ℵ₀-Categoricity Over a Predicate

ANAND PILLAY

We are concerned here with a condition on a theory T 1 Introduction which says that a model of T is determined in some weak way by its (P, L_0) relativised reduct, namely that whenever M and N are countable models of T with the same relativised reduct M_0 then M and N are isomorphic over M_0 . In the case that T says that P is empty this reduces to T being \aleph_0 -categorical, a situation characterised by Ryll-Nardzewski's theorem. If T says that P is the whole model, then in fact for any models M and N with the same L_0 reduct, M and N will be the same, a situation which is characterised by Beth's definability theorem. Both the Ryll-Nardzewski and Beth characterisations are syntactic in that they say that T must prove a set of sentences of a specified kind. Our syntactic condition for T to be \aleph_0 -categorical over (P, L_0) is rather difficult to state simply. Essentially there will be, for each $n < \omega$, a fixed collection of L-formulas which serve to link n-tuples in models of T to tuples in the P-part of the models, such that if $\bar{a} \in M$ is so related to \bar{c} in P^M then the type of \bar{a} over P^M depends uniformly on the type of \bar{c} over $M^P \upharpoonright L_0$.

A stronger condition that one could place on T is that for all models M, N of T, if $M^P \upharpoonright L_0 = N^P \upharpoonright L_0 = M_0$ then M and N are isomorphic over M_0 . This property (which we call strong categoricity over (P, L_0)) corresponds exactly to Gaifman's single-valued definitions [2]. (Note that if, for example, P is always empty, then T can have this property if and only if T is the theory of some finite structure.) To give a syntactic characterisation of strong categoricity would seem much more difficult, although Gaifman has proved, in unpublished work, that if we assume in addition to strong categoricity that every model M of T is rigid over P^M then every model M of T is explicitly definable from $M^P \upharpoonright L_0$ in a uniform manner.

Our notation here is standard. I will not be working in a big saturated model.

T will denote a theory in a countable language L. We assume that L contains only relation symbols (so any subset of an L-structure is a substructure). P will be a fixed unary predicate in L, and L_0 will be a sublanguage of L. If M is an L-structure, then P^M denotes the subset of M consisting of those elements which are in P. Again, if M is an L-structure then $M^P \upharpoonright L_0$ denotes the L_0 -structure whose universe is P^M and whose L_0 -relations are obtained from those of M by restriction. We often refer to $M^P \upharpoonright L_0$ as M_0 .

If $\psi(\overline{x})$ is a formula then $\psi^P(\overline{x})$ denotes as usual the formula obtained from ψ by relativising all quantifiers to P. So if M is an L-structure, $\psi(\overline{x})$ an L_0 -formula, and $\overline{c} \in P^M$, then $M_0 \models \psi(\overline{c})$ iff $M \models \psi^P(\overline{c})$.

Definition 1 T is said to be \aleph_0 -categorical over (P, L_0) if, whenever M and N are countable (including finite) models of T and $M^P \upharpoonright L_0 = N^P \upharpoonright L_0$, then there is an isomorphism f of M with N such that $f \upharpoonright P^M$ is the identity. (Or, as we shall say, M and N are isomorphic over M_0 , where $M_0 = M^P \upharpoonright L_0 = N^P \upharpoonright L_0$.)

T is said to be strongly categorical over (P, L_0) if T satisfies Definition 1 but without the restriction that M and N be countable. It is clear that there are T which are \aleph_0 -categorical over (P, L_0) but not strongly categorical over (P, L_0) .

- 2 The main result In this section I give some preliminary definitions and then state the main result, the easy direction of which can be observed immediately, and the difficult direction of which is proved in later sections.
- **Definition 2** Let $n < \omega$, and \overline{y} be any tuple of variables. d is said to be an *n-schema in* \overline{y} over L_0 if d is a map from L-formulas whose free variables include x_0, \ldots, x_{n-1} , to L_0 -formulas, where if the L-formula ϕ has free variables $x_0, \ldots, x_{n-1}, \overline{z}$, then $d\phi$ has free variables $\overline{z}, \overline{y}$. (In this case $d\phi$ is written as $(d\phi)(\overline{z}, \overline{y})$.)
- **Definition 3** Let M be an L-structure, \overline{a} an n-tuple of M, d an n-schema in \overline{y} over L_0 , and \overline{c} a tuple from M_0 (= $M^P \upharpoonright L_0$) with $l(\overline{c}) = l(\overline{y})$. Then we say that $d(\overline{c})$ defines $tp(\overline{a}/P^M)$ if for each L-formula $\phi(\overline{x},\overline{z})$ and \overline{b} in P^M , $M \vDash \phi(\overline{a},\overline{b})$ if and only if $M_0 \vDash (d\phi)(\overline{b},\overline{c})$.
- Remark 4: Note that $d(\bar{c})$ defines $tp(\bar{a}/P^M)$ if and only if for each *L*-formula $\phi(\bar{x},\bar{z})$ we have $M \models (\forall \bar{z} \in P)(\phi(\bar{a},\bar{z}) \longleftrightarrow (d\phi)^P(\bar{z},\bar{c}))$.

We will be concerned with formulas which are indexed by members of trees, where these trees are subsets of ${}^{\omega>}\omega$, i.e., subsets of ${}^{\omega>}\omega$ which are closed under initial segments. If $\eta \in {}^{\omega>}\omega$, then by a successor of η we mean something of the form $\eta^{\wedge}(i)$ for some $i \in \omega$. The set of successors of η will be denoted by η^{+} . An endpoint of a tree $S \subset {}^{\omega>}\omega$ is just a member of S, no successor of which is a member of S. Finally, $\eta \in {}^{\omega>}\omega$ will be said to be odd or even depending on whether $l(\eta)$ is odd or even.

Definition 5 Let $S \subset {}^{\omega}{}^{>}\omega$ be a tree. S will be said to be *good* if

- (i) S has no infinite branches
- (ii) if $\eta \in S$ is odd then either η is an endpoint of S or for all $i < \omega$, $\eta^{\wedge}(i) \in S$
- (iii) if $\eta \in S$ is even then there is $k < \omega$ such that $[\eta^{\wedge}(i) \in S]$ if and only if $i \le k$] (so in particular η cannot be an endpoint of S).

In what follows \bar{x} denotes the sequence of variables x_0, \ldots, x_{n-1} .

Theorem 6 Suppose $T \vdash (\exists x)Px$. $\land T$ is \aleph_0 -categorical over (P,L_0) if and only if for each $n, 1 \le n < \omega$, we have: there is a good tree S_n , and there are for each odd $\eta \in S_n$ (i) an L-formula $\alpha_{\eta}(\overline{x}, \overline{y}_{\eta})$, and (ii) d_{η} , an n-schema in \overline{y}_{η} over L_0 (where d_{η} actually depends on α_{η}); and for each odd $\eta \in S$ which is not an endpoint there are L_0 -formulas $\psi_{\eta} \wedge_{(i)}(\overline{y}_{\eta})$ for $i < \omega$, such that

- I(i) if η is an endpoint of S_n , then for any $M \models T$, n-tuple $\bar{a} \in M$ and $\bar{c} \in M_0$ such that $M \models \alpha_n(\bar{a}, \bar{c}), d_n(\bar{c})$ defines $tp(\bar{a}/P^M)$,
- (ii) if $\eta \in S_n$ is odd but not an endpoint of S_n , then for any $M \vDash T$, n-tuple $\overline{a} \in M$, and $\overline{c} \in M_0$ such that $M \vDash \alpha_{\eta}(\overline{a}, \overline{c})$ and $M_0 \vDash \neg \psi_{\eta \hat{i}}(\overline{c})$ for all $i < \omega$, $d_{\eta}(\overline{c})$ defines $tp(\overline{a}/P^M)$,
- (iii) $\{ \neg \psi_{\eta \land (i)}^{P}(\bar{y}) : i < \omega \}$ is not equivalent modulo $T \cup P\bar{y}$ to any finite subset of itself (for each odd $\eta \in S_n$).

$$\text{II (i)} \quad T \vdash (\forall \overline{x}) \bigvee_{\substack{l(\eta)=1\\ \eta \in S_n}} (\exists \overline{y}_\eta \in P) \alpha_\eta(\overline{x}, \overline{y}_\eta)$$

(ii) if $\eta \in S_n$ is odd and not an endpoint of S_n then for each $i < \omega$ we have

$$T \vdash (\forall \overline{x})(\forall \overline{y}_{\eta} \in P)(\alpha_{\eta}(\overline{x}, \overline{y}_{\eta}) \land \psi_{\eta^{\wedge}(i)}^{P}(\overline{y}_{\eta}) \rightarrow \bigvee_{\substack{\tau \in S_{n} \\ \tau \in (\eta^{\wedge}(i))^{+}}} (\exists \overline{y}_{\tau} \in P)(\alpha_{\tau}(\overline{x}, \overline{y}_{\tau}))).$$

For the case n = 1 we also demand that there be, for each odd $\eta \in S_1$ an L_0 -formula $\chi_n(\overline{y}_n)$ such that

$$T \vdash (\forall \, \overline{y}_n \in P)(\chi_n^P(\overline{y}_n) \longleftrightarrow (\exists \, \overline{x}) \alpha_n(\overline{x}, \overline{y}_n)).$$

Note 7: By Definition 5(iii) the disjuncts in the formulas in II(i) and II(ii) are finite. Note also by Remark 4 that I(i) and I(ii) are syntactic properties of T (for each η).

Proof of \Leftarrow *of Theorem* 6: Let T satisfy the right-hand side conditions. I first assert that:

(*) For any model M of T and n-tuple \overline{a} from M there are an odd $\eta \in S_n$ and $\overline{c} \in M_0$ such that $M \models \alpha_{\eta}(\overline{a}, \overline{c})$ and such that either η is an endpoint of S_n or $M_0 \models \neg \psi_{\eta \uparrow (i)}(\overline{c})$ for all $i < \omega$.

Suppose not and let $M \models T$ and $\overline{a} \in M$ be a counterexample. We will define $\eta_r \in S_n$ and $\overline{c}_r \in M_0$ for $1 \le r < \omega$ such that $l(\eta_r) = 2r - 1$, η_{r+1} is an extension of η_r , and $M \models \alpha_{\eta_r}(\overline{a}, \overline{c}_r)$ for all r. η_1 and \overline{c}_1 are given by II(i). Suppose we have η_r and \overline{c}_r with $M \models \alpha_{\eta_r}(\overline{a}, \overline{c}_r)$. Then η_r is not an endpoint of S_n , and moreover for some $i < \omega$, $M_0 \models \psi_{\eta^{\wedge}(i)}(\overline{c}_r)$. Thus by II(ii) there is $\tau \in S_n$ which is a successor of $\eta_r^{\wedge}(i)$, and also $\overline{c} \in M_0$ such that $M \models \alpha_{\tau}(\overline{a}, \overline{c})$. Put $\overline{c}_{r+1} = \overline{c}$ and $\eta_{r+1} = \tau$. Thus such η_r can be defined. But they then define an infinite branch of S_n , which is impossible, as S_n was good. So (*) is established.

Now let M and N be countable models of T such that $M^P \upharpoonright L_0 = N^P \upharpoonright L_0 = M_0$. We will obtain an isomorphism of M and N over M_0 by the standard backand-forth argument. First let a be an element of M. Let $\eta \in S_1$ and $\overline{c} \in M_0$ be

as given by (*). It then follows from I(i) and (ii), that $d_{\eta}(\bar{c})$ defines $tp(a/P^M)$. Moreover $M_0 \models \chi_{\eta}(c)$. Thus there is $b \in N$ such that $N \models \alpha_{\eta}(b,\bar{c})$ (as $M_0 = N^P \upharpoonright L_0$). If η is not an endpoint of S_1 then by (*), $M_0 \models \neg \psi_{\eta \uparrow \langle i \rangle}(\bar{c})$ for all $i < \omega$. So by I(i) and (ii) again, $d_{\eta}(\bar{c})$ defines $tp(b/P^N)$. So for any L-formula $\phi(x,\bar{z})$ and \bar{d} in $P^M (= P^N)$ we have

$$M \vDash \phi(a, \overline{d})$$
 iff $M_0 \vDash (d_n \phi)(\overline{d}, \overline{c})$ iff $N \vDash \phi(b, \overline{d})$.

So a and b have the same types over $P^M = P^N$ in M and N, respectively. Now suppose that \overline{a} , \overline{b} are n-tuples from M, N respectively with the same types over P^M . Choose any $a \in M$. Again by (*) we find $\eta \in S_{n+1}$ and $\overline{c} \in M_0$ with $M \models \alpha_{\eta}(\overline{a}^{\wedge}a,\overline{c})$ and $tp(\overline{a}^{\wedge}a/P^M)$ defined by $d_{\eta}(\overline{c})$. As \overline{a} and \overline{b} have the same types over $P^M = P^N$ there is $b \in N$ such that $N \models \alpha_{\eta}(\overline{b}^{\wedge}b,\overline{c})$, and so $d_{\eta}(\overline{c})$ defines $tp(\overline{b}^{\wedge}b/P^N)$. Thus, as above, $\overline{a}^{\wedge}a$ and $\overline{b}^{\wedge}b$ have the same types over P^M in M and N, respectively. This argument shows that M and N are isomorphic over M_0 , completing the proof.

In the next two sections we develop the material allowing us to prove the other direction of Theorem 6.

3 Uniform reduction and completeness over (P, L_0)

Definition 7 T is said to be *complete over* (P, L_0) if whenever M, N are models of T such that $M^P \upharpoonright L_0 = N^P \upharpoonright L_0 = M_0$ then

$$(M,a)_{a\;\epsilon\;M_{\mathbf{0}}}\equiv (N,a)_{a\;\epsilon\;M_{\mathbf{0}}}.$$

Note that if P is always empty then this just says that T is complete, and if P is always the whole model this says that T implicitly defines the relations of $L - L_0$ in terms of L_0 .

Proposition 8 Let T be \aleph_0 -categorical over (P, L_0) . Then T is complete over (P, L_0) .

Proof: So let M, N be models of T with $M^P \upharpoonright L_0 = N^P \upharpoonright L_0 = M_0$. We have to show that $(M,a)_{a \in M_0} \equiv (N,a)_{a \in M_0}$. If M_0 is countable then this follows immediately from the \aleph_0 -categoricity of T over (P,L_0) . So we may assume that M_0 is uncountable. Suppose by way of contradiction that there is an (L-) formula $\phi(\overline{x})$ and tuple $\overline{a} \in M_0$ such that

$$M \models \phi(\bar{a})$$
 and $N \models \neg \phi(\bar{a})$.

Now we define *countable* models M^i and N^i for $i < \omega$, such that

- (i) $(M^i: i < \omega)$ is an ascending chain of elementary substructures of M
- (ii) $(N^i: i < \omega)$ is a chain of elementary substructures of N
- (iii) $\bar{a} \in M^0$
- (iv) for each $i < \omega$, $P^{M^i} \subset P^{N^i}$ and $P^{N^i} \subset P^{M^{i+1}}$.

This is easily obtained.

It is then clear that $((M^i)_0: i < \omega)$ and $((N^i)_0: i < \omega)$ are both chains of elementary substructures of M_0 . (Remember that we write $(M^i)_0$ for $(M^i)^P \upharpoonright L_0$, etc.) Moreover, by (iv) if $M^\omega = \bigcup_{i < \omega} M^i$ and $N^\omega = \bigcup_{i < \omega} N^i$, then

$$(M^{\omega})_0 = \bigcup_{i < \omega} (M^i)_0 = \bigcup_{i < \omega} (N^i)_0 = (N^{\omega})_0$$
, and also $\bar{a} \in (M^{\omega})_0$.

Also M^{ω} , N^{ω} are countable and $M^{\omega} \models \phi(\bar{a})$ and $N^{\omega} \models \neg \phi(\bar{a})$. But this is impossible, for M^{ω} and N^{ω} are isomorphic over $(M^{\omega})_0$ (by \aleph_0 -categoricity over (P, L_0)).

So the proposition is proved.

If M is a model of T and $\bar{a} \in P^M$, then $tp_{M_0}(\bar{a})$ will denote the type of \bar{a} over ϕ in the model $M_0 = M^P \upharpoonright L_0$. (So $tp_{M_0}(\bar{a})$ is a set of L_0 -formulas.) $tp_M(\bar{a})$ will just denote the type of \bar{a} (over ϕ) in M.

Lemma 9 Let T be complete over (P, L_0) . Let M be a model of T, \bar{a} and \bar{b} n-tuples in P^M , and suppose that $tp_{M_0}(\bar{a}) = tp_{M_0}(\bar{b})$. Then $tp_M(\bar{a}) = tp_M(\bar{b})$.

Proof: Let N be an elementary extension of M such that N_0 is sufficiently homogeneous. Clearly $M_0 \prec N_0$, and so $tp_{N_0}(\overline{a}) = tp_{N_0}(\overline{b})$, whereby there will be an automorphism f of N_0 such that $f(\overline{a}) = \overline{b}$. Let N' be an L-structure such that $(N')_0 = N_0$ and moreover

$$(N', f(c))_{c \in N_0} \cong (N, c)_{c \in N_0}.$$

Thus clearly

$$tp_{N'}(\bar{b}) = tp_N(\bar{a}).$$

On the other hand, by the completeness of T over (P, L_0) and the facts that $N' \models T$ and $(N')_0 = N_0$ it follows that

$$tp_{N'}(\overline{b}) = tp_N(\overline{b}).$$

Thus $tp_N(\bar{a}) = tp_N(\bar{b})$, and so $tp_M(\bar{a}) = tp_M(\bar{b})$.

Proposition 10 Let T be complete over (P, L_0) . Then for any L-formula $\phi(\overline{x})$ there is an L_0 -formula $\psi(\overline{x})$ such that for any model M of T and tuple \overline{a} in P^M we have

$$M \vDash \phi(\bar{a})$$
 if and only if $M_0 \vDash \psi(\bar{a})$.

Equivalently we could say $T \vdash (\forall \overline{x} \in P)(\phi(\overline{x}) \longleftrightarrow \psi^P(\overline{x}))$.

Proof: This is a standard application of completeness. Given $\phi(\overline{x})$, an L-formula, we put $\Gamma = \{\psi(\overline{x}) \in L_0 \colon T \vdash \phi(\overline{x}) \land P(\overline{x}) \to \psi^P(\overline{x})\}$. Then one shows that $T \cup \{\psi^P(\overline{x}) \colon \psi(\overline{x}) \in \Gamma\} \cup \{P(\overline{x})\} \vdash \phi(\overline{x})$, using Lemma 9. Then by compactness one finds a formula $\psi(\overline{x}) \in \Gamma$ such that $T \vdash (\forall \overline{x})(\phi(\overline{x}) \longleftrightarrow \psi^P(\overline{x}))$.

Proposition 10 is called the uniform reduction theorem and a variant of it is proved in a more general setting in [1].

Corollary 11 Let T be \aleph_0 -categorical over (P, L_0) . Then for every formula $\phi(\overline{x})$ of L there is a formula $\psi(\overline{x})$ of L_0 such that

$$T \vdash (\forall \overline{x} \in P)(\phi(\overline{x}) \longleftrightarrow \psi^P(\overline{x})).$$

4 Atomicity over P

Definition 12 The L-structure M is said to be atomic over P if for every tuple $\bar{a} \in M$, $tp_M(\bar{a}/P^M)$ is isolated (where $tp_M(\bar{a}/A)$ is said to be isolated, if this type can be a finitely axiomatised modulo $Th(M, b)_{b \in A}$).

Lemma 13 Let $M \prec N$ and $\bar{a} \in M$. Suppose that $tp_M(\bar{a}/P^M)$ is isolated. Then $tp_N(\bar{a}/P^N)$ is also isolated.

Proof: Suppose that $\overline{c} \in P^M$ and the formula $\alpha(\overline{x}, \overline{c})$ isolates (i.e., axiomatises) $tp_M(\overline{a}/P^M)$. It is then clear that for every formula $\phi(\overline{x}, \overline{z})$ the sentence $(\forall \overline{z} \in P)$ $((\forall \overline{x})(\alpha(\overline{x}, \overline{c}) \to \phi(\overline{x}, \overline{z})) \lor (\forall \overline{x})(\alpha(\overline{x}, \overline{c}) \to \neg \phi(\overline{x}, \overline{z})))$ is true in M, and thus also in N. Thus $\alpha(\overline{x}, \overline{c})$ isolates $tp_N(\overline{a}/P^N)$.

Proposition 14 Let T be \aleph_0 -categorical over (P, L_0) . Then every model of T is atomic over P.

Proof: By Lemma 13 it is clearly enough to show that every countable model of T is atomic over P. So let M be a countable model of T. Suppose by way of contradiction that there is a tuple $\bar{a} \in M$ such that $tp_M(\bar{a}/P^M)$ is not isolated. Let $p = tp_M(\bar{a}/P^M)$. Let $q(x) = \{P(x)\} \cup \{x \neq c: c \in P^M\}$. Then by the Omitting types theorem, $T' = Th((M, c)_{c \in P}M)$ has a countable model $(N, c)_{c \in P}M$ which omits p and q. As this model omits q, we have $N_0 = M_0$. But N and M cannot be isomorphic over M_0 , as $(N, c)_{c \in M_0}$ omits p. This contradicts the \aleph_0 -categoricity of T over (P, L_0) , proving the proposition.

Note 15: Let T be \aleph_0 -categorical over (P, L_0) . Fix a formula $\alpha(\overline{x}, \overline{y})$. Given an (L-)formula $\phi(\overline{x}, \overline{z})$, let $\phi_{\alpha}(\overline{z}, \overline{y})$ denote the formula

$$(\forall \overline{x})(\alpha(\overline{x},\overline{y}) \rightarrow \phi(\overline{x},\overline{z})).$$

Let $(d_{\alpha}\phi)(\bar{z},\bar{y})$ denote an L_0 -formula corresponding to $\phi_{\alpha}(\bar{z},\bar{y})$ as given by Corollary 11. So d_{α} is an *n*-schema in \bar{y} over L_0 (in the sense of Definition 2), where $n = l(\bar{x})$.

Now let $M \models T$, $\bar{a} \in M$ and suppose that the formula $\alpha(\bar{x}, \bar{c})$ isolates $tp(\bar{a}/P^M)(\bar{c} \in P^M)$. It is then easy to see that $d_{\alpha}(\bar{c})$ defines $tp(\bar{a}/P^M)$. We will proceed to show that we can choose such α 's "uniformly in T" as asserted in Theorem 6.

Given T and $n < \omega$, we will construct a tree of formulas such that any infinite branch of this tree gives rise to a model M of T and n-tuple $\bar{a} \in M$ such that $tp_M(\bar{a}/P^M)$ is not isolated. It will follow (from Proposition 14) that if T is \aleph_0 -categorical over (P, L_0) then this tree has no infinite branches. This, together with Note 15 will allow us to prove the left to right direction of Theorem 6.

Let us now fix $n < \omega$. \bar{x} will denote the *n*-tuple of variables (x_0, \ldots, x_{n-1}) .

Definition 16 Let $\alpha(\overline{x}, \overline{y})$ and $\phi(\overline{x}, \overline{z})$ be *L*-formulas. By " $\alpha(\overline{x}, \overline{y})$ is a $\phi(\overline{x}, \overline{z})$ -atom" we mean the formula " $(\forall \overline{z})((\forall \overline{x})(\alpha(\overline{x}, \overline{y}) \rightarrow \phi(\overline{x}, \overline{z})))$ v $(\forall \overline{x})(\alpha(\overline{x}, \overline{y}) \rightarrow \neg \phi(\overline{x}, \overline{z})))$ ". This is clearly a formula in \overline{y} ; i.e., a statement about \overline{y} .

Let a_0, \ldots, a_{n-1} , and c_i for $i < \omega$ be new constants, and let us write \bar{a} for (a_0, \ldots, a_{n-1}) . Let L' be the expansion of L obtained by adjoining these constants. Let T_1 be $T \cup \{Pc_i : i < \omega\}$. Let us list all L'-sentences as $\{\chi_r : r < \omega\}$.

Now we will define, for certain $\eta \in {}^{\omega>}\omega,$ L'-sentences Θ_{η} so as to satisfy the following:

- (i) $\Theta_{\langle \rangle}$ is ' $\bar{a} = \bar{a}$ '.
- (ii) If Θ_{η} is defined and η extends τ then also Θ_{τ} is defined.
- (iii) If η is odd, Θ_{η} is defined and η extends τ then $\vdash \Theta_{\eta} \to \Theta_{\tau}$.
- (iv) If Θ_{η} is defined then $\{\Theta_{\eta \upharpoonright r} : r \le l(\eta)\}$ is consistent with T_1 .
- (v) Suppose that $l(\eta) = 2r$ and Θ_{η} is defined. Then $\Theta_{\eta^{\wedge}(1)}$ is $\wedge \{\Theta_{\eta \uparrow s} : s \leq 2r\} \wedge \nabla_{\chi_r}$ if the latter is consistent with T_1 . Also $\Theta_{\eta^{\wedge}(0)}$ is $\wedge \{\Theta_{\eta \uparrow s} : s \leq 2r\} \wedge \chi_r$ if the latter is consistent with T_1 , unless χ_r is of the form " $(\exists z \in P)\chi'(z)$ " for some $\chi' \in L'$ in which case, for some c_i which does not appear in $\{\Theta_{\eta \uparrow s} : s \leq 2r\}, \Theta_{\eta^{\wedge}(0)}$ is $\wedge \{\Theta_{\eta \uparrow s} : s \leq 2r\} \wedge \chi'(c_i)$. $\Theta_{\eta^{\wedge}(j)}$ is undefined otherwise.
- (vi) Suppose that η is odd, and Θ_{η} is defined, and so of the form $\alpha(\overline{a}, \overline{c})$ (\overline{c} a tuple of the c_i 's). If $\{``\alpha(\overline{x}, \overline{c}) \text{ is a } \phi(\overline{x}, \overline{z})\text{-atom''}: \phi(\overline{x}, \overline{z}) \in L\}$ is not consistent with $T_1 \cup \Theta_{\eta}$ then $\Theta_{\eta \wedge \langle 0 \rangle}$ is ' $\overline{c} = \overline{c}$ '. If not, then for some $\kappa \leq \omega$, $\Theta_{\eta \wedge \langle i \rangle}$ is defined iff $i < \kappa$ and moreover $\{\Theta_{\eta \wedge \langle i \rangle}: i < \kappa\} = \{``\alpha(\overline{x}, \overline{c}) \text{ is not a } \phi(\overline{x}, \overline{z})\text{-atom''}: \phi(\overline{x}, \overline{z}) \in L \text{ and ``}\alpha(\overline{x}, \overline{c}) \text{ is not a } \phi(\overline{x}, \overline{z})\text{-atom''} \text{ is consistent with } T_1\}$ and is not equivalent mod T_1 to any proper finite subset of itself. $\Theta_{\eta \wedge \langle i \rangle}$ is undefined otherwise. (Note in the second case $\Theta_{\eta \wedge \langle i \rangle}$ can be undefined for all $i < \omega$.)

The Θ_{η} can clearly be defined so as to satisfy (i)-(vi) above. Let S'_{η} be the set of $\eta \in {}^{\omega} > \omega$ such that Θ_{η} is defined.

Lemma 17 Suppose that S'_n has an infinite branch. Then T has a countable model M containing an n-tuple \overline{a} such that $tp_M(\overline{a}/P^M)$ is not isolated.

Proof: Let B be an infinite branch of S'_n . Let $T' = \{\Theta_\eta : \eta \in S\}$. By condition (v) above, T' is complete (in L'). Moreover, by (iv), T' is consistent and contains $T \cup \{Pc_i : i < \omega\}$. Suppose that the L'-sentence $(\exists z \in P)\gamma(z)$ is consistent with T'. $(\exists z \in P)\gamma(z)$ will be χ_r for some $r < \omega$. It is then clear from (v) that for some $i < \omega$, $T' \vdash \gamma(c_i)$. It follows from this that T' has a countable model which omits the type $\{Py\} \cup \{y \neq c_i : i < \omega\}$. Let M' be such a model. We use \overline{a} and c_i to denote the interpretations in M' of these constants. Thus $M = M' \upharpoonright L$ is a model of T and moreover $P^M = \{c_i : i < \omega\}$.

I assert that $tp_M(\bar{a}/P^M)$ is not isolated. To see this, suppose that $M \vDash \beta(\bar{a}, \bar{c})$ where $\beta(\bar{x}, \bar{y}) \in L$ and $\bar{c} \in P^M$. Thus $\beta(\bar{a}, \bar{c}) \in T'$ and so for some odd $\eta \in B$ we have $\vDash \Theta_{\eta} \to \beta(\bar{a}, \bar{c})$. We can assume that Θ_{η} is of the form $\alpha(\bar{a}, \bar{c}')$ where \bar{c}' is a tuple of c_i 's which includes c. As B is infinite $\Theta_{\eta^{\wedge}(i)}$ is defined for some $i < \omega$. Thus by condition (vi) above, " $\alpha(\bar{x}, \bar{c}')$ is not a $\phi(\bar{x}, \bar{z})$ -atom" $\epsilon T'$ for some $\phi(\bar{x}, \bar{z}) \in L$. It is clear from this and Definition 16 that $\alpha(\bar{x}, \bar{c}')$ does not isolate $tp_M(\bar{a}/P^M)$. Thus neither can $\beta(\bar{x}, \bar{c})$ isolate $tp_M(\bar{a}/P^M)$. As $\beta(\bar{x}, \bar{c})$ was an arbitrary formula over P^M satisfied by \bar{a} in M, it follows that $tp_M(\bar{a}/P^M)$ is not isolated. Thus the assertion is proved, and so also the lemma.

Proposition 18 Let T be \aleph_0 -categorical over (P, L_0) . Then for each n, S'_n has no infinite branch.

Proof: By Proposition 14 and Lemma 17.

5 Proof of the left to right direction of Theorem 6 Here I point out how the left to right direction of Theorem 6 can be deduced from Proposition 18. So we assume that $T \vdash (\exists x)Px$ and that T is \aleph_0 -categorical over (P, L_0) . Let us fix $n < \omega$ $(n \ge 1)$. We know from Proposition 18 that S'_n has no infinite branch. We will construct from S'_n and the attached formulas a tree S_n and attached formulas satisfying the required conditions. In fact I will just show how to construct the first two 'levels' of S_n , the rest of the construction proceeding in the same way.

First let X be the smallest subset of S'_n satisfying (i) $\langle \rangle \in X$ and (ii) if $w \in X$ and $w^+ \cap S'_n$ is finite then $w^+ \cap S'_n \subset X$.

Lemma 19 X is finite.

Proof: By Konig's Lemma and the fact that S'_n has no infinite branches.

Now let $X' = \{ w \in X : w^+ \cap X = \phi \}$. Then we have immediately:

Lemma 20 If $w \in X'$ then w is odd, and either w is an endpoint of S'_n or $w^+ \cap S'_n$ is infinite.

Now let $Y = \{w \in X : w \text{ is odd and } w^+ \cap S'_n \text{ is finite and nonempty, and } \Theta_{w^{\wedge}(0)} \text{ is not of the form } \overline{c} = \overline{c}'\}$. Then clearly $Y \cap X' = \phi$ and $Y \cup X'$ is finite. Let us enumerate $Y \cup X'$ as $\langle w_i : i < k \rangle$ for some $k < \omega$. Then the set of elements of S_n which have length 1 will be precisely $\{\langle i \rangle : i < k \}$. Now we define the formulas $\alpha_{(i)}(\overline{x}, \overline{y}_{(i)})$ for i < k. First suppose that $w_i = w \in X'$. So Θ_w is a formula of the form $\alpha(\overline{a}, \overline{c})$. Let $\overline{y}_{(i)}$ be a sequence of variables which has the same length as \overline{c} . Then we put $\alpha_{(i)}(\overline{x}, \overline{y}_{(i)})$ to be $\alpha(\overline{x}, \overline{y}_{(i)})$ which is clearly an L-formula. If $w_i = w$ and $w \in Y$, then let the formula $\Theta_w \wedge \{ \neg \Theta_w \wedge_{(j)} : w \wedge_{(j)} \in S'_n \}$ be written as $\alpha(\overline{a}, \overline{c})$. We put $\alpha_{(i)}(\overline{x}, \overline{y}_{(i)})$ to be $\alpha(\overline{x}, \overline{y}_{(i)})$ for some suitable sequence $\overline{y}_{(i)}$. (Let us also assume that $|\neg \alpha_{(i)}(\overline{x}, \overline{y}_{(i)})| \rightarrow Py$ for each y in $\overline{y}_{(i)}$ and each i < k.)

Lemma 21

- (i) $T \vdash (\forall \overline{x}) \bigvee_{i < k} (\exists \overline{y}_{\langle i \rangle} \in P) \alpha_{\langle i \rangle}(\overline{x}, \overline{y}_{\langle i \rangle}).$
- (ii) Let i < k, $w = w_i$ and either $w \in Y$ or w is an endpoint of S'_n . Then $T \vdash ``\alpha_{\langle i \rangle}(\overline{x}, \overline{y}_{\langle i \rangle})$ is a $\phi(\overline{x}, \overline{z})$ -atom'' for all $\phi(\overline{x}, \overline{z}) \in L$.

Proof: (i) follows easily from properties (v) and (vi) of the Θ_{η} , together with the fact that $T \vdash (\exists x)Px$. For (ii), suppose first that $w = w_i$ and w is an endpoint of S'_n . If Θ_w is written as $\alpha(\bar{a}, \bar{c})$, we must have that " $\alpha(\bar{x}, \bar{c})$ is not a $\phi(\bar{x}, \bar{z})$ -atom" is inconsistent with T_1 for each $\phi(\bar{x}, \bar{z})$ (by property (vi)) of the Θ_{η}). But $\alpha_{(i)}(\bar{x}, \bar{y}_{(i)})$ is $\alpha(\bar{x}, \bar{y}_{(i)})$, and thus $T \vdash$ " $\alpha_{(i)}(\bar{x}, \bar{y}_{(i)})$ is a $\phi(\bar{x}, \bar{z})$ -atom" for each $\phi(\bar{x}, \bar{z}) \in L$. Now suppose that $w = w_i$ is in Y. Again if we write $\alpha(\bar{a}, \bar{c})$ for Θ_w then we have by property vi of the Θ_{η} and the definition of $\alpha_{(i)}$ that $\vdash \alpha_{(i)}(\bar{x}, \bar{y}_{(i)}) \rightarrow$ " $\alpha(\bar{x}, \bar{y}_{(i)})$ is a $\phi(\bar{x}, \bar{z})$ -atom" whenever " $\alpha(\bar{x}, \bar{y}_{(i)}) \rightarrow$ $\alpha(\bar{x}, \bar{y}_{(i)})$, it follows that $T \vdash$ " $\alpha_{(i)}(\bar{x}, \bar{y}_{(i)})$ is a $\phi(\bar{x}, \bar{z})$ -atom" for all $\phi(\bar{x}, \bar{z}) \in L$. Thus part ii of the lemma is proved.

Now I define level two of S_n and the attached formulas. Let i < k be such

that for $w = w_i$, $w^+ \cap S'_n$ is infinite. Note that $w^+ \subset S'_n$ in this case. We then stipulate that $\langle i,j \rangle \in S_n$ for every $j < \omega$. For any other i < k (i.e., for i satisfying the hypotheses of Lemma 21(ii)) we stipulate that $\langle i,j \rangle \notin S_n$, for all $j < \omega$. Thus if i satisfies the hypotheses of Lemma 21(ii) then $\langle i \rangle$ will be an endpoint of S_n . Now suppose that $\langle i,j \rangle \in S_n$. So clearly $\Theta_{\langle i,j \rangle}$ is defined, and is of the form $\psi(\bar{c})$ where \bar{c} is the tuple of c-constants occurring in $\Theta_{\langle i \rangle}$. Then we define $\psi'_{\langle i,j \rangle}(\bar{y}_{\langle i \rangle})$ to be $\psi(\bar{y}_{\langle i \rangle})$.

Now for each i < k, let $d_{\alpha(i)}$ be the *n*-schema in $\overline{y}_{(i)}$ as defined in Note 15. Let us rebaptise $d_{\alpha(i)}$ as $d_{(i)}$.

Lemma 22

- (i) Let i < k and $\langle i \rangle$ be an endpoint of S_n . Then for any $M \models T$, n-tuple $\bar{a} \in M$ and $\bar{c} \in M_0$ such that $M \models \alpha_{(i)}(\bar{a}, \bar{c}), d_{(i)}(\bar{c})$ defines $tp(\bar{a}/P^M)$.
- (ii) Let i < k and $\langle i \rangle$ not be an endpoint of S_n . Then for any $M \vDash T$, n-tuple $\bar{a} \in M$ and $\bar{c} \in M_0$ such that $M \vDash \alpha_{\langle i \rangle}(\bar{a}, \bar{c})$ and $M \vDash \neg \psi'_{\langle i,j \rangle}(\bar{c})$ for all $j < \omega$, $d_{\langle i \rangle}(\bar{c})$ defines $tp(\bar{a}/P^M)$.

Proof: As already mentioned, if $\langle i \rangle$ is an endpoint of S_n then i satisfies the hypothesis of Lemma 21(ii). Now part i of the lemma follows from Lemma 21(ii) and Note 15. For part ii let us first note that if $\langle i \rangle$ is not an endpoint of S_n then $\{\psi'_{(i,j)}(\overline{y}_{\langle i \rangle}): j < \omega\} = \{``\alpha_{\langle i \rangle}(\overline{x}, \overline{y}_{\langle i \rangle}) \text{ is not a } \phi(\overline{x}, \overline{z}) \text{-atom}``: \phi(\overline{x}, \overline{z}) \in L, ``\alpha_{\langle i \rangle}(\overline{x}, \overline{y}_{\langle i \rangle}) \text{ is not a } \phi(\overline{x}, \overline{z}) \text{-atom}`` \text{ is consistent with } T\}$. Thus if $M \models T, \overline{a}$ is an n-tuple of $M, \overline{c} \in M_0$, $M \models \alpha_{\langle i \rangle}(\overline{a}, \overline{c})$ and $M \models \neg \psi'_{\langle i,j \rangle}(\overline{c})$ for all $j < \omega$, then clearly $\alpha_{\langle i \rangle}(\overline{x}, \overline{c})$ isolates $tp(\overline{a}/P^M)$. Part ii of the lemma now follows from Note 15.

For $\langle i,j \rangle \in S_n$, let $\psi_{\langle i,j \rangle}(\overline{y}_{\langle i \rangle})$ be an L_0 -formula corresponding to $\psi'_{\langle i,j \rangle}(\overline{y}_{\langle i \rangle})$ as given by Corollary 11. I now assert that with this definition of the first two levels of S_n , and with the above choice of $\alpha_{\langle i \rangle}$ and $d_{\langle i \rangle}$ for $\langle i \rangle \in S_n$ and of $\psi_{\langle i,j \rangle}$ for $\langle i,j \rangle \in S_n$, that II(i) of Theorem 6 is satisfied, as is I of Theorem 6 (for η of length 1). The satisfaction of II(i) is given by Lemma 21(i), and the satisfaction of I by Lemma 22.

This above construction can be repeated to obtain levels 3 and 4, etc., of S_n and the attached formulas, so as to satisfy the required conditions. The L_0 -formulas $\chi_\eta(\bar{y}_\eta)$ mentioned in the last part of Theorem 6 can be obtained from Corollary 11. Thus Theorem 6 is proved.

The problem of characterising theories which are strongly categorical over (P, L_0) would seem to be much more difficult. In this connection we conjecture:

Conjecture 23 T is strongly categorical over (P, L_0) if and only if: (i) T satisfies the uniform reduction theorem (the conclusion of Proposition 10) and (ii) if $M \models T$, $A \subseteq M$, $A \supset P^M$ and $a \in M$ then $tp_M(a/A)$ is isolated.

Of course even if this were true, there would still remain the task of obtaining from it a syntactic characterisation of strong categoricity.

Finally I will mention some past literature and work on the subject matter of this paper. Strongly categorical theories were introduced, in the form of "single-valued operations" by Gaifman in [2], where he stated the uniform

reduction theorem as well as a uniform definability theorem for such theories. Gaifman has also shown, in as yet unpublished work, that if we assume in addition that each model M of T is rigid over P^M , then for each $M \models T$, M is "explicitly definable" from M_0 , uniformly in T. Wilfrid Hodges pointed out to me several years ago that if T is strongly categorical over (P, L_0) , then every countable model M of T is atomic over P^M . Strongly categorical theories also figure in the author's thesis, where some strengthenings of results mentioned in this paragraph were proved.

REFERENCES

- [1] Feferman, S., "Two notes on abstract model theory. I. Properties invariant on the range of definable relations between structures," *Fundamenta Mathematica*, vol. 82 (1974), pp. 153-165.
- [2] Gaifman, H., "Operations on relational structures, functors and classes," pp. 21-39 in Proceedings of the Tarski Symposium, American Mathematical Society, Providence, Rhode Island, 1974.

Department of Mathematics McGill University Montreal, Canada