# Manifolds Allowing RET Arithmetic 

LEON HARKLEROAD

In cardinal arithmetic, two cardinal numbers are added by using the union of disjoint sets representing the two numbers, the disjointness ensuring that addition is well-defined. In the arithmetic of recursive equivalence types (RETs) on the natural numbers, addition is handled similarly. But for RETs, the representative sets need to be chosen disjoint in a recursive sense; such choice is easily accomplished. In [1], the theory of RETs was generalized to manifolds, and in that setting matters are more complex. To permit addition of RETs, some fairly strong conditions were imposed on the manifolds involved. This paper will show the necessity for imposing such conditions.

To keep the paper self-contained, this paragraph briefly reviews the relevant terminology from [1]. A mapping $\alpha$ from $\mathbf{N}$, the set of natural numbers, onto a set $B$ is called an enumeration of $B$. For some index set $P$, let
$A=\bigcup_{p \in P} A_{p}$ and $a=\left\{\alpha_{p}\right\}_{p_{\epsilon} P}$, where $A_{p}$ is enumerated by $\alpha_{p}$ for each $p$. Further, assume that for each $p, q \in P, \alpha_{q}^{-1}\left(A_{p}\right)$ is r.e. and that for each $p, q \in P$ there exists a partial recursive $f_{p, q}: \alpha_{q}^{-1}\left(A_{p}\right) \rightarrow \alpha_{p}^{-1}\left(A_{q}\right)$ with $\alpha_{q}=\alpha_{p} \circ f_{p, q}$. Under these conditions, we say that $\langle A, a\rangle$ is a recursively enumerable manifold (REM). $a$ is the atlas of the manifold. If each $\alpha_{q}^{-1}\left(A_{p}\right)$ is recursive, we call $\langle A, a\rangle$ a recursive manifold (RM). Any REM (respectively, RM) with every $\alpha_{p}$ an indexing-that is, an injective map-is said to be an IREM (respectively, IRM). If each $A_{p}$ intersects at most finitely many other $A_{q}$ 's $\langle A, a\rangle$ is finitary. $S \subseteq A$ is $\alpha$-r.e. iff, for all $p, \alpha_{p}^{-1}(S)$ is r.e. Let $\langle B, \beta\rangle=\left\langle B,\left\{\beta_{q}\right\}_{q_{\epsilon}}\right\rangle$ be another manifold. A function $f$ from $A$ to $B$ is $a-\beta-p . r$. iff: (1) its domain $S$ is $a$-r.e. and (2) for every $p \in P, q \in Q$, there exists p.r. $f_{p, q}: \alpha_{p}^{-1}\left(S \cap f^{-1}\left(B_{q}\right)\right) \rightarrow \mathbf{N}$ with $f \circ \alpha_{p}=\beta_{q} \circ f_{p, q}$. We also define $f$ to be $a$ - $\beta$-compact iff each $f\left(A_{p}\right)$ is contained in a finite union of $B_{q}$ 's. If $f$ is $\alpha-\beta$-p.r. and 1-1 with $f a-\beta-$ compact and $f^{-1} \mathcal{B}$ - $a$-compact, $f$ is an embedding. (As a very simple example, let $I(n)=n$ for all $n \in N$. Then $\langle N,\{I\}\rangle$ is a finitary IRM, the $\{I\}$-r.e. sets are
just the r.e. sets, and the $\{I\}-\{I\}$-embeddings are just the 1-1 p.r. functions on $\mathbf{N}$.) For $S, T \subseteq A, S \widetilde{f} T$ means that $f$ is an $a$ - $a$-embedding with $f(S)=T$. [ $S$ ], the RET of $S$, is defined as $\{T \mid \exists f$ with $S \widetilde{f} T\}$.

To have well-defined addition of RETs on a manifold $\langle A, a\rangle$, any two RETs must have separable (i.e., contained in disjoint $a_{i}$-r.e. supersets) representatives. In particular, to add $[A]+[A]$, there must exist disjoint $B$ and $C$, where $A \widetilde{f} B$ and $A \widetilde{g} C$ for suitable $a-a$-embeddings $f, g$. Thus there exist embeddings $f, g: A \rightarrow A$ with disjoint ranges. Conversely, if such a pair of "separating embeddings" exists, any two RETs may be added, as $f(D)$ and $g(E)$ would be separable representatives of $[D]$ and $[E]$.

Thus the question of performing addition boils down to that of the existence of separating embeddings. In [1], the manifold was assumed to be a finitary IRM; this proved sufficient, but appeared somewhat strict. However, we now show that neither the recursivity nor the injectivity may be dropped, i.e., there will be a finitary IREM and a finitary RM, neither of which possesses separating embeddings.

Let $T \subseteq \mathbf{N}$ be a maximal set. That is, $T$ is r.e., and its complement $\bar{T}$ is an infinite set such that for any r.e. $W$, either $W \cap \bar{T}$ or $\bar{W} \cap \bar{T}$ is finite. We set $A=(T \times\{1\}) \cup(\bar{T} \times\{0,2\})$ and $a=\left\{\alpha_{1}, \alpha_{2}\right\}$, where

$$
\begin{aligned}
& \alpha_{1}(n)=\left\{\begin{array}{l}
(n, 0) \text { if } n \notin T \\
(n, 1) \text { if } n \in T
\end{array}\right. \\
& \alpha_{2}(n)=\left\{\begin{array}{l}
(n, 1) \text { if } n \in T \\
(n, 2) \text { if } n \notin T .
\end{array}\right.
\end{aligned}
$$

$\langle A, a\rangle$ is clearly a finitary IREM. We will reach a contradiction by assuming it allows separating embeddings.

Let $f, g: A \rightarrow A$ be embeddings with disjoint ranges. Since $f(A), g(A)$ are disjoint $a$-r.e. sets, $\alpha_{2}^{-1}(f(A))$ and $\alpha_{2}^{-1}(g(A))$ are disjoint r.e. sets. $T$ was chosen to be maximal, hence the intersection of any r.e. set with $\bar{T}$ must be either finite or cofinite in $\bar{T}$. Not both of $\alpha_{2}^{-1}(f(A)) \cap \bar{T}, \alpha_{2}^{-1}(g(A)) \cap \bar{T}$ can be cofinite in $\bar{T}$ since they would then have nonempty intersection. Thus one, say $\alpha_{2}^{-1}(f(A)) \cap \bar{T}$, is finite. But this implies $f(A) \subseteq A_{1} \cup\left\{a_{0}, a_{1}, \ldots, a_{k}\right\}$, where the $a_{i} \in A_{2}-A_{1}$. Again, since $f(A)$ is $a$-r.e., $\alpha_{1}^{-1}(f(A))$ is r.e.; hence there exists a 1-1 onto p.r. $h: \alpha_{1}^{-1}(f(A)) \rightarrow \mathbf{N}-\{0,1, \ldots, k\}$. Defining $h^{*}$ by

$$
\begin{cases}h^{*}(x)=h\left(\alpha_{1}^{-1}(x)\right) & x \in f(A) \cap A_{1} \\ h^{*}\left(a_{i}\right)=i & i=0,1, \ldots, k,\end{cases}
$$

$h^{*} \circ f$ is an embedding from $A$ onto $\langle\mathbf{N},\{I\}\rangle$. Then $\alpha$, the indexing of $A$ defined to be $\left(h^{*} \circ f\right)^{-1}$, is an $\{I\}-a$-embedding. Let $\beta$ be the enumeration of $A$ given by

$$
\left\{\begin{array}{l}
\beta(2 n)=\alpha_{1}(n) \\
\beta(2 n+1)=\alpha_{2}(n) .
\end{array}\right.
$$

As an atlas, $\{\beta\}$ is matched with $\alpha$; that is, the atlases induce the same recursive notions.

I claim that, as enumerations, $\alpha$ and $\beta$ are equivalent, in other words, that there exist recursive functions $s$ and $t$ such that $\alpha=\beta \circ s$ and $\beta=\alpha \circ t$. We may
easily define $t$ as $\alpha^{-1} \circ \beta$. The condition $\alpha=\beta \circ s$ is, of course, equivalent to the condition that $\left(\alpha^{-1} \circ \beta\right) \circ s$ be the identity. Since $\alpha^{-1} \circ \beta$ is a recursive map from $\mathbf{N}$ onto $\mathbf{N}$, setting $s(n)=$ the least $m$ such that $\left(\alpha^{-1} \circ \beta\right)(m)=n$ will work.

Thus the enumeration $\beta$ is equivalent to an indexing. This implies that $\sim$ is a recursive predicate, where $m \sim n \Leftrightarrow \beta(m)=\beta(n)$. Thus $\{(m, n) \mid \beta(m)=$ $\beta(n)\}$ is recursive. Intersecting with $\{2 m \mid m \in \mathbf{N}\} \times\{2 n+1 \mid n \in \mathbf{N}\}$, we have the recursivity of

$$
\{(2 m, 2 n+1) \mid \beta(2 m)=\beta(2 n+1)\}=\{(2 n, 2 n+1) \mid n \in T\} .
$$

But this implies that $T$ would be recursive, in contradiction to $T$ 's maximality.
Thus we have found a finitary IREM which does not possess separating embeddings. Since $\{\beta\}$ is matched with $a$, the finitary $\mathrm{RM}\langle A,\{\beta\}\rangle$ likewise lacks separating embeddings.

## REFERENCE

[1] Harkleroad, L., "Recursive equivalence types on recursive manifolds," Notre Dame Journal of Formal Logic, vol. 20 (1979), pp. 1-31.

Department of Mathematics
University of Notre Dame
Notre Dame, Indiana 46556

