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X,-Categoricity Over a Predicate

ANAND PILLAY

1 Introduction We are concerned here with a condition on a theory T
which says that a model of T is determined in some weak way by its (P,Lg)
relativised reduct, namely that whenever M and N are countable models of
T with the same relativised reduct M, then M and N are isomorphic over M,
In the case that T says that P is empty this reduces to 7" being R,-categorical,
a situation characterised by Ryll-Nardzewski’s theorem. If T says that P is
the whole model, then in fact for any models M and N with the same Ly
reduct, M and N will be the same, a situation which is characterised by Beth’s
definability theorem. Both the Ryll-Nardzewski and Beth characterisations
are syntactic in that they say that T must prove a set of sentences of a
specified kind. Our syntactic condition for T to be R,-categorical over (P,L,)
is rather difficult to state simply. Essentially there will be, for each n < w,
a fixed collection of L-formulas which serve to link n-tuples in models of
T to tuples in the P-part of the models, such that if @ € M is so related to
¢ in PM then the type of @ over PM depends uniformly on the type of ¢ over
MP} L,

A stronger condition that one could place on T is that for all models
M, N of T, if MP} Ly = NPt Ly = M, then M and N are isomorphic over M,,
This property (which we call strong categoricity over (P,L,)) corresponds
exactly to Gaifman’s single-valued definitions [2]. (Note that if, for example,
P is always empty, then T can have this property if and only if T is the theory
of some finite structure.) To give a syntactic characterisation of strong cate-
goricity would seem much more difficult, although Gaifman has proved, in
unpublished work, that if we assume in addition to strong categoricity that
every model M of T is rigid over P then every model M of T is explicitly
definable from M? } L, in a uniform manner.

Our notation here is standard. I will not be working in a big saturated
model.
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T will denote a theory in a countable language L. We assume that L
contains only relation symbols (so any subset of an L-structure is a substruc-
ture). P will be a fixed unary predicate in L, and L, will be a sublanguage of L.
If M is an L-structure, then PM denotes the subset of M consisting of those
elements which are in P. Again, if M is an L-structure then M* } L, denotes the
Lgstructure whose universe is PY and whose Lgrelations are obtained from
those of M by restriction. We often refer to M¥ | L, as M,.

If (%) is a formula then y¥(X) denotes as usual the formula obtained
from ¢ by relativising all quantifiers to P. So if M is an L-structure, Y(X) an
Lyformula, and ¢ € PM, then M, E (@) iff M E ¢ ().

Definition 1 T is said to be Ry-categorical over (2, L,) if, whenever M and N
are countable (including finite) models of 7 and M* } Ly= NP} L, then there
is an isomorphism f of M with N such that f I P is the identity. (Or, as we
shall say, M and N are isomorphic over My, where My=MPt Lo= NP}t Ly)

T is said to be strongly categorical over (P,L,) if T satisfies Definition 1
but without the restriction that M and N be countable. It is clear that there are
T which are N-categorical over (2, L,) but not strongly categorical over (P, L).

2 The main result In this section I give some preliminary definitions and
then state the main result, the easy direction of which can be observed imme-
diately, and the difficult direction of which is proved in later sections.

Definition 2 Let n < w, and ¥ be any tuple of variables. d is said to be
an n-schema in y over L, if d is a map from L-formulas whose free variables
include xy, . . ., x,-1, to Lyformulas, where if the L-formula ¢ has free variables
X0y - - -5 Xn—-1, 2, then d¢ has free variables z,y. (In this case d¢ is written as

(d¢)(z,7).)

Definition 3 Let M be an L-structure, @ an n-tuple of M, d an n-schema in
y over Ly, and ¢ a tuple from M, (= MP} L,) with [(¢) = I(¥). Then we say that
d(¢) defines tp(@/PM) if for each L-formula ¢(X,Z) and b in PM, M & ¢(a, b)
if and only if M, E (d¢)(d, 7).

Remark 4: Note that d(¢) defines tp(@/PM)if and only if for each L-formula
#(%,Z) we have M E (YZ € P)(¢@a,Z) < (d9)(Z, 7).

We will be concerned with formulas which are indexed by members of
trees, where these trees are subsets of “”w, i.e., subsets of “”w which are
closed under initial segments. If n € “”w, then by a successor of n we mean
something of the form n”i) for some i € w. The set of successors of n will
be denoted by n*. An endpoint of a tree S C 7 is just a member of S, no
successor of which is a member of S. Finally, n € “”w will be said to be odd
or even depending on whether /(n) is odd or even.

Definition 5 Let S C “?w be a tree. S will be said to be good if

(i) S has no infinite branches

(ii) if n € S is odd then either n is an endpoint of S or forall i < w, n™iYe S
(iii) if n e Sis even then there is £k < such that [n"(i} e S if and only if i < k]
(so in particular i cannot be an endpoint of 5).
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In what follows X denotes the sequence of variables xq, . . ., X,

Theorem 6 Suppose T t= (Ix)Px. A T is Nycategorical over (P,Ly) if and
only if for each n, 1 <n < w, we have: there is a good tree S,, and there are for
each odd n € S, (i) an L-formula o, (x,y,), and (ii) d,, an n-schema in y, over L,
(where d,, actually depends on o,); and for each odd n € S which is not an end-
point there are Lyformulas Yn~i(¥,) for i < w, such that

1G) if n is an endpoint of Sy, then for any M = T, n-tuple a e M and € € M,
such that M E «,(a,c), d,(C) defines tp@/P"),
(ii) if n € S, is odd but not an endpoint of Sy, then for any M E T, n-tuple
d €M, and T € My such that M E 0,(a,¢) and My F Wy (€) for all
i < w, d,(C) defines tp@a/PM),
(iii) {"Iw,},)m)(?):i < w} is not equivalent modulo T U Py to any finite subset
of itself (for each odd n € Sy,).

G T (vx) \/ Ay, € PYa,(x,¥y,)
I(n)=1
neSy

(ii) if n € S, is odd and not an endpoint of S, then for each i < w we have

T F (VDT e P),ET) A vy F) >V 35, € PYu(%7,))).
5
Ii(y’,'ww
For the case n = 1 we also demand that there be, for each odd n € Sy an L
formula x,(¥,) such that

T F (Y5, € PYOL(Fy) < @F) oy, 7))

Note 7: By Definition 5(iii) the disjuncts in the formulas in II(i) and II(ii) are
finite. Note also by Remark 4 that I(i) and I(ii) are syntactic properties of T
(for each 7).

Proof of < of Theorem 6: Let T satisfy the right-hand side conditions. I first
assert that:

(*) For any model M of T and n-tuple @ from M there are an odd n € S,
and ¢ € M, such that M E a,(a,c) and such that either 7 is an endpoint of S,
or My F ynix(€) forall i < w.

Suppose not and let M = T and @ € M be a counterexample. We will define
N, € Sy and ¢, € M, for 1 <r < w such that I(n,) = 27 ~ 1, 5,4, is an extension
of n,, and M E &y, (@, c,) for all r. n; and ¢, are given by II(i). Suppose we have
n,and T, with M F oy, (@, ¢,). Then n, is not an endpoint of S, and moreover
for some i < w, My E Y,~;»(G). Thus by II(ii) there is 7 € S, which is a
successor of n,"i), and also ¢ € M, such that M F «,(a,¢). Put ¢,,; = ¢ and
Ny+1 = 7. Thus such 7, can be defined. But they then define an infinite branch
of Sy, which is impossible, as S, was good. So (*) is established.

Now let M and N be countable models of T such that M} Ly = NPt L,=
M,. We will obtain an isomorphism of M and N over M, by the standard back-
and-forth argument. First let @ be an element of M. Let n € S, and ¢ € M, be
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as given by (*). It then follows from I(i) and (ii), that d,(c) defines tp(a/PM).
Moreover My, F x,(c). Thus there is b € N such that N F ,(b,¢) (as M, =
NP Ly). If 5 is not an endpoint of S, then by (*), M, E TWoriy(©) for all
i < w. So by I(i) and (ii) again, d,(c) defines tp(b/PY). So for any L-formula
#(x,z) and d in PM (= PV) we have

M E ¢(a,d) iff My F(d,9)(d,C) iff N E ¢(b,d).

So a and b have the same types over P = PN in M and N, respectively. Now
suppose that @, b are n-tuples from M, N respectively with the same types
over PM, Choose any a € M. Again by (*) we find n € Sy, and € € M,
with M F o, (@"a,c) and tp@ a/PM) defined by d,(¢). As @ and b have the
same types over PM = PV there is b € N such that N han(EAb,E), and so d,(¢)
defines tp(b"b/PY). Thus, as above, @"a and b"b have the same types over
PM in M and N, respectively. This argument shows that M and N are isomorphic
over M,, completing the proof.

In the next two sections we develop the material allowing us to prove
the other direction of Theorem 6.

3 Uniform reduction and completeness over (P, L,)

Definition 7 T is said to be complete over (P, Ly) if whenever M, N are
models of T such that MP } Lo= NP} L,= M, then

M, a), eMy = (N,a), eMy:

Note that if P is always empty then this just says that T is complete,
and if P is always the whole model this says that 7 implicitly defines the
relations of L — L, in terms of L,

Proposition 8 Let T be Rycategorical over (P,L,). Then T is complete
over (P, L,).

Proof: So let M, N be models of T with MP} Ly = NPMLy = M, We
have to show that (M,a);ep, = (V,a)sepy If M, is countable then this follows
immediately from the ¥, -categoricity of T over (P,L,). So we may assume
that M, is uncountable. Suppose by way of contradiction that there is an
(L-) formula ¢(x) and tuple @ € M, such that

M E¢@ and N F¢(@).
Now we define countable models M? and N’ for i < w, such that

(i) (M':i<w)isan ascending chain of elementary substructures of M
(i) (N':i< w)is a chain of elementary substructures of N
(iii) 7 e M° . . . .
(iv) foreachi< w, pM' c pN' and pN' c pM*t
This is easily obtained.
It is then clear that ((M"),: i < w) and ((N'),: i < w) are both chains
of elementary substructures of M, (Remember that we write (M‘), for
WMHP ) Ly, etc.) Moreover, by (iv) if M® = U M and N“= |J N/, then

i<w i<w
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M= M)o= U WW)o= %), andalso @e (M),

i<w i<w

Also M“, N® are countable and M® F ¢@) and N* E 7l¢(a). But this is
impossible, for M and N“ are isomorphic over (M%), (by R,-categoricity
over (P, L,)).

So the proposition is proved.

If M is a model of T and @ € PM, then DM, (a) will denote the type of
a over ¢ in the model My = MPt L, (So tpMo(a) is a set of Ly formulas.)
tpy (@) will just denote the type of @ (over ¢) in M.

Lemma 9 Let T be complete over (P,Lo). Let M be a model of T, a and b
n-tuples in PM and suppose that 1oy (@) = tppy(b). Then tpy(a) = tpy (D).

Proof: Let N be an elementary extension of M such _that N, is sufficiently
homogeneous. Clearly My < N, and so tpy (@) = tpny(b), whereby there will

be an automorphism f of N, such that f(@) = b. Let N’ be an L-structure such
that (V') = Ny and moreover

(N': f(c))(‘ GNO = (N: C)CGNQ'
Thus clearly
1oy (b) = tpy (@).

On the other hand, by the completeness of T over (P, L,) and the facts that
N' ETand (N')y= N, it follows that

o (b) = tpn (D).
Thus tpy (@) = tpy(b), and so tpy(@) = tpy(b).
Proposition 10 Let T be complete over (P,L,). Then for any L-formula

¢(X) there is an Lyformula Y(x) such that for any model M of T and tuple
@ in PM we have

M E ¢@) if and only if My = y(a).
Equivalently we could say T t (VX € P)(¢(%) <= YL (X)).

Proof: This is a standard application of completeness. Given ¢(x), an L-
formula, we put T' = {y(X) € Ly: T F ¢(%) A P(¥) > YP(%)}. Then one shows
that T U {yP(x): Y(x) e THU {P(X)} I ¢(X), using Lemma 9. Then by compact-
ness one finds a formula (%) € T such that T F (Vx)(¢(x) <= ¢ P (%)).

Proposition 10 is called the uniform reduction theorem and a variant of
it is proved in a more general setting in [1].

Corollary 11 Let T be Nycategorical over (P,L,). Then for every formula
¢(X) of L there is a formula Y(X) of Ly such that

T b (VX € P)(¢(x) <> Y P (%))
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4 Atomicity over P

Definition 12 The L-structure M is said to be atomic over P if for every
tuple @ € M, tpy(a/PM) is isolated (where fpy(a/A) is said to be isolated, if
this type can be a finitely axiomatised modulo Th(M, b), . 4).

Lemma 13 Let M < N and @ e M. Suppose that tpy(a/PM) is isolated. Then
tpn@/PY) is also isolated.

Proof: Suppose that ¢ € P and the formula «(¥, T) isolates (i.e., axiomatises)
tpM(&/PM). It is then clear that for every formula ¢(x,z) the sentence (VZ € P)
(VX)) (a(x,c) = ¢(x%,2)) v (VX)(ax,c) > T1¢(x,Z))) is true in M, and thus also
in N. Thus «(X, ©) isolates tpy (@/PV).

Proposition 14 Let T be Nycategorical over (P,Ly). Then every model
of T is atomic over P.

Proof: By Lemma 13 it is clearly enough to show that every countable
model of T is atomic over P. So let M be a countable model of T. Suppose
by way of contradiction that there is a tuple @ € M such that tpy(a/PM) is
not isolated. Let p = tpy(@/PM). Let q(x) = {P(x} U {x # c:c € PM}. Then
by the Omitting types theorem, T’ = Th((M, c)..pM) has a countable model
(N, ¢)cepM which omits p and g. As this model omits g, we have Ny, = M,,.
But N and M cannot be isomorphic over M, as (N, ). M, omits p. This con-
tradicts the 8ycategoricity of T over (P, L), proving the proposition.

Note 15: Let T be Ncategorical over (P, Ly). Fix a formula a(x, ). Given
an (L-)formula ¢(x, 2), let ¢,(Z, ¥) denote the formula

(Vx) (a(x,7) > ¢(X, 2)).

Let (d,¢)(z,7) denote an L formula corresponding to ¢,(Z,y) as given by
Corollary 11. So d, is an n-schema in y over L, (in the sense of Definition 2),
where n = [(X).

Now let M E T, @ € M and suppose that the formula (X, ¢) isolates
tp(a/PM)(¢ € PM). 1t is then easy to see that d,(¢) defines tp(a/PM). We will
proceed to show that we can choose such «’s “uniformly in 7 as asserted
in Theorem 6.

Given T and n < w, we will construct a tree of formulas such that any
infinite branch of this tree gives rise to a model M of T and n-tuple @ € M such
that tpM(é/PM) is not isolated. It will follow (from Proposition 14) that if
T is Ncategorical over (P, L,) then this tree has no infinite branches. This,
together with Note 15 will allow us to prove the left to right direction of
Theorem 6.

Let us now fix n < w. ¥ will denote the n-tuple of variables (xy, . . ., X,-1).

Definition 16 Let a(X,y) and ¢(x,Z) be L-formulas. By “a(x,¥) is a ¢(x, 2)-
atom” we mean the formula “(Vz) ((VX)(a(X,¥) > ¢(X,Z)) v (VX)((X,¥) =
T¢(X,Z)))”. This is clearly a formula in y; i.e., a statement about .

Let ay, . . ., a5, and ¢; for i < w be new constants, and let us write a for
(ags - . -, ay-1). Let L’ be the expansion of L obtained by adjoining these con-
stants. Let T; be T U {Pc;:i < wl. Let us list all L'-sentences as {x,: r < w}.
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Now we will define, for certain n € “”w, L'-sentences ©, so as to satisfy
the following:

(i) Oyisa=a.

(ii) If ®, is defined and n extends 7 then also ©, is defined.

(iii) If n is odd, O, is defined and n extends 7 then F©, > ©,.

(iv) If ©, is defined then {®,;,:r <I(n)} is consistent with T',.

(v) Suppose that I(n) = 2r and O, is defined. Then @, ~¢, is A {Ops1s < 21}
7x, if the latter is consistent with T';. Also ©,~ is A 158 < 2r} A, if
the latter is consistent with T, unless x, is of the form “(3z e P)x'(z)”
for some x' € L' in which case, for some ¢; which does not appear in
Onss < 21}, Oprgg 18 A Opts < 278 A X'(¢;). Oy~ is undefined
otherwise.

(vi) Suppose that n is odd, and ©, is defined, and so of the form «(a,c)
(¢ a tuple of the ¢;’s). If {“a(X,¢) is a ¢(X,Z)-atom”:¢(X,Z) € L} is not
consistent with T'; U @, then ©,+, is °¢ = ¢’. If not, then for some k < e,
O,y is defined iff i < k and moreover {@,n;: i < k} = {“a(X,7) isnot a
o(x,Zz)-atom”:¢(x,Z) € L and “«a(X,T) is not a ¢(X,Z)-atom” is consistent
with T} and is not equivalent mod T, to any proper finite subset of itself.
©,~ is undefined otherwise. (Note in the second case @, can be
undefined for all i < w.)

The ©, can clearly be defined so as to satisfy (i)-(vi) above.
Let Sy, be the set of n € “~w such that @, is defined.

Lemma 17 Suppose that S,, has an infinite branch. Then T has a countable
model M containing an n-tuple @ such that tppy(a/PM) is not isolated.

Proof: Let B be an infinite branch of Sy. Let 7' = {©,:n € S}. By condition
(v) above, T' is complete (in L'). Moreover, by (iv), T' is consistent and con-
tains T U {Pc;:i < w}l. Suppose that the L'-sentence (3z € P)vy(z) is consistent
with T'. (3z € Pyy(z) will be x, for some r < w. It is then clear from (v) that
for some i < w, T' F v(c;). It follows from this that 7" has a countable model
which omits the type {Py} U {y # ¢;:i < w}. Let M' be such a model. We use
a and c; to denote the interpretations in M’ of these constants. Thus M = M't L
is a model of T and moreover PM = {¢;: i < w}.

I assert that tpy(@/PM) is not isolated. To see this, suppose that M = p(a,c)
where B(%,¥) € L and ¢ € PM. Thus 8(a,¢) € T' and so for some odd n € B we
have O, - (@,c). We can assume that @, is of the form (@, ¢') where ¢ is
a tuple of ¢;’s which includes c¢. As B is infinite ®,~, is defined for some
i < w. Thus by condition (vi) above, “a(¥,¢') is not a ¢(x,z)-atom’ e T’ for
some ¢(X,Z) e L. It is clear from this and Definition 16 that «(X,¢’) does not
isolate tpp(@/PM). Thus neither can B(%,¢) isolate top@/PM). As B(%,T) was
an arbitrary formula over PM satisfied by @ in M, it follows that tpM(E/PM)
is not isolated. Thus the assertion is proved, and so also the lemma.

Proposition 18 Let T be Nycategorical over (P,L,). Then for each n, S,
has no infinite branch.

Proof: By Proposition 14 and Lemma 17.
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5 Proof of the left to right direction of Theorem 6 Here I point out how
the left to right direction of Theorem 6 can be deduced from Proposition 18.
So we assume that T  (3x)Px and that T is Ncategorical over (P, L,). Let
us fix n < w (n = 1). We know from Proposition 18 that S;, has no infinite
branch. We will construct from S, and the attached formulas a tree S, and
attached formulas satisfying the required conditions. In fact I will just show
how to construct the first two ‘levels’ of S, the rest of the construction pro-
ceeding in the same way.

First let X be the smallest subset of Sy, satisfying (i) () e X and (i) if w e X
and w* N S}, is finite then w* N S, C X.

Lemma 19 X is finite.
Proof: By Konig’s Lemma and the fact that S, has no infinite branches.
Now let X' = {w € X:w* N X = ¢}. Then we have immediately:

Lemma 20 If w e X' then w is odd, and either w is an endpoint of S, or
w* N S}, is infinite.

Now let Y = {w € X: w is odd and w* N S}, is finite and nonempty, and
0,7 is not of the form ‘¢ = ¢’}. Then clearly Y N X’ = ¢ and Y U X" is finite.
Let us enumerate Y U X' as (w;: i < k) for some k < w. Then the set of ele-
ments of S,, which have length 1 will be precisely {{i): i < k}. Now we define
the formulas o;,(x,¥;y) for i < k. First suppose that w; = w e X'. So Q,, is
a formula of the form «(a,c). Let ¥, be a sequence of variables which has
the same length as ¢. Then we put oy, (X,¥;y) to be a(x, ¥;,) which is clearly
an L-formula. If w; = w and w € Y, then let the formula ©,, A {710,,7j,: w"(j) €
Sn} be written as o(a,c). We put o,y (X, V) to be ofx, V(i) for some suitable
sequence J;. (Let us also assume that Fo;, (X, ;) = Py for each y in y;, and
eachi<k.)

Lemma 21

@ TRV @Fg e PapE, ).

i<k
(i) Let i < k, w = w; and either w € Y or w is an endpoint of S;. Then
T F“ay(X, Vi) is a ¢(X,Z)-atom’ for all p(x,Z) € L.

Proof: (i) follows easily from properties (v) and (vi) of the ©,, together with
the fact that T (3x)Px. For (ii), suppose first that w = w; and w is an end-
point of S;. If ®,, is written as «(a@,c), we must have that “a(x,c) is not a
¢(x,Z)-atom” is inconsistent with 7, for each ¢(x,z) (by property (vi)) of the
0,). But oy (X, ¥y) is a(X, Vi), and thus T F “o;y (X, 75) is a ¢(X,Z)-atom”
for each ¢(X,Z) e L. Now suppose that w = w; is in Y. Again if we write a(a, ¢)
for ®,, then we have by property vi of the ®, and the definition of «;, that
Foiy (%, Vi) = “alX,Ty) is a @(X,Z)-atom” whenever “a(X,¥;) is not a
¢(X,Z)-atom” is consistent with 7. As we also have Fa, (X, Vi) = X, Viiy),
it follows that T b+ “ogy(X, V() is a ¢(x,Z)-atom” for all ¢(x,Z) € L. Thus
part ii of the lemma is proved.

Now I define level two of S, and the attached formulas. Let i <k be such
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that for w = w;, w* N Sy, is infinite. Note that w* C S}, in this case. We then
stipulate that ¢i,j> € S, for every j < w. For any other i < k (i.e., for i satis-
fying the hypotheses of Lemma 21(ii)) we stipulate that (,j) ¢ S,, for all
Jj < w. Thus if i satisfies the hypotheses of Lemma 21(ii) then (i) will be an
endpoint of S,. Now suppose that (i,j) € S,. So clearly @ ;, is defined, and is
of the form Y(¢) where ¢ is the tuple of c-constants occurring in ©;,. Then
we define y¢; j(¥i») to be Y(3p).

Now for each i <k, letd,
Let us rebaptise d, ;, as dq;).

Lemma 22

(i) Let i <k and (i) be an endpoint of S,. Then forany M F T, n-tupled e M
and ¢ € My such that M E «;,(@, ), d () defines tp(a/PM).

(ii) Let i < k and (i) not be an endpoint of S,. Then for any M = T, n-tuple
aeMand T e My such that M E o(a,¢) and M FE Wy j(©) for all j < w,
d (%) defines tp(a/P¥).

(i, be the n-schema in y;, as defined in Note 15.

Proof: As already mentioned, if <i) is an endpoint of S, then i satisfies the
hypothesis of Lemma 21(ii). Now part i of the lemma follows from Lemma
21(ii) and Note 15. For part ii let us first note that if (i) is not an endpoint
of S, then {Y (Fiy): 7 < wl= {“ay (X, ¥iiy) is not a ¢(X, Z)-atom”: ¢(X,z) € L,
“ay(X, Piy) is not a ¢(x,z)-atom” is consistent with T3 Thusif M E T, is
an n-tuple of M, T e Mo, M F o;5(a,c) and M = 1y ;,(C) for all j < w, then
clearly «;(¥,¢) isolates tp(a/PM). Part ii of the lemma now follows from
Note 15.

For (i,j) € Sp, let Y j,(¥i») be an Ly-formula corresponding to Y (Vi)
as given by Corollary 11. I now assert that with this definition of the first two
levels of Sy, and with the above choice of ;, and dy;, for (i) e S, and of Y, ;,
for <,/ € S,, that 1I(i) of Theorem 6 is satisfied, as is I of Theorem 6 (for n of
length 1). The satisfaction of II(i) is given by Lemma 21(i), and the satisfaction
of by Lemma 22.

This above construction can be repeated to obtain levels 3 and 4, etc., of
S, and the attached formulas, so as to satisfy the required conditions. The
Lyformulas x,(¥,) mentioned in the last part of Theorem 6 can be obtained
from Corollary 11. Thus Theorem 6 is proved.

The problem of characterising theories which are strongly categorical
over (P, L,) would seem to be much more difficult. In this connection we
conjecture:

Conjecture 23 T is strongly categorical over (P, Ly) if and only if: (i) T
satisfies the uniform reduction theorem (the conclusion of Proposition 10) and
()ifMET,ACM, AD PM and a e M then tpylalA) is isolated.

Of course even if this were true, there would still remain the task of
obtaining from it a syntactic characterisation of strong categoricity.

Finally I will mention some past literature and work on the subject matter
of this paper. Strongly categorical theories were introduced, in the form of
“single-valued operations” by Gaifman in [2], where he stated the uniform
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reduction theorem as well as a uniform definability theorem for such theories.
Gaifman has also shown, in as yet unpublished work, that if we assume in
addition that each model M of T is rigid over PM, then for each M = T, M is
“explicitly definable” from M,, uniformly in T. Wilfrid Hodges pointed out
to me several years ago that if T is strongly categorical over (P, L), then every
countable model M of T is atomic over PM. Strongly categorical theories also
figure in the author’s thesis, where some strengthenings of results mentioned
in this paragraph were proved.
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