Vx PrpA(PrfpA(χ>Φ) ~* 0)> but if

ί/M Φ> then \PA PrPA(Vx PrfpA(x, Φ) "* Φ) (see [6]). Therefore, we do not add BS

to QGL.

2 Some results on model theory for QGL

Definition 1 A (predicate) Kripke frame is a system (X, R, Wx\xeχ) such
that X is a nonempty set (called "the set of worlds"), R is a binary relation on
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X (called "the accessibility relation") and [Wx\X€χ is a sequence, indexed with
the elements of X, of nonempty sets such that, if xRy, then Wx C Wy.

Definition 2 If <ί - (X, R, lWx\xeχ) is a Kripke frame, a (predicate) Kripke
model on <3Γ is a system (X, R, \Wx\X€χ, Ih), where Ih is a mapping from the set
\(x, A): A is a closed formula with parameters in Wx\ into {T,l{ such that,
writings \\~ A for lh(x, A) = T, the following conditions hold1:

a. x \[~ A v B iff Ih is defined on both (x, A) and (x, B) and either x \\~ A
oτx \\~B

b. x Ih π 4̂ iff Ih is defined on (x, A) and x \V~ A
c. x Ih 3uA(u) iff for some ΰ e Wx x \\~ A(u)
ά. x \\~ΠA iff for every y e X, if xRy, then >> Ih >1.

Definition 3 We say that A is valid in the model (X, R, {Wx\xeχ, lh)iff, for
every x e X, x Ih A; we say that A is valid in the frame <ΐ iff A is valid in all
Kripke models on / ; we say that a set G of sentences is valid in the model 7n/
(respectively: in the frame <f) iff every sentence in G is.

Definition 4 We say that a predicate modal logic L is complete with respect
to the class F of frames (respectively: to the class M of models) iff the
theorems of L are exactly the formulas which are valid in all frames in F
(respectively: in all models in M).

We can easily prove the following facts (see also [4]):

Proposition 1 QGL is valid in the frame (X, R, \Wx\X€χ) iff R is transitive
andR'1 is well-founded.

Proposition 2 If R is a transitive relation on X, then QGL is valid in the
Kripke model (X, R, lWx\X€χ, Ih) iff the following condition holds:

Condition (+) For every closed formula A with parameters, if there is an
x e X such that x Ih A, then there is a y such that y Ih A and for every z, if
yRz, then z \V~ A.

One can prove the following completeness theorem:

Theorem 1 QGL is complete with respect to the class of all transitive
Kripke models satisfying Condition (+).

Proof: The proof is quite similar to that given in [7] (pp. 174-176) for the
modal predicate calculus, therefore we only sketch it. Assume MQQJA\ we want
to construct a model Tfu - (X, R, \Wx}xeχ, Ih) of QGL such that, for some
x0 e X, x0 Ih iA. In this model, X will be a subset of the set ω<ω of all finite
sequences of natural numbers; with every s e X, we associate a Henkin-complete
extension Ts of QGL by stages, as follows:

Stage 0: we put the empty sequence φ in X and we define Tφ to be a Henkin-
complete extension of QGL+ ~iv4 (that such an extension exists can be shown as
in [7]).

Stage n+1: assume that, at Stage n9 we have decided which sequences of length
<n belong to X, and we have associated to every such sequence s a suitable
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Henkin-complete extension 7 ,̂ e.g., QGL. Let s e X be a sequence of length n.
If for no closed formula A in the language of Ts we have \ψ OA, no sequence
extending s is placed in X\ otherwise, let Us be the set of all formulas B such
that bjr OB, and let us write Us as Us = {2?, : / < Λ} (1 < Λ < ω). Then, for all
i < k, we put the sequence2 s * / in X, and we associate to s * z a Henkin-
complete extension Ts^ of β d U \Bt\ U{£: ^ π £ i . Now we define: sRt iff
t properly extends s\ Ws = {a: a is a constant in the language of Ts}; if
5(^i» J u«) is a n atomic formula and <2l5 . . ., an belong to WS9 we define
s \\~ B(au . . ., an) iff l y .#(#!, . . ., an). (Clearly, this requirement completely
determines IK.)

As in [6], we can show that for every s e X and for every formulaB with
parameters in Ws, we have s \\~ A iff \γ A then, QGL is valid in Thy and
φ II—\A. Clearly, R is transitive; that Condition (+) holds in Th/ follows from
Proposition 2.

Since Condition (+) involves the forcing relation on all formulas, it is, in
general, hard to verify; therefore Theorem 1, which is based on it, does not
constitute a satisfactory completeness result; on the other hand, no complete-
ness theorem for QGL can be expressed only in terms of the accessibility
relation; indeed, we can prove the following incompleteness result.

Theorem 2 QGL is not complete with respect to the class of all transitive
reversely well-founded frames; therefore by Proposition 1 it is not complete
with respect to any class of frames.

Proof: Let A be the formula 3uOP(u) Λ \/υ$wΠ(P(υ) -> OP(vv)) where P is a
unary predicate letter; we wish to show that ^QGL Π ^ ' ^ u t π ^ *s v a ^ m a ^
transitive reversely well-founded frames; this claim is contained in the following
lemmas:

Lemma 1 Let Thy = (X, R, Wx\X€χ, H be a transitive Kripke model such
that, for some x0 e X, JC0 Ih A; then, there is a sequence \xn\n€ω of elements of
X such that, for every n, xnRxn+1.

Proof: Assume x0 \\~ A; since x0 \\~ 3uOP(u), there is an a0 e WXQ such that
x0 Ih OP(ao); therefore, there is an xx such that x0Rxι, xλ \\~ P(a0). Now, we
argue by induction: assume that, for some n, we have defined two finite
sequences x0, xx, . . ., xn+ι and a0, au . . ., an such that, for all / < n, at e WX(j,
XiRxi+u and xi+ί Ih P{at)\ since R is transitive, x0 Ih 3wΠ(P(an) -> OP(w)) and
xn+1 Ih P(an), there is an an+1 e WXQ such that xn+1 lhOP(αΛ+1), therefore, there
is an xn+2 such that xn+1Rxn+2, xn+2 H~ ̂ (#«+i) This completes the inductive
step; then, Lemma 1 follows.

Lemma 2 There is a model Ths = {X,R, \Wx\xeXi lh> of QGL such that, for
some xoe X, x0 \\~ A.

Proof: Let 72/ = (N, +, ,s, 0> be a nonstandard model of PA; we define the
desired model Th/ as follows:

a. X = N U [x0} (where x0 i N)
b. For x, y e X, we define xRy iff either x = x0 and y Φ x0 or x, y Φ x 0 and

TV \=y<x
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^Niϊx Φx0

c. WX=<Γ
ω if x = x0

d. If Pk is any A -ary predicate symbol different from P, we define
x Ih Pk(au . . ., %) for every x e X and for every au . . ., α& e Wx; the
forcing relation on x 0 for formulas of the form P(a)(a e WXQ) can be
defined quite arbitrarily; now, let us consider a nonstandard ele-
ment b of N; for x e X, x Φ x0 and for a e Wx we define x Ih P(a) iff
71/ £x-a>b.

The forcing relation on elements x Φ x0 is definable in %̂  more precisely,
we can associate with every QGL formula B(υ0, υ2, . . ., t;^) containing no
variables indexed with odd numbers a formula3 fB(υ1, υ0, υ2, . ., v^) of PA
with parameters in N such that, for all x, ax, . . ., an e N, we have x Ih
B(ciι, . . ., <zw) iff 71/ V1 fB(x, aly . . ., an). (fB is defined in an obvious manner if
B is atomic; moreover, we require that / commutes with all connectives and
quantifiers; lastly, we define / D B(v0, υ2, . ., v^) to be the formula Vw[w <
υx -*fB(w, υu v0, . . ., U2n)], where w is a variable, indexed with an odd number,
which does not occur in fB.)

Since the induction schema holds in 71/9 if for some formula of the form
fB(υλ, υ0, υ29 . . ., v^) and for some aί9 . . ., ane N there is an x e N such that
7u (= /B(ΛT, ai, . . ., fln), there is a y e N such that %• (= fB(y, αl9 . . ., <zw) and for
all z e N, if 71/ \= z < y, then ^ 1= ~\fB(z, αu . . ., αw). Since, for all x, y Φx0,
xRy iff 71/ ̂  y < x, Condition (+) is satisfied; since R is transitive, 7ft/ is a
model of βGZ,

Now, let us prove that x0 Ih A let x be an element of TV such that
71/ f= x > b\ since %/ 1= x 1 > b, x Ih JP(1), therefore x 0 Ih =Ji; 0 P(υ); further-
more, if ^ is an arbitrary element of X such that x0Ry and, for some n e WXQi

y Ih P(n), then ?^ t= y> n > Z? therefore jμ must be nonstandard; so, 71/ E= 3̂  >
« + 1, whence T^ t= (y - l)(w + \)=yn+y~n- \ > y n>b\ this implies
that y - 1 Ih P(n + 1 ) . Since jμ/?y - 1, we can conclude y Ih OP(n + 1 ) ; the
arbitrariness of y and n yields x 0 Ih \/υ3wΠ(P(v) ->OP(w)), therefore the claim
follows.

3 Arithmetical incompleteness In [ 1 ], Avron asks whether QGL is PA
complete. The analogous problem for GL has been solved affirmatively by
Solovay in [ 18] on the contrary, we show that, in our case, the problem has a
negative solution.

Theorem 3 QGL is not PA complete.

Proof: Let T be a finitely axiomatizable consistent theory such that h ĵ Conj-*
ConpA+conpA' (^oτ example, we can choose T-NGB.) Let [T] be the conjunc-
tion of all axioms of Γ, and let A denote the formula 0[T] -* 00T. (We can
assume, without loss of generality, that QGL contains the language of T.) We
claim that A is PA valid, but is not provable in QGL to see this, let / be any
interpretation, and let T be the theory whose axioms are exactly those of the
form fB: B an axiom of T; then, fA is provably equivalent to the formula
ConpA+f-* ConpA+ConpA I n onter to show that fA is a theorem of PA, we first
prove the following lemma.
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Lemma 3_ If Bu . . ., Bn, is a proof of Bn in T, then fBx, . . .,fBn, is a proof
ofjBn in T.

Proof: We argue by induction on the length of the proof: if_Z?, is a logical
axiom, also /#/ is; if Bt is an axiom of Tt fB{ is an axiom of T; lastly, every
application of any rule of predicate calculus yields an application of the rule
itself.

Formalizing the proof of Lemma 3 in PA we obtain, for every D-free formula
C of QGL:

t^4 PrτC -> PrψfC.

Therefore, Yp^ Conf -* Con?. Then, we can deduce

YpX ConPA+f -> Conf

->Conχ

-> ConpA+ConpA

So, A is PA valid.
In order to show that A is not provable in QGL, we consider a model 71/

of T, and we define a Kripke model 7ns = (χt Rf {Wx]X€χ, H as follows:

a. X={0,1}
b. x#y iffx = Oandĵ = 1
C Wχ = Wy = iV

d. if B(vl7.. .,υn) is an atomic formula in language of T, and au . . .,ane N,
we define / Ih5(α/, . . ., απ) iff %/ ^ 5 ( 0 ! , . . ., an) (i = 0, 1);

(the forcing relation can be quite arbitrary on the other atomic formulas). Since
1 \\~[T] and 0Λ1, 0 IhOfΓ]; on the other hand, 0 IhDDl, therefore 0 \\-~\A.
Clearly, R is transitive and reversely well founded, whence, by Proposition 1,
QGL is valid in Try.

Remark: In [18], Solovay shows that the propositional provability logics of all
Σ1 sound r.e. extensions of PA coincide (indeed, all these logics coincide with
GL). Also this result cannot be extended to the predicate case. To see this, let
us consider a finitely axiomatizable subtheory T of ZF, which is strong enough
to construct the structure 71/ = <ω, +, , s, 0> and to prove that 71/ is a model of
PA + ConpA; then \jχ Conτ -> ConpA+conpA> therefore the above proof shows
that the formula A = 0[T] -> 00T is PA valid. However, A is not ZF valid;
indeed, if / is an interpretation such that fB=B for every atomic formula B in
the language of T, the ZF value of A under/is ConzF+τ "* ConzF+ConzF> s i n c e T
is a subtheory of ZF, the above formula is provably equivalent to ConzF ~*
ConzF+Con , which is not provable in ZF, by GδdeΓs Second Incompleteness
Theorem.

The results proved in this section give only negative information about the
provability logic of PA, or of related theories; we now formulate two problems
whose solution should give also positive information.

1. Is the set of all PA valid formulas recursively enumerable? If it is, find
an axiomatization of it.
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2. Describe the set of all QGL formulas which are T valid, for every Σx

sound r.e. extension T of PA (Conjecture: this set coincides with the set of all
theorems of QGL).

4 Fixed points For technical purposes, throughout this section, we con-
sider a conservative extension QGL1 of QGL, obtained by adding a countable
set ίp 0 , . . .,pni . . .! of variables for formulas, and by extending the axioms of
QGL to the formulas of the new language; in the following, p denotes a generic
variable for formulas, and A(p0, . . ., pn), B(p0, . . .,pn), . . . etc. denote QGL'
formulas, whose variables for formulas are exactly p 0 , . . .,pn. We say thatp is
modalized in the QGL! formula A(p) iff every occurrence of p in A(p) is under
the scope of D; if the only variable for formulas in A is p, we say that A is
modalized iff p is modalized in A. The fixed point problem for QGL can be
formulated as follows:

Let A(p) be a modalized QGL' formula; is there a QGL formula B, whose free
(individual) variables are exactly those of A, such that \QQIB <—• A(B)Ί

A positive answer to this problem would imply that QGL is strong enough to
prove the modal translation of GδdePs Diagonalization Lemma. On the other
hand, by the De Jongh-Sambin Theorem (see [13]), we know that the fixed
point problem for GL has an affirmative solution. Unfortunately, the problem
has a negative answer in the predicate case.

Theorem 4 There is no QGL sentence B such that ^QGLB <-* Vw3ι;D(5->
P(u, υ)), where P is any binary predicate letter.

Proof: Let us consider the model 7hs = (x, R, lWx\X€χ, H defined as follows:

a. X- ω
b. xRy iffy<χ
c Wx ={y e ω: y>x\
d. If Pk is any /c-ary predicate letter different from P, we define x Ih

Pk{au . . ., dfc) for all x e X, al9 . . ., a^ e Wx. Moreover, for a, b e Wx, we
define x Ih P(a, b) iff either b = x + 1 and aΦx+ 1, or a, b Φx + \ and
a < b; the accessibility relation, and the total orderings induced by
P(u, υ) in each Wx are illustrated in Figure 1.

, n w . 0 2 3 4 5 1
•° "V H 1 1 1 1-

- 1 w - l 3 4 5 6 2

1 w\- H 1 1 1 y

? w . 2 4 5 6 7 3

w
 n n+2 n+3 n+4 n+5 π+1

"
n w

n' H 1 1 1 1-

Figure 1.
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Since R is transitive and R~ι is well founded, QGL is valid in 7)v. Moreover,
we can prove that the forcing relation Ih is definable in the structure J =
<ω, <, =>; more precisely, to every QGL formula B(v0, v2, . . ., υ2n) containing
only variables indexed with even numbers, we associate a formula fB(υ1, υ0,
V2> - •> V2n) m the language of J such that, for all x e ω and for all aλ, . . .,
an e Wx, we have: x Ih B(al9 . . ., an) iff J i^fBix, aλ, . . ., an). fB is defined by
induction on the complexity of B: if B is of the form Pk(v0, υ2, - ., v^), we put
fB(υl9 v0, . . ., υ2k) =/A\yi < v2i; if B = P(υ0, υ2), we define fB(vl9 ι;0, ι;2)to be
the formula i<k

υ1<voι\v1<v2 /\ [(v2 = ϋj + 1 Λ π υ 0 = Vj + 1)

v (πι;2

 = υi + 1 Λ ~~lι;o:= î i + 1 Λ y o < y2)]

(where ι;; = t// + 1 is an abbreviation for 3w[w > ϋ z Λ VZ(Z >ι; z -> (w < z v v = Z)Λ

yy = w); moreover, we require that / commutes with v and 3 and we define

fiB(υu υ0, . . ., v2n) = (/)Ciυ1 < υ2λ Λ i/B(υl9 υ0, . . ., v2n). Lastly, we define

f(ΠB(vθ9 . . ., υ^)) = Vw(w < v1 -> fB(uu v0, . . ., v2n)), where w is a variable,
indexed with an odd number, which does not occur in fB.

Then, for every QGL sentence B, the set {x e ω: x \\~B\ is definable in J;
by a suitable quantifier elimination method, one can prove that every definable
subset of J is either finite or cofinite (see [12]).

Now, assume, for reductio, that B is a QGL sentence such that YQGZ β * " *
\/u3vΠ(B -* P(u, v)); then, since QGL is valid in 7?ι/9 for all x e X, x Ih B «->
Vι/3ϋD(5 -• P(u,υ)). Since 0 Ih Dl, 0 Ih B\ moreover, for all υ e Wl9Q Ih
-\P(l,υ); so, 1 Ih 3u\/vQ(B Λ ~IP(U,υ)), whence 1 II—\B\ now, we argue by
induction: assume that, for every / < n, 2/ Ih B and 2i + 1 II—\B\ then 2n +
1 II—\B, and, for all u e W2n+2 and for all / < 2n, j \\~ P(u, u + 1); so, for every
u e W2n+2i there is a i; e 1V2W+2 such that for all / for which 2n + 2Rj either
/ I h π ^ or/ \\-P(u, υ). Then, In + 2 Ih Vw3ϋD(5 ^P(w, ι>)), whence 2^ + 2 Ih j?.
Furthermore, for all u e W2n+3, 2n + 2 Ih J? Λ ΠP(2W + 3, ι;), therefore 2n + 3 Ih
3uW0(B Λ πP(ι/, i;)); this implies 2w + 3 Ih iB. So, the set ix e X: x Ih ̂ !
coincides with the set of even numbers, which is neither finite nor cofinite, a
contradiction.

At this point, a natural question is: which steps of the De Jongh-Sambin proof
do not extend to QGLΊ As observed by Valentini, each proof of the fixed point
theorem for GL is based on a lemma, called "Substitution Lemma" (SL) which
fails to hold in the predicate case. SL can be stated as follows:

LetA(p), B, C, D, be GL formulas; if^GϊD^(B^^ C\ then

(a) ΪGLD*ΩD-+[A(B)+-*A(C)]

(b) //, in addition, p is modalized in Ap, then YQΪ ΏD -> [A(B) <-+A(C)].

That SL does not extend to QGL can be verified as follows: let A{p) - \fuDp,
B = D - P(u) (where P is any unary predicate letter), and C = T; then VQQI D ->
(B «-• C), but it is easily seen that \\QQI ΏD -> (A(B) «-> A(C)). We can prove,
however, that a weaker version of SL does extend to QGL: let us say that the
QGL' formula A(p) and the QGL formula B obey the variable restriction (in
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short: VR) iff D does not contain free occurrences of (individual) variables
having bound occurrences in A(p).

Then, we have:

Lemma 4 An analogue of SL holds for QGL, provided that A(p) and D
obey the VR.

Let us first prove (a). We argue by induction on the complexity of A(p): if
A(p) is atomic, the claim is obvious; the induction steps corresponding to
v, ~ι, D, are handled as in the propositional case; now, let A(p) - \fuE(u, p)
and assume that \QGL D Λ UD ~* [E{uyB) «-> E{u, C)]. By GEN, we obtain
YQGL V W ^ Λ ΠD ~* \.E{u,B) «-> E(u,C)]]. Since, by the VR, u has no free
occurrences inD, we can easily deduce

\ΓQGL D NΏD-*[\tuE(μ,B)+-+VuE(utC)],

that is

\QQLDNUD^ [A(B)+-»A(C)].

Now, let us prove (b): we first write A(p) as F(ΏExp, . . ., ΠEnp) where
F(Pu J P«) is a suitable βGZ' formula, and Ex(p), . . ., ̂ ( p ) are D-free; a
simple inductive argument shows that for all / < n \~QQΪ D -+ [Ei(B) <—> £/(C)].
So, we obtain

tβδl DZ) -* D ( ^ (^) <-> £ f (C)) -* [D£,(5) ^ D£ f (C)].

From this, we can deduce, by induction on the complexity of F, VQGL α ^ "^
[FfΠEiίB), . . ., ΏEn(β)) <-^F(ΠE1(C), . . ., ΏEn(C))} (again, the atomic case
is trivial, the induction steps corresponding to v, π, D are handled as in the
propositional case, and the step corresponding to V is handled as in (a)).

Lemma 4 allows us to prove the following results on uniqueness of fixed
points:

Theorem 5 For every modalized QGLf formula A(p), and for all QGL
formulas B and C, if YQGZ A(B) <—• By YQQI A(C) «-* C, then YQQΪ B ^-^ C.

Proof: Throughout this proof, for every formula A, VA denotes the universal
closure of A. Since \~QQI V(B «-* C) -* (B +-+ C) and Ap, V(B <—• C) obey the
VR, we can apply Lemma 4, getting:

YQGΪΠ\/(B+-+C)-+A(B)+-+A(C)

-+B+-+C

By GEN, we deduce r ^ Z V[D V(^ *-• C) -> (5 <-• C)]. Since DV(5 <-• C) is
closed, it follows that YQQI Π \/{B <-+ C) -* V(5 <-^ C). By Lob's rule, we
conclude \~QQL V(B ̂ "^ O , whence the claim follows.

Corollary 1 Fixed points for PA formulas arising from modalized QGL'
formulas are unique up to provable equivalence.

Proof: Since QGL is PA valid and PA is closed under (the arithmetical transla-
tion of) Lob's rule, the previous proof works. Clearly, in PA, fixed points for
such formulas always exist.
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Problems

1. Find a procedure for deciding if a modalized formula A(p) has a fixed point

in QGL (or show that this is impossible).

2. Find a procedure for calculating the possible fixed points of any given

modalized formula A (p).

3. By Theorem 4, PA has, roughly speaking, more fixed points than QGL; does

this fact imply some new provability principles, which are not provable in

QGLΪ

4. Does the fixed point theorem hold for QGL + BSΊ

NOTES

1. In the following, T denotes any tautology and 1 denotes the negation of T.

2. If / denotes the length of s, s * i defined by: Dom s * / = / + 1

s/if/<l

X / = i f / = l .

3. We wish to distinguish variables for worlds from variables for elements of U Wx\ so we
xeX

only consider formulas of QGL without occurrences of variables indexed with odd
numbers; these variables are used in the formulas of the form/Z? as variables for worlds.
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