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On the Freyd Cover of α Topos

IEKE MOERDIJK*

A theory is said to have the disjunction-property (DP) if whenever a
disjunction φ v φ is provable in the theory, either φ or φ must be provable. As
is well-known, many theories for intuitionistic arithmetic and analysis have the
DP. The DP for intuitionistic type theory was first established by Friedman.
More recently, a purely topos theoretic proof has been given by Freyd. An
extensive discussion of both methods can be found in [4]. Although Freyd's
construction is much more elegant, A. δcedrov and P. Scott have shown that
the two methods are essentially the same in [7].

A question that arises immediately is the following: If one adds new
symbols and a particular set of axioms T to the logical axioms and rules, does
the resulting higher-order theory still have the DPΊ Some instances of this
question in which T consists of a single axiom have been considered in [5]. In
this note, we will obtain a syntactic description of a class of theories that have
the DP by investigating some of the logical properties of the Freyd cover, thus
extending the results of [5].

The results will not cover many of the higher-order analogues of theories
of intuitionistic arithmetic and analysis which are known to have the DP. One
reason for this is that, from a more logical point of view, the Freyd cover lacks
many nice properties. For an alternative type of cover that fills this gap, the
reader is referred to [6].

In the first section of this paper, we will motivate the Freyd cover from a
more logical perspective. There is probably nothing new in this, but it still is
important to realize that what is really going on is a straightforward generaliza-
tion of more traditional methods used in the model theory of first-order

*The contents of this paper and of [6] were first presented at the Brouwer conference,
June 1981. I am indebted to Josje Lodder for helpful discussions, and to the referee for his
careful comments.
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intuitionistic logic. Thus, the above-mentioned result of Scedrov and Scott
should not come as a surprise. This perspective also opens the way to connec-
tions with, for example, (higher-order analogues of) the Aczel-slash, and the
Kleene-slash (see [8]).

In the second section, we examine preservation-properties of the Freyd
cover, and prove the main result.

1 Motivating the Freyd cover Everybody knows how to prove the disjunc-
tion property for intuitionistic propositional logic (or Heyting's Arithmetic,
etc.): If φ and φ are two nonprovable formulas, just take two Kripke models
Kx # φ and K2 # φ, and add a new bottom node (this operator on Kripke
models is called the Smorynski operator).

\/UΦ \4fφ

Then the bottom node cannot force φ v φ, so φ v φ is not provable either (for
details, see [8]).

Looking at this topologically, what we did was take two sheaf-models over
spaces Xx and X2) take their topological sum Xx + X2, and define a new space
X = {Xγ + X2) U ί*i, where * i Xx + X2 is a closed point of X whose only
neighbourhood is the whole space X.

But this is precisely the situation for applying the theorem of Artin
glueing [2], which says that you can get Sh(X), the category of sheaves over X,
by glueing along the global sections functor Γ,

Sh(Xί + X2) = Sh(Xx) X Sh(X2) ^ Sets = Sh(*).

This is easily generalized for topoi, using the elementary form of Artin glueing
([3], Section 4.2): Given two topoi &x and # 2 , let &γ X &2 ^ S e t s be the global
sections-functor (1,-), and glue along Γ, i.e., make the comma category
(Sets 4- Γ). This topos (Sets I Γ) is the Freyd cover of &x X d>2, and will be
denoted by &γ * &2 Objects of this topos are triples (X, E, φ), where X is a set,
E = (£Ί, E2) is an object of &x X &2, and 0 is a function X -> ΓE. Recall
(see [9]) that we have a geometric morphism

with inverse image the forgetful functor &γ * &2 -+ &x X έ>2, U(X, E, φ) = £",

and with direct image the cofree coalgebra functor &x X <5>2 "^ ^ i * ^2? ^ ^ =

(Γ£", £, zdΓ£). This geometric morphism is an open inclusion, so U is logical,

and G preserves exponents.
We now want to reason as in the case of the Smorynski operator, roughly

as follows: given two nonprovable formulas φ and φ of intuitionistic higher-
order logic, find topoi ά>λ and ά>2 with interpretations Λx in &γ and J 2 i*1 &i
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such that & ^ φ and &2 ^ Φ- Then the product J. = <lλ X Jt2 is an interpreta-

tion in &x X &2 such that &XX &2\Φ φ and £-j X &2 \Φ ψ. We now want to
CΛ cX

transport this interpretation J. along G and obtain an interpretation Λ in
£ Ί * &2 with the property that U° J. = Jί. Since C/ is logical (and therefore
preserves validity), &λ * <% ^ Φ a n d #1 * #2 ̂  Ψ From a simple inspection of

ί> 0

the subobject-classifier in the comma-topos &x * &2 (the terminal object in
&ι * d>2 is indecomposable, see [5]) it then follows that &x * &2 \Φ_ φ v ψ.
Below, we will discuss the problem of ^
(1) how to make 2 out of J ?

Often, one starts with a theory Γ and two nonprovable formulas T \ί φ
and T r/ ψ, and finds <£>l5 J j and d>2, J 2 such that ^ 1= Γ and &2 1= Γ,

&2 \=£ φ, &! ΪΦ1 ψ. To show that Γ has the Z)^, one then wants &x * <f>2 to be a

model of Γ under the interpretation J , too. So we want to know

(2) for which theories T does it_hold that whenever (&u JLX) and (d>2, ̂ 2) a r e

models of Γ, so is (&x * (f>2, J )?

(1) and (2) will be dealt with in the next section.
But before we turn to this, let us be more explicit about interpretations.

We take a version of higher-order logic of the kind described in [1], which is
sound and complete for interpretations in topoi. The language has two ingre-
dients: sorts and constants. We have a set of ground sorts \s(\i e I\, from which
we can build up the set of sorts inductively: every groundsort is a sort, and if
Si, . . ., sn, t are sorts, [sl9 . . ., sn] is a sort (the sort of ^2-place relations taking
arguments of sorts s l 5 . . ., sn, respectively), and [su . . ., sn -* t] is a sort (the
sort of functions taking n arguments of sorts sί9 . . ., sn, respectively, to a value
of sort t). We also have a set of constants lc ; 1/ e / ! , together with an assignment
c K # (c) of a sort to each constant. An interpretation J of the language in a
topos & assigns to each groundsort an object J.(s) of &;Jί is then extended to
all sorts by setting

J([su...,sn)) = Ω ^ i > x - x ^ > ;

cί(51,...,5Λ->ί)=J(ί)J(sl)X X ^ ) .

Further, J. assigns an arrow JL(c)\ 1 -*<l(#c) to each constant c. The interpreta-
tion of terms and formulas is then defined in the standard way (see, e.g., [1]).

Note that abstraction terms (terms of the form Uxu . . ., xn)\φ\) are
eliminable in formulas. Therefore we will in the sequel assume that formulas do
not contain abstraction terms.

Below, we will use the word term only in the following sense: variables
and constants are terms, and if σu . . ., on are terms and / is a functional term
of the appropriate sort,/(σ l 5 . . ., σ )̂ is a term. Thus, no quantifiers, connectives,
or abstraction ({ | }) can occur in terms. Note that every formula of the
higher-order language is equivalent to one which is built up from atomic
formulas of the form R(σ1, . . ., σn) or ox = σ2, where σ l 5 . . ., σn are terms in
this sense and R is a relational term in this sense, by the usual clauses for the
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quantifiers and connectives. It is important to be explicit about this, as will
appear in the sequel.

2 Preservation properties of the Freyd cover We consider a slightly more
general situation: let & and <ί be topoi, and let & -> <Γ be a left-exact functor.
We then have a geometric morphism & -> (^ i d) given by the forgetful
functor U: ( ^ φ d) -> # and the cofree coalgebra functor G: & -* ( ^ φ d);
£/ is logical, G preserves exponents, and £/° G = id&. Suppose that we have an
interpretation J of the logical language in &. We want to construct an inter-
pretation J. in (rf I d) (cf. (1) above).

First note that GΩ# is a retract of Ω ( / ^ ) : the classifying morphism
GΩ# >̂ Ω(^r tf) of Gtrue: 1 ̂  Gl ->• GΩ# is splitmono, with splitting Ω(j-±d) "*
GΩ# (the transpose of ί/Ω/^^> Ω#). _

For a groundsort 5 we define an object J(s) of (<ί \ d) by

3(5) = GJ(5)

J is then uniquely (up to isomorphism) extended to all sorts. We then construct
by induction on the sort s morphisms ks and es

GA(s) ^ 2(s) ^ GJ(s)

with es°ks= IGJ(S)> a n ( i U(ks) = U(es) = Ij^y If ^ is a groundsort, then ks =

es = 1GJ(S) If 5 = [ ί l 5 . . ., tn], and we have defined kt. and ^ f.(z = 1, . . . , « ) ,

then ks and e s are defined as the compositions

and

GΛ{tι)X...XGA{tn) kt X...X/cr

If s = [tXi . . ., tn -> r ] , and we have defined fcίz , ^^.(f = 1, . . ., n), kr, er, then ks

and ^ are the following two compositions

J(r)etiX'"Xet" ° £Gj^i)X x G ^ )

and

GJ(t)ktιX'"Xkt" ° ^ ί i > x - x 3 ( ί ' « ) .

J is then defined for constants as follows: if #c = s, then

J(c) = 1 - Gl ̂  GJ(sA3ω.

This completes the definition of J . Note that U° <i = JL. Since U is logical, we
immediately have

2.1 Lemma Let φ be an arbitrary formula, with free variables among
x1, . . ., xn. Then

and similarly for terms.
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For an atomic formula Λ(τ l 5 . . ., τn), where R is a relational constant, and
τ 1 ? . . ., τn are terms (recall the convention at the end of Section 1) with free
variables among xx, . . ., x^, and J(#x z ) = Ai, lR(τu . . ., τn)Jj defines a sub-
object of A1 X . . . X Ak in &, or a morphism Ax X . . . X A^ -> Ω, or 1 ->
^ j x . . . x ^ N o w w h a t i s j - Λ ( T i ) ? r j j - i n ( ^ r i d)? We will show that the

association

(1) lR(τu...,τn)ίji \+lR(τu...,τn)
1ij

corresponds to the following operation on subobjects

(2) Φ: <3Ό4,Ω)->GΓ \ d)(λ, Ω)

(here ,4 = JC^) X . . . X Jt(sk), A = 2(sx) X . . . X 2(sk), for suitable 51? . . ., sk):
Φ associates with 1 ̂ > Ω^4 the composition

1 c*Gl S : > ( Ω X ) ^ Ω ^

where k is the splitmono for [su . . ., sn]. (In the sequel, we will usually omit
the indices on the morphisms ks and es.)

For the proof that (1) is the same as (2), first observe that for any term σ
with free variables among xu . . ., xn, (J(#x z ) = A, J (#x z ) =^4, k^ = ̂ # Λ / )

 t r i e
following diagram commutes (the proof is an easy induction on σ):

AXX...XA *B

kAlX...XkAn ' kB

Gv4jX...XG^rt

 ± — GB

Now suppose for ease of notation that R is a one-place relational constant, say
with J(R): 1 -> Ω* , and write J(σ): 1 ->^ 4 for the transpose of [σ] j : A ->5.
Then the claim that

Φ([Λ(σ)]j) = [Λ(σ)]3

follows easily, if we can show that the following compositions (i) and (ii) are

identical:

( i) JJXGJU^ j χ G ( β A ) IX^ ̂  χ -BA ev^ β 1XGJ(RI £ χ g ^ j IXί,^ χ

( i i ) I Ώ^m^A X G(Ω*) ^gt" 1" 1^, I X G(ΩA) ^AXΩ*e-^Ω.

But from the definition of k it follows that (1) is identical to

A '-ΪΪ^A X G(BA) e-^GAX G(BA) ̂ GB^B 1 X G J W > B X G(ΩB)

^ > G 5 X G ( Ω S ) ^ G Ω ^ Ω

and since e° k = id, this is identical to
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JUGAlXGi^GAχG{BA)G^GBlXGΛm,GBχG(ςιB)Ge^GςιP^Ω

Similarly, one shows that (2) is identical to

A ^ ® > I X G(Ωβ) ̂ > GA X G(ΩB) ̂ ^ + GB X G(Ωβ) ̂  GΩ *> Ω.

And clearly, the latter two compositions are identical, since Λ(σ) is the trans-
pose of [σ] j . As is easily seen, this proves the correspondence of (1) and (2)
not only for R a single constant, but also more generally for R a term without
variables (i.e., R built up from constants by functional application only).

Let us now turn to the properties of the operation Φ. First a notational
convention: a subobject of A is either represented by a mono B >-> A, or its

classifying morphism A -+ Ω, or its transpose 1 ->• ΩA. In all these cases we will
write Φ(B), Φ(/), Φ(/) for the corresponding representation of the subobject
given by the original definition of Φ.

2.2 Lemma Φ preserves conjunction (and hence Φ is orderpreserving).

By "Φ preserves conjunction" we mean that if /, g\ A -> Ω in &, then
Φ(Λ# ° (/ g)) =Λ(^rid) ° (Φ(/), Φ(g)); similarly for the other cases to be con-
sidered below.

Proof: We have to show that

G(Ω,A X Ω4) qί^}> G(ΩA) ̂  Ω^ = G(QA X Ω ^ 4 ) ^ Ω JX Ω ^ ^ Ω*.

Passing to the transposed maps, the left-hand side becomes

A X GipA X ΩA) 1XG(AA)> A X G{θA) ^GAX G(ΩA) ^ GΩ ̂  Ω

= 1 X G(ΩA X Ω^4) ̂ ^ Gyl X GA X GΩ4

X GΩ-4 <*'•<'!"* G - ° ( ^ ^ ) G Ω x Gn g*> GΩ ̂ > Ω.

Similarly, the right-hand side becomes

A X G(Ω^ X Ω^4) ( - £ ^» G i X G i X GΩ^4 X GΩ^ GevXGev> GΩ

XGΩ^>ΩXΩ A ->Ω.

Therefore, it suffices to show that

GΩ X Ω p X p » Ω X Ω

GΩ — - Ω

commutes. But this follows easily from the fact that p classifies Gl Gtrue> GΩ.

Note that from the fact that Φ: Sub&(A) -> Sub^-^(A) is orderpreserving,
it immediately follows that for U and V e Sub&(A),

Φ(ί/)vΦ(F)<Φ(ί/v V)
Φ(U=* V) <Φ(C/)=»Φ(F).
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2.3 Lemma Φ preserves 1A, the largest subobject of A. Also, Φ preserves
1A, the smallest subobject, provided d preserves the initial object 0.

Proof: Following the same method as in the proof of Lemma 2.2, we see that
it suffices to show that Gl ^ ^ GΩ ^ Ω = 1 ̂  Ω (which is clear from the
definition of p) and that Gl ^ ^ GΩ ̂  Ω = 1 ̂ ^ Ω. This latter identity
only holds if G preserves the initial, or, equivalently, if d does. For in that case
p ° Gfalse classifies the subobject GO = 0 >~* 1 = Gl, since both squares of the
diagram below are pullback

G true true

GO - Gl 1

2.4 Remark: The properties of Φ that have been stated above also follow
easily from the following alternative description of Φ: If U >~>A is a subobject
of A, then Φ(U) = e~\GU)\ that is, the following diagram is pullback

A — e — ^ GA

1 1
Φ(U) GU

2.5 Lemma Φ preserves negation (provided d preserves 0).

Proof: From the fact that Φ(£/ =• V) < Φ(U) =» Φ(F), and Φ(lA) = Lj, it
follows that Φ(-i£/) < - I Φ ( E / ) .

As for the converse, it again suffices (as in the proof of Lemma 2.2) to

show that the subobject classified by GΩ ̂ > Ω -» Ω is contained in the sub-

object classified by GΩ —> GΩ -> Ω. So make two pullbacks:

p i G~~Λ p
GΩ > — - Ω • Ω GΩ *- GΩ — Ω

r i , Λ G true

g false true and true
G false

λ j
P> • 1 1 Gl 1 1

Now P < G1 in Sub(GΩ), for p ° Gfalse °! = false °! = p ° g, so G l °! = g, since
p is mono.

We now turn to the quantificational structure. Let's first consider universal

quantification. Recall that Ω,B —> Ω is the classifier of the exponentially

transposed of B -> 1 - ^ Ω. Universal quantification Sub&(A XB) -+ Sub&(A)
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is then defined by composing an arrow 1 -> ζlAxB with (\/β)A' ΩAXB =

2.6 Lemma Φ preserves universal quantification; that is, for a subobject
U>^AXBinE, Φ(VB(£/)) s Vg(Φ(£/)).

Proof: It again suffices to show that

(i) G(Ω^X*) G ( ( v ^ ) ) G(Ω^) >̂ Ω^ = G(ΩAXB) k-> Ω ^ x * ^ t ύ*.

It is easy to see that this would follow from

(ii) G(Ω*)^GΩ^Ω = G(Ωβ)^Ω*^Ω.

Since the left-hand side in (ii) classifies Gi^truep),

G(Γtruep) G true true

G\ - G l 1

it suffices to show that the left-hand square of the diagram below is pullback

G{PB) * . & 1l_^ Ω

G(ΓtrueP) rtruejp

G\ 1 1

But since k is mono, we only have to show that it commutes which is easy.

As for the existential quantifier, recall that Ω 5 — • Ω is the classifier of the

image of eB >^» £1BXB^ ΩB. (We will write(i/^for this image.)

2.7 Lemma For a subobject U e Sub&(A X B), ^βΦ(U) < Φ(3*(ί/)).

Proof: As before, we have to show that the subobject of G(Ω 5 ) classified by

G(Ω*) ̂  OP^ Ω is contained in that classified by G(Ω 5 ) ̂ - ^ GΩ ̂  Ω.

Now p ° G3B classifies the image of GGB >^ GB X GΩ^ ^ GΏP. Let P be

the subobject of G(Ω 5 ) classified by 3B. Pullbacks preserve epi-mono-factoriza-

tions, so P is the image of the pullback of G^ -• Ω^ X B ^ Ω^ along k, or, the

image of π ° q in the diagram below

Q 2 »BXGΩB ^ — GΩB

pb. IXk k

eB *BXΩB Ω^
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q is the pullback of 1 ̂  Ω along ev ° (1 X k) = p ° Gev ° (e X 1)

D eX \ D Gev o
B X GOP — GB X GΩB GΩ ' Ω

U GeB Gtrue t m e

Q — G<ΞB G\ 1

We have to show that P < Gf 3#J, or, that π °q factors through G3B, or, that

G3B° it ° q = Gfrw. But π o ^ = τ r ° ( e X l) °g = Gπ ° GeB° s, and, by definition,
3# ° π ° e# = ίrae, so G3# ° Gπ ° Ge# ° s = Gtrue.

2.8 Lemma l e i AA>-*AXA be the diagonal. Then

(i) Φ ( Δ ^ ) > Δ j
(ii) / / ^ w wo, Φ(Δ^) = Δ^.

Proof: Immediate from Remark 2.4.

We now return to question (2) of Section 1. Let us call an atomic formula
simple if it is T or 1, or it is either of the form σx = σ2, where ox and σ2 are
terms (in the sense explained at the end of Section 1 !), or of the form
R(σu . . ., σn), where σu . . ., σn are terms, and R is a relational term without
(free) variables occurring in it. Furthermore, we call an occurrence of = in a
formula basic if it occurs in a subformula σ1 = σ2, where σλ and σ2 are terms
whose sorts are nonrelational, that is, have been built up from groundsorts
without using the rule to make [sl9. . ., sn] from slf . . ., sn.

2.9 Theorem Let T be a theory which has a set of axioms of the form
Vx(φ(x) -> ψ(x)), where the atomic parts of φ and φ are simple, and

• 3, V, and nonbasic = occur only positively in φ, and only negatively
in φ

• -• occurs only negatively in φ, and only positively in φ.

Then

(i) // (<f>, JO is a model of T and & ~> <f is a left-exact functor which
preserves the initial object, then ((*f I d),A) is a model of T,

(ii) T has the disjunction-property.

Proof: (ii) follows from (i), and (i) follows easily from the properties of Φ that
have been collected in the preceding lemmas.

We conclude with some remarks. First of all, it should be pointed out that
the same techniques can be used to prove a result similar to Theorem 2.9 for
theories having the existence property. Secondly, observe that the axioms of
Higher-order Heyting's Arithmetic (HHA) are not preserved. In other words, if
the language has a basic sort iV for the natural numbers, and the theory T
includes HHA <1{N) must be the natural number object of & for (<3s JO to be a
model of T, but J(N) = GJ(N) is, in general, not the natural number object of
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(rf I d). There are several ways to improve on this, one of them being con-

tained in [6], so we will not go into this here.

Finally, a word about occurrences of the identity, which also illustrates

the conditions on atomic formulas. Suppose, for example, that we have a

constant / of a functional sort [[s] -> [s]] that is interpreted in (<f>, JO by

<*(/): ΩA -> OA, and that Λ(f) equals the identity. Then & t= \/U: θA -f(U) = U,

and the identity-symbol occurring in VtΛ Ω,A-f(U) = U is nonbasic, sô  its

preservation is not covered by the theorem. This is how it should be, since Λ(f)

is ΩΛ e-+ G(ΩA) ->• ΩA in this case, which is not the identity-arrow. Rewriting

VίΛ Ω 4 •/(£/) = £/ as VJ7: tt4 Vx: 4 (/(£/)(*) «-> ί/(x)) does not help, since

now the atomic part/(£/)0c) is not simple.
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