On the Freyd Cover of a Topos

IEKE MOERDIJK*

A theory is said to have the disjunction-property (DP) if whenever a disjunction $\phi \lor \psi$ is provable in the theory, either ϕ or ψ must be provable. As is well-known, many theories for intuitionistic arithmetic and analysis have the DP. The DP for intuitionistic type theory was first established by Friedman. More recently, a purely topos theoretic proof has been given by Freyd. An extensive discussion of both methods can be found in [4]. Although Freyd's construction is much more elegant, A. Ščedrov and P. Scott have shown that the two methods are essentially the same in [7].

A question that arises immediately is the following: If one adds new symbols and a particular set of axioms T to the logical axioms and rules, does the resulting higher-order theory still have the *DP*? Some instances of this question in which T consists of a single axiom have been considered in [5]. In this note, we will obtain a syntactic description of a class of theories that have the *DP* by investigating some of the logical properties of the Freyd cover, thus extending the results of [5].

The results will *not* cover many of the higher-order analogues of theories of intuitionistic arithmetic and analysis which are known to have the DP. One reason for this is that, from a more logical point of view, the Freyd cover lacks many nice properties. For an alternative type of cover that fills this gap, the reader is referred to [6].

In the first section of this paper, we will motivate the Freyd cover from a more logical perspective. There is probably nothing new in this, but it still is important to realize that what is really going on is a straightforward generalization of more traditional methods used in the model theory of first-order

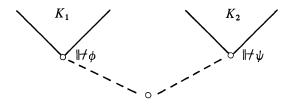
^{*}The contents of this paper and of [6] were first presented at the Brouwer conference, June 1981. I am indebted to Josje Lodder for helpful discussions, and to the referee for his careful comments.

IEKE MOERDIJK

intuitionistic logic. Thus, the above-mentioned result of Ščedrov and Scott should not come as a surprise. This perspective also opens the way to connections with, for example, (higher-order analogues of) the Aczel-slash, and the Kleene-slash (see [8]).

In the second section, we examine preservation-properties of the Freyd cover, and prove the main result.

1 Motivating the Freyd cover Everybody knows how to prove the disjunction property for intuitionistic propositional logic (or Heyting's Arithmetic, etc.): If ϕ and ψ are two nonprovable formulas, just take two Kripke models $K_1 \not\vDash \phi$ and $K_2 \not\vDash \psi$, and add a new bottom node (this operator on Kripke models is called the Smorynski operator).



Then the bottom node cannot force $\phi \lor \psi$, so $\phi \lor \psi$ is not provable either (for details, see [8]).

Looking at this topologically, what we did was take two sheaf-models over spaces X_1 and X_2 , take their topological sum $X_1 + X_2$, and define a new space $X = (X_1 + X_2) \cup \{*\}$, where $* \notin X_1 + X_2$ is a closed point of X whose only neighbourhood is the whole space X.

But this is precisely the situation for applying the theorem of Artin glueing [2], which says that you can get Sh(X), the category of sheaves over X, by glueing along the global sections functor Γ ,

$$Sh(X_1 + X_2) \cong Sh(X_1) \times Sh(X_2) \xrightarrow{\Gamma} Sets \cong Sh(*).$$

This is easily generalized for topoi, using the elementary form of Artin glueing ([3], Section 4.2): Given two topoi \mathscr{E}_1 and \mathscr{E}_2 , let $\mathscr{E}_1 \times \mathscr{E}_2 \xrightarrow{\Gamma} Sets$ be the global sections-functor $(1, \neg)$, and glue along Γ , i.e., make the comma category (*Sets* $\downarrow \Gamma$). This topos (*Sets* $\downarrow \Gamma$) is the Freyd cover of $\mathscr{E}_1 \times \mathscr{E}_2$, and will be denoted by $\mathscr{E}_1 * \mathscr{E}_2$. Objects of this topos are triples (*X*, *E*, ϕ), where *X* is a set, $E = (E_1, E_2)$ is an object of $\mathscr{E}_1 \times \mathscr{E}_2$, and ϕ is a function $X \to \Gamma E$. Recall (see [9]) that we have a geometric morphism

$$\mathcal{E}_1 \times \mathcal{E}_2 \to \mathcal{E}_1 \ast \mathcal{E}_2$$

with inverse image the forgetful functor $\mathcal{C}_1 * \mathcal{C}_2 \xrightarrow{U} \mathcal{C}_1 \times \mathcal{C}_2$, $U(X, E, \phi) = E$, and with direct image the cofree coalgebra functor $\mathcal{C}_1 \times \mathcal{C}_2 \xrightarrow{G} \mathcal{C}_1 * \mathcal{C}_2$, $GE = (\Gamma E, E, id_{\Gamma E})$. This geometric morphism is an open inclusion, so U is logical, and G preserves exponents.

We now want to reason as in the case of the Smorynski operator, roughly as follows: given two nonprovable formulas ϕ and ψ of intuitionistic higherorder logic, find topoi \mathcal{E}_1 and \mathcal{E}_2 with interpretations \mathcal{I}_1 in \mathcal{E}_1 and \mathcal{I}_2 in \mathcal{E}_2 such that $\mathscr{O} \not\models_{l_1} \phi$ and $\mathscr{O}_2 \not\models_{l_2} \psi$. Then the product $\mathscr{L} = \mathscr{L}_1 \times \mathscr{L}_2$ is an interpretation in $\mathscr{O}_1 \times \mathscr{O}_2$ such that $\mathscr{O}_1 \times \mathscr{O}_2 \not\models_{\mathscr{L}} \phi$ and $\mathscr{O}_1 \times \mathscr{O}_2 \not\models_{\mathscr{L}} \psi$. We now want to transport this interpretation \mathscr{L} along G and obtain an interpretation $\overline{\mathscr{L}}$ in $\mathscr{O}_1 * \mathscr{O}_2$ with the property that $U \circ \overline{\mathscr{L}} = \mathscr{L}$. Since U is logical (and therefore preserves validity), $\mathscr{O}_1 * \mathscr{O}_2 \not\models_{\widetilde{\mathscr{L}}} \phi$ and $\mathscr{O}_1 * \mathscr{O}_2 \not\models_{\widetilde{\mathscr{L}}} \psi$. From a simple inspection of the subobject-classifier in the comma-topos $\mathscr{O}_1 * \mathscr{O}_2$ (the terminal object in $\mathscr{O}_1 * \mathscr{O}_2$ is indecomposable, see [5]) it then follows that $\mathscr{O}_1 * \mathscr{O}_2 \not\models_{\widetilde{\mathscr{L}}} \phi \lor \psi$. Below, we will discuss the problem of

(1) how to make $\overline{\mathcal{J}}$ out of \mathcal{J} ?

Often, one starts with a theory T and two nonprovable formulas $T \nvDash \phi$ and $T \nvDash \psi$, and finds \mathscr{E}_1 , \mathscr{A}_1 and \mathscr{E}_2 , \mathscr{A}_2 such that $\mathscr{E}_1 \models_1 T$ and $\mathscr{E}_2 \models_2 T$, $\mathscr{E}_2 \models_{\mathscr{A}_1} \phi$, $\mathscr{E}_1 \models_{\mathscr{A}_2} \psi$. To show that T has the DP, one then wants $\mathscr{E}_1 * \mathscr{E}_2$ to be a model of T under the interpretation $\overline{\mathscr{A}}$, too. So we want to know

(2) for which theories T does it hold that whenever (𝔅₁, 𝔄₁) and (𝔅₂, 𝔄₂) are models of T, so is (𝔅₁ * 𝔅₂, 𝔄)?

(1) and (2) will be dealt with in the next section.

But before we turn to this, let us be more explicit about *interpretations*. We take a version of higher-order logic of the kind described in [1], which is sound and complete for interpretations in topoi. The language has two ingredients: sorts and constants. We have a set of ground sorts $\{s_i | i \in I\}$, from which we can build up the set of sorts inductively: every groundsort is a sort, and if s_1, \ldots, s_n , t are sorts, $[s_1, \ldots, s_n]$ is a sort (the sort of n-place relations taking arguments of sorts s_1, \ldots, s_n , respectively), and $[s_1, \ldots, s_n \to t]$ is a sort (the sort of functions taking n arguments of sorts s_1, \ldots, s_n , respectively, to a value of sort t). We also have a set of constants $\{c_i | i \in J\}$, together with an assignment $c \mapsto \#(c)$ of a sort to each constant. An interpretation \mathcal{A} of the language in a topos \mathcal{E} assigns to each groundsort an object $\mathcal{A}(s)$ of \mathcal{E} ; \mathcal{A} is then extended to all sorts by setting

$$\mathcal{J}([s_1,\ldots,s_n]) = \Omega^{\mathcal{J}(s_1)\times\ldots\times\mathcal{J}(s_n)};$$

$$\mathcal{J}(s_1,\ldots,s_n \to t) = \mathcal{J}(t)^{\mathcal{J}(s_1)\times\ldots\times\mathcal{J}(s_n)}.$$

Further, \mathcal{J} assigns an arrow $\mathcal{J}(c)$: $1 \rightarrow \mathcal{J}(\#c)$ to each constant c. The interpretation of terms and formulas is then defined in the standard way (see, e.g., [1]).

Note that abstraction terms (terms of the form $\{\langle x_1, \ldots, x_n \rangle | \phi\}$) are eliminable in formulas. Therefore we will in the sequel assume that formulas do not contain abstraction terms.

Below, we will use the word *term* only in the following sense: variables and constants are terms, and if $\sigma_1, \ldots, \sigma_n$ are terms and f is a functional term of the appropriate sort, $f(\sigma_1, \ldots, \sigma_n)$ is a term. Thus, no quantifiers, connectives, or abstraction $(\{\cdot | \cdot\})$ can occur in terms. Note that every formula of the higher-order language is equivalent to one which is built up from atomic formulas of the form $R(\sigma_1, \ldots, \sigma_n)$ or $\sigma_1 = \sigma_2$, where $\sigma_1, \ldots, \sigma_n$ are terms in this sense and R is a relational term in this sense, by the usual clauses for the IEKE MOERDIJK

quantifiers and connectives. It is important to be explicit about this, as will appear in the sequel.

2 Preservation properties of the Freyd cover We consider a slightly more general situation: let \mathcal{E} and \mathcal{F} be topoi, and let $\mathcal{E} \xrightarrow{d} \mathcal{F}$ be a left-exact functor. We then have a geometric morphism $\mathcal{E} \rightarrow (\mathcal{F} \downarrow d)$ given by the forgetful functor U: $(\mathcal{F} \downarrow d) \rightarrow \mathcal{E}$ and the cofree coalgebra functor G: $\mathcal{E} \rightarrow (\mathcal{F} \downarrow d)$; U is logical, G preserves exponents, and $U \circ G = id_{\mathcal{E}}$. Suppose that we have an interpretation \mathcal{A} of the logical language in \mathcal{E} . We want to construct an interpretation $\overline{\mathcal{A}}$ in $(\mathcal{F} \downarrow d)$ (cf. (1) above).

First note that $G\Omega_{\mathcal{E}}$ is a retract of $\Omega_{(\mathcal{F}\downarrow d)}$: the classifying morphism $G\Omega_{\mathcal{E}} \xrightarrow{\rho} \Omega_{(\mathcal{F}\downarrow d)}$ of *Gtrue*: $1 \simeq G1 \rightarrow G\Omega_{\mathcal{E}}$ is splitmono, with splitting $\Omega_{(\mathcal{F}\downarrow d)} \xrightarrow{\lambda} G\Omega_{\mathcal{E}}$ (the transpose of $U\Omega_{\mathcal{F}\downarrow d} \xrightarrow{\simeq} \Omega_{\mathcal{E}}$).

For a groundsort s we define an object $\overline{\mathcal{J}}(s)$ of $(\mathcal{F} \downarrow d)$ by

$$\overline{\mathcal{J}}(s) = G\mathcal{J}(s)$$

 $\overline{\mathcal{J}}$ is then uniquely (up to isomorphism) extended to all sorts. We then construct by induction on the sort s morphisms k_s and e_s

$$G_{\mathcal{A}}(s) \xrightarrow{k_{s}} \overline{\mathcal{A}}(s) \xrightarrow{e_{s}} G_{\mathcal{A}}(s)$$

with $e_s \circ k_s = 1_{G \& (s)}$, and $U(k_s) = U(e_s) = 1_{\& (s)}$. If s is a groundsort, then $k_s = e_s = 1_{G \& (s)}$. If $s = [t_1, \ldots, t_n]$, and we have defined k_{t_i} and $e_{t_i}(i = 1, \ldots, n)$, then k_s and e_s are defined as the compositions

$$\rho^{\overline{\mathcal{J}}(t_1) \times \ldots \times \overline{\mathcal{J}}(t_n)} \circ G\Omega^{e_{t_1} \times \ldots \times e_{t_n}}_{\mathcal{A}}$$

and

$$\lambda^{G \mathscr{l}(t_1) \times \ldots \times G \mathscr{l}(t_n)} \circ \Omega^{k_{t_1} \times \ldots \times k_{t_n}}_{(\mathscr{F} \downarrow d)}.$$

If $s = [t_1, \ldots, t_n \rightarrow r]$, and we have defined k_{t_i} , $e_{t_i}(i = 1, \ldots, n)$, k_r , e_r , then k_s and e_s are the following two compositions

$$\mathscr{A}(r)^{e_{t_1} \times \ldots \times e_{t_n}} \circ k_r^{G\mathscr{A}(t_1) \times \ldots \times G\mathscr{A}(t_n)}$$

and

$$G\mathcal{A}(t)^{k_{t_1}\times\ldots\times k_{t_n}} \circ e_r^{\overline{\mathcal{A}}(t_1)\times\ldots\times\overline{\mathcal{A}}(t_n)}$$

 $\overline{\mathcal{J}}$ is then defined for constants as follows: if #c = s, then

$$\overline{\mathcal{J}}(c) = 1 \simeq G1 \xrightarrow{G\mathcal{J}(c)} G\mathcal{J}(s) \xrightarrow{k_s} \overline{\mathcal{J}}(s).$$

This completes the definition of $\overline{\mathcal{A}}$. Note that $U \circ \overline{\mathcal{A}} = \mathcal{A}$. Since U is logical, we immediately have

2.1 Lemma Let ϕ be an arbitrary formula, with free variables among x_1, \ldots, x_n . Then

$$U\left(\llbracket\phi\rrbracket_{\mathscr{A}}^{-} \longrightarrow \prod_{i=1}^{n} \mathscr{A}(\#x_{i})\right) = \left(\llbracket\phi\rrbracket_{\mathscr{A}}^{-} \longrightarrow \prod_{i=1}^{n} \mathscr{A}(\#x_{i})\right),$$

and similarly for terms.

For an atomic formula $R(\tau_1, \ldots, \tau_n)$, where R is a relational constant, and τ_1, \ldots, τ_n are terms (recall the convention at the end of Section 1) with free variables among x_1, \ldots, x_k , and $\mathscr{L}(\#x_i) = A_i$, $[[R(\tau_1, \ldots, \tau_n)]]_{\mathscr{L}}$ defines a subobject of $A_1 \times \ldots \times A_k$ in \mathscr{E} , or a morphism $A_1 \times \ldots \times A_k \rightarrow \Omega$, or $1 \rightarrow \Omega^{A_1 \times \ldots \times A_k}$. Now what is $[[R(\tau_1, \ldots, \tau_n)]]_{\widetilde{\mathscr{L}}}$ in $(\mathscr{F} \downarrow d)$? We will show that the association

(1)
$$\llbracket R(\tau_1, \ldots, \tau_n) \rrbracket_{\mathscr{A}} \mapsto \llbracket R(\tau_1, \ldots, \tau_n) \rrbracket_{\widetilde{\mathscr{A}}}$$

corresponds to the following operation on subobjects

(2)
$$\Phi: \mathscr{E}(A, \Omega) \to (\mathscr{F} \downarrow d)(A, \Omega)$$

(here $A = \mathcal{J}(s_1) \times \ldots \times \mathcal{J}(s_k)$, $\overline{A} = \overline{\mathcal{J}}(s_1) \times \ldots \times \overline{\mathcal{J}}(s_k)$, for suitable s_1, \ldots, s_k): Φ associates with $1 \xrightarrow{f} \Omega^A$ the composition

$$1 \simeq G1 \xrightarrow{Gf} (\Omega^A) \xrightarrow{k} \Omega^{\overline{A}}$$

where k is the splitmono for $[s_1, \ldots, s_n]$. (In the sequel, we will usually omit the indices on the morphisms k_s and e_s .)

For the proof that (1) is the same as (2), first observe that for any term σ with free variables among x_1, \ldots, x_n , $(\mathcal{A}(\#x_i) = A, \mathcal{A}(\#x_i) = \overline{A}, k_{A_i} = k_{\#x_i})$ the following diagram commutes (the proof is an easy induction on σ):

$$\overline{A}_{1} \times \ldots \times \overline{A} \xrightarrow{\llbracket \sigma \rrbracket_{\overline{d}}} \overline{B}$$

$$\downarrow^{k_{A_{1}} \times \ldots \times k_{A_{n}}} \downarrow^{k_{B}}$$

$$GA_{1} \times \ldots \times GA_{n} \xrightarrow{\llbracket \sigma \rrbracket_{\overline{d}}} GB$$

Now suppose for ease of notation that *R* is a one-place relational constant, say with $\mathcal{A}(R): 1 \to \Omega^{B}_{\mathcal{C}}$, and write $\mathcal{A}(\sigma): 1 \to B^{A}$ for the transpose of $[\![\sigma]\!]_{\mathcal{A}}: A \to B$. Then the claim that

$$\Phi(\llbracket R(\sigma) \rrbracket_{\mathcal{A}}) = \llbracket R(\sigma) \rrbracket_{\overline{\mathcal{A}}}$$

follows easily, if we can show that the following compositions (i) and (ii) are identical:

(i) $\overline{A} \xrightarrow{1 \times G \cdot \ell(\sigma)} \overline{A} \times G(B^A) \xrightarrow{1 \times k} \overline{A} \times \overline{B}^{\overline{A}} \xrightarrow{ev} \overline{B} \xrightarrow{1 \times G \cdot \ell(R)} \overline{B} \times G(\Omega^B_{\mathcal{C}}) \xrightarrow{1 \times k} B \times \Omega^B_{\mathcal{F} \downarrow d} \xrightarrow{ev} \Omega_{\mathcal{F} \downarrow d} \xrightarrow{ev} \Omega_{\mathcal{F} \downarrow d}$

(ii)
$$\overline{A} \xrightarrow{1 \times G \cdot \mathcal{L}(R)} \overline{A} \times G(\Omega^B) \xrightarrow{1 \times G(\Omega^{\|\sigma\|} \cdot \mathcal{L})} \overline{A} \times G(\Omega^A) \xrightarrow{1 \times k} \overline{A} \times \Omega^{\overline{A}} \xrightarrow{e\nu} \Omega.$$

But from the definition of k it follows that (1) is identical to

$$\overline{A} \xrightarrow{1 \times G \cdot \mathcal{J}(\sigma)} \overline{A} \times G(B^A) \xrightarrow{e \times 1} GA \times G(B^A) \xrightarrow{Gev} GB \xrightarrow{k} \overline{B} \xrightarrow{1 \times G \cdot \mathcal{J}(R)} \overline{B} \times G(\Omega^B)$$

$$\xrightarrow{e \times 1} GB \times G(\Omega^B) \xrightarrow{Gev} G\Omega \xrightarrow{\rho} \Omega$$

and since $e \circ k = id$, this is identical to

IEKE MOERDIJK

$$\overline{A} \xrightarrow{e} GA \xrightarrow{1 \times G \cdot \mathscr{I}(\sigma)} GA \times G(B^A) \xrightarrow{Gev} GB \xrightarrow{1 \times G \cdot \mathscr{I}(R)} GB \times G(\Omega^B) \xrightarrow{Gev} G\Omega \xrightarrow{\rho} \Omega.$$

Similarly, one shows that (2) is identical to

$$\overline{A} \xrightarrow{1 \times G \cdot \ell(R)} \overline{A} \times G(\Omega^B) \xrightarrow{e \times 1} GA \times G(\Omega^B) \xrightarrow{G[[\sigma]] \cdot \ell \times 1} GB \times G(\Omega^B) \xrightarrow{Gev} G\Omega \xrightarrow{\rho} \Omega.$$

And clearly, the latter two compositions are identical, since $\mathscr{I}(\sigma)$ is the transpose of $[\![\sigma]\!]_{\mathscr{I}}$. As is easily seen, this proves the correspondence of (1) and (2) not only for R a single constant, but also more generally for R a term without variables (i.e., R built up from constants by functional application only).

Let us now turn to the properties of the operation Φ . First a notational convention: a subobject of A is either represented by a mono $B \rightarrow A$, or its classifying morphism $A \xrightarrow{f} \Omega$, or its transpose $1 \xrightarrow{\hat{f}} \Omega^A$. In all these cases we will write $\Phi(B)$, $\Phi(f)$, $\Phi(\hat{f})$ for the corresponding representation of the subobject given by the original definition of Φ .

2.2 Lemma Φ preserves conjunction (and hence Φ is orderpreserving).

By " Φ preserves conjunction" we mean that if $f, g: A \to \Omega$ in \mathcal{E} , then $\Phi(\wedge_{\mathcal{E}} \circ (f, g)) = \wedge_{(\mathcal{F} \downarrow d)} \circ (\Phi(f), \Phi(g))$; similarly for the other cases to be considered below.

Proof: We have to show that

$$G(\Omega^A \times \Omega^A) \xrightarrow{G(\Lambda^A)} G(\Omega^A) \xrightarrow{k} \Omega^{\overline{A}} = G(\Omega^A \times \Omega^A) \xrightarrow{k \times k} \Omega^{\overline{A}} \times \Omega^{\overline{A}} \xrightarrow{\Lambda^A} \Omega^{\overline{A}}.$$

Passing to the transposed maps, the left-hand side becomes

$$\overline{A} \times G(\Omega^{A} \times \Omega^{A}) \xrightarrow{1 \times G(\Lambda^{A})} \overline{A} \times G(\Omega^{A}) \xrightarrow{e \times 1} GA \times G(\Omega^{A}) \xrightarrow{Gev} G\Omega \xrightarrow{\rho} \Omega$$

$$= \overline{A} \times G(\Omega^{A} \times \Omega^{A}) \xrightarrow{(e,e) \times 1} GA \times GA \times G\Omega^{A}$$

$$\times G\Omega^{A} \xrightarrow{(Gev \circ (\pi_{1},\pi_{3}), Gev \circ (\pi_{2},\pi_{4}))} G\Omega \times G\Omega \xrightarrow{G_{\Lambda}} G\Omega \xrightarrow{\rho} \Omega.$$

Similarly, the right-hand side becomes

$$\overline{A} \times G(\Omega^{A} \times \Omega^{A}) \xrightarrow{(e,e)\times 1} GA \times GA \times G\Omega^{A} \times G\Omega^{A} \xrightarrow{Gev \times Gev} G\Omega$$
$$\times G\Omega \xrightarrow{\rho \times \rho} \Omega \times \Omega \xrightarrow{\wedge} \Omega.$$

Therefore, it suffices to show that

$$\begin{array}{c} G\Omega \times \Omega \xrightarrow{\rho \times \rho} \Omega \times \Omega \\ \downarrow G \wedge_{\mathcal{C}} & \downarrow \wedge_{\mathcal{F} \downarrow d} \\ G\Omega \xrightarrow{\rho} & \Omega \end{array}$$

commutes. But this follows easily from the fact that ρ classifies $G1 \xrightarrow{Gtrue} G\Omega$.

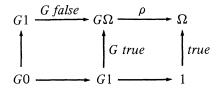
Note that from the fact that $\Phi: Sub_{\mathcal{C}}(A) \to Sub_{\mathcal{F}+d}(\overline{A})$ is orderpreserving, it immediately follows that for U and V $\in Sub_{\mathcal{C}}(A)$,

$$\Phi(U) \lor \Phi(V) \leq \Phi(U \lor V) \Phi(U \Rightarrow V) \qquad \leq \Phi(U) \Rightarrow \Phi(V).$$

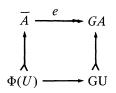
522

2.3 Lemma Φ preserves T_A , the largest subobject of A. Also, Φ preserves I_A , the smallest subobject, provided d preserves the initial object 0.

Proof: Following the same method as in the proof of Lemma 2.2, we see that it suffices to show that $G1 \xrightarrow{Girue} G\Omega \xrightarrow{\rho} \Omega = 1 \xrightarrow{true} \Omega$ (which is clear from the definition of ρ) and that $G1 \xrightarrow{Gfalse} G\Omega \xrightarrow{\rho} \Omega = 1 \xrightarrow{false} \Omega$. This latter identity only holds if G preserves the initial, or, equivalently, if d does. For in that case $\rho \circ Gfalse$ classifies the subobject $G0 \cong 0 \rightarrow 1 \cong G1$, since both squares of the diagram below are pullback



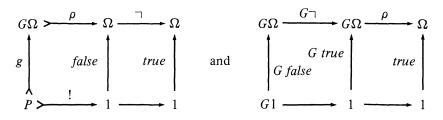
2.4 Remark: The properties of Φ that have been stated above also follow easily from the following alternative description of Φ : If $U \rightarrow A$ is a subobject of A, then $\Phi(U) \cong e^{-1}(GU)$; that is, the following diagram is pullback



2.5 Lemma Φ preserves negation (provided d preserves 0).

Proof: From the fact that $\Phi(U \Rightarrow V) \leq \Phi(U) \Rightarrow \Phi(V)$, and $\Phi(\downarrow_A) = \downarrow_{\overline{A}}$, it follows that $\Phi(\neg U) \leq \neg \Phi(U)$.

As for the converse, it again suffices (as in the proof of Lemma 2.2) to show that the subobject classified by $G\Omega \xrightarrow{\rho} \Omega \xrightarrow{\neg} \Omega$ is contained in the subobject classified by $G\Omega \xrightarrow{G \rightarrow} G\Omega \xrightarrow{\rho} \Omega$. So make two pullbacks:



Now $P \leq G1$ in $Sub(G\Omega)$, for $\rho \circ Gfalse \circ ! = false \circ ! = \rho \circ g$, so $G \perp \circ ! = g$, since ρ is mono.

We now turn to the quantificational structure. Let's first consider universal quantification. Recall that $\Omega^B \xrightarrow{\forall B} \Omega$ is the classifier of the exponentially transposed of $B \to 1 \xrightarrow{true} \Omega$. Universal quantification $Sub_{\mathcal{C}}(A \times B) \to Sub_{\mathcal{C}}(A)$

is then defined by composing an arrow $1 \to \Omega^{A \times B}$ with $(\forall_B)^A \colon \Omega^{A \times B} \cong (\Omega^B)^A \to \Omega^A$.

2.6 Lemma Φ preserves universal quantification; that is, for a subobject $U \rightarrow A \times B$ in E, $\Phi(\forall_B(U)) \cong \forall_{\overline{B}}(\Phi(U))$.

Proof: It again suffices to show that

(i)
$$G(\Omega^{A \times B}) \xrightarrow{G((\forall B)^{A})} G(\Omega^{A}) \xrightarrow{k} \Omega^{\overline{A}} = G(\Omega^{A \times B}) \xrightarrow{k} \Omega^{\overline{A} \times \overline{B}} \xrightarrow{(\forall \overline{B})^{A}} \Omega^{\overline{A}}.$$

It is easy to see that this would follow from

(ii)
$$G(\Omega^B) \xrightarrow{G(\forall B)} G\Omega \xrightarrow{\rho} \Omega = G(\Omega^B) \xrightarrow{k} \Omega^{\overline{B}} \xrightarrow{\forall \overline{B}} \Omega.$$

Since the left-hand side in (ii) classifies $G(\lceil true_B \rceil)$,

$$G(\Omega^{B}) \xrightarrow{G(\forall_{B})} G\Omega \xrightarrow{\rho} \Omega$$

$$\downarrow G(\neg true_{B} \neg) \qquad \uparrow G true \qquad \uparrow true$$

$$G1 \xrightarrow{} G1 \xrightarrow{} 1$$

it suffices to show that the left-hand square of the diagram below is pullback

$$G(\Omega^{B}) \xrightarrow{k} \Omega^{\overline{B}} \xrightarrow{\forall \overline{B}} \Omega$$

$$\downarrow G([true_{\overline{B}}]) \qquad \downarrow [true_{\overline{B}}] \qquad \downarrow$$

$$G1 \xrightarrow{} 1 \xrightarrow{} 1$$

But since k is mono, we only have to show that it commutes which is easy.

As for the existential quantifier, recall that $\Omega^B \xrightarrow{\exists B} \Omega$ is the classifier of the image of $\in_B \xrightarrow{e_B} \Omega^B \times B \xrightarrow{\pi_1} \Omega^B$. (We will write (\exists_B) for this image.)

2.7 Lemma For a subobject $U \in Sub_{\mathcal{C}}(A \times \overline{B}), \exists_{\overline{B}} \Phi(U) \leq \Phi(\exists_{B}(U)).$

Proof: As before, we have to show that the subobject of $G(\Omega^B)$ classified by $G(\Omega^B) \xrightarrow{k} \Omega^{\overline{B}} \xrightarrow{\exists \overline{B}} \Omega$ is contained in that classified by $G(\Omega^B) \xrightarrow{G(\exists_B)} G\Omega \xrightarrow{\rho} \Omega$.

Now $\rho \circ G \exists_B$ classifies the image of $G \in_B \to GB \times G\Omega^B \xrightarrow{\pi} G\Omega^B$. Let *P* be the subobject of $G(\Omega^B)$ classified by $\exists_{\overline{B}}$. Pullbacks preserve epi-mono-factorizations, so *P* is the image of the pullback of $\in_{\overline{B}} \to \Omega^{\overline{B}} \times \overline{B} \xrightarrow{\pi} \Omega^{\overline{B}}$ along *k*, or, the image of $\pi \circ q$ in the diagram below

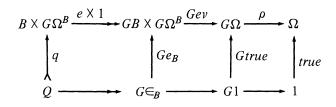
$$Q \xrightarrow{q} \overline{B} \times G\Omega^{B} \xrightarrow{\pi} G\Omega^{B}$$

$$\downarrow pb. \qquad \downarrow 1 \times k \qquad \downarrow k$$

$$\in_{\overline{B}} \xrightarrow{\overline{B}} \times \Omega^{\overline{B}} \xrightarrow{\pi} \Omega^{\overline{B}}$$

524

q is the pullback of 1 $\xrightarrow{true} \Omega$ along $ev \circ (1 \times k) = \rho \circ Gev \circ (e \times 1)$



We have to show that $P \leq G(\exists_B)$, or, that $\pi \circ q$ factors through $G \exists_B$, or, that $G \exists_B \circ \pi \circ q = Gtrue$. But $\pi \circ q = \pi \circ (e \times 1) \circ q = G\pi \circ Ge_B \circ s$, and, by definition, $\exists_B \circ \pi \circ e_B = true$, so $G \exists_B \circ G\pi \circ Ge_B \circ s = Gtrue$.

2.8 Lemma Let $\Delta_A \rightarrow A \times A$ be the diagonal. Then

- (i) $\Phi(\Delta_A) \ge \Delta_{\overline{A}}$
- (ii) if e_A is iso, $\Phi(\Delta_A) = \Delta_{\overline{A}}$.

Proof: Immediate from Remark 2.4.

We now return to question (2) of Section 1. Let us call an atomic formula *simple* if it is \top or \bot , or it is either of the form $\sigma_1 = \sigma_2$, where σ_1 and σ_2 are terms (in the sense explained at the end of Section 1 !), or of the form $R(\sigma_1, \ldots, \sigma_n)$, where $\sigma_1, \ldots, \sigma_n$ are terms, and R is a relational term without (free) variables occurring in it. Furthermore, we call an occurrence of = in a formula *basic* if it occurs in a subformula $\sigma_1 = \sigma_2$, where σ_1 and σ_2 are terms whose sorts are nonrelational, that is, have been built up from groundsorts without using the rule to make $[s_1, \ldots, s_n]$ from s_1, \ldots, s_n .

2.9 Theorem Let T be a theory which has a set of axioms of the form $\forall \bar{x}(\phi(\bar{x}) \rightarrow \psi(\bar{x}))$, where the atomic parts of ϕ and ψ are simple, and

- ∃, ∀, and nonbasic = occur only positively in φ, and only negatively in ψ
- \rightarrow occurs only negatively in ϕ , and only positively in ψ .

Then

- (i) if $(\mathcal{E}, \mathcal{I})$ is a model of T and $\mathcal{E} \xrightarrow{d} \mathcal{F}$ is a left-exact functor which preserves the initial object, then $((\mathcal{F} \downarrow d), \overline{\mathcal{I}})$ is a model of T,
- (ii) *T* has the disjunction-property.

Proof: (ii) follows from (i), and (i) follows easily from the properties of Φ that have been collected in the preceding lemmas.

We conclude with some remarks. First of all, it should be pointed out that the same techniques can be used to prove a result similar to Theorem 2.9 for theories having the existence property. Secondly, observe that the axioms of Higher-order Heyting's Arithmetic (*HHA*) are not preserved. In other words, if the language has a basic sort N for the natural numbers, and the theory T includes *HHA* $\mathcal{A}(N)$ must be the natural number object of \mathcal{E} for $(\mathcal{E}, \mathcal{A})$ to be a model of T, but $\overline{\mathcal{A}}(N) = G\mathcal{A}(N)$ is, in general, not the natural number object of $(\mathcal{F} \downarrow d)$. There are several ways to improve on this, one of them being contained in [6], so we will not go into this here.

Finally, a word about occurrences of the identity, which also illustrates the conditions on atomic formulas. Suppose, for example, that we have a constant f of a functional sort $[[s] \rightarrow [s]]$ that is interpreted in $(\mathcal{O}, \mathcal{A})$ by $\mathcal{A}(f): \Omega^A \rightarrow \Omega^A$, and that $\mathcal{A}(f)$ equals the identity. Then $\mathcal{O} \models \forall U: \Omega^A \cdot f(U) = U$, and the identity-symbol occurring in $\forall U: \Omega^A \cdot f(U) = U$ is nonbasic, so its preservation is not covered by the theorem. This is how it should be, since $\overline{\mathcal{A}}(f)$ is $\Omega^{\overline{A}} \stackrel{e}{\rightarrow} G(\Omega^A) \stackrel{k}{\rightarrow} \Omega^{\overline{A}}$ in this case, which is not the identity-arrow. Rewriting $\forall U: \Omega^A \cdot f(U) = U$ as $\forall U: \Omega^A \forall x: A(f(U)(x) \leftrightarrow U(x))$ does not help, since now the atomic part f(U)(x) is not simple.

REFERENCES

- Boileau, A. and A. Joyal, "La logique des topos," The Journal of Symbolic Logic, vol. 46 (1981), pp. 6-16.
- [2] Grothendieck, A., Théorie des Topos et Cohomologie Étale des Schémas, Springer, New York, 1972. (See esp. IV, Section 9.5.)
- [3] Johnstone, P., Topos Theory, Academic Press, New York, 1977.
- [4] Lambek, J. and P. J. Scott, "Intuitionistic type theory and the free topos," Journal of Pure and Applied Algebra, vol. 19 (1980), pp. 215-257.
- [5] Lambek, J. and P. J. Scott, "Independence of premisses and the free topos," pp. 109-227 in Constructive Mathematics, ed., F. Richman, Springer-Verlag, New York, 1980.
- [6] Moerdijk, I., "Glueing topoi and higher order disjunction and existence," to appear in Proceedings of the Brouwer Centenary Conference, eds., D. van Dalen and A. Troelstra, North-Holland, Amsterdam, 1982.
- [7] Ščedrov, A. and P. J. Scott, "Comparing the proofs of the disjunction and the existence property," to appear in *Proceedings of the Brouwer Centenary Conference*, eds., D. van Dalen and A. Troelstra, North-Holland, Amsterdam, 1982.
- [8] Smorynski, C., "Applications of Kripke models," pp. 324-391 in Metamathematical Investigation of Intuitionistic Arithmetic and Analysis, ed., A. Troelstra, Springer, New York, 1973.
- [9] Wraith, G., "Artin glueing," Journal of Pure and Applied Algebra, vol. 4 (1974), pp. 345-348.

Instituut voor Logika and Grondslagenonderzoek Universiteit van Amsterdam Roetersstraat 15 1018 WB Amsterdam The Netherlands