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Homogeneous Boolean Algebras with

Very Nonsymmetric Subalgebras

SABINE KOPPELBERG and J. DONALD MONK

We prove the following theorems.

Theorem 1 For every Boolean algebra A there are extensions C 2 B 2 A
such that B and C are homogeneous, every endomorphism or automorphism
of A extends to an endomorphism or automorphism of B, and no nontrίvial
one-one endomorphism of B extends to an endomorphism of C.

Theorem 2 Assume (0). There is an ωx-Souslin tree T such that the regular
open algebra B of T is homogeneous and has a complete subalgebra A onto
which no nontrivial automorphism of B restricts.

These theorems were motivated by the following question raised by
Stepanek: Does there exist a complete homogeneous Boolean algebra B with
a complete homogeneous subalgebra A such that no nontrivial automorphism
of A extends to BΊ Here a Boolean algebra B is called homogeneous if every
principal ideal B t b = \x e B \x < b\ for b Φ 0 is isomorphic to B\ because of
B^B\bXB\-b,B\b is also called a factor of B. B is said to be rigid if it
has no nontrivial automorphism.

Stepanek's question arose from the following facts. Every Boolean algebra
A can be embedded into a homogeneous complete algebra B such that every
automorphism of A extends to B (see [4] and [5]). Every A can be embedded
into a complete rigid B—of course, no nontrivial automorphism of A extends
to B (see [7]). Every A can be embedded into a complete B without homo-
geneous or rigid factors such that either every or no nontrivial automorphism
oϊA extends to B (see [8] and [9]).

We assume acquaintance with [6] for the proof of Theorem 1 and with
[ l ] o r [3] for Theorem 2.

Received September 9, 1981 revised October 7, 1982



354 SABINE KOPPELBERG and J. DONALD MONK

Proof of Theorem 1: Let A be given. Choose an ordinal a with cfa~ω such
that \A I < 2 α . Let K = 2 α and λ = 2\ so κ ω = λ.

Next, let A1 be a Boolean algebra such that |>4'| = K and each ^4' I" a where
a > 0 contains a disjoint subset of power K. By [4], there is a Boolean algebra
A" with |v4"| = K such that the free product

B = A *A'*A"

is homogeneous; clearly \B\ = K and each B I b where £ > 0 has a disjoint
subset of power K. B satisfies the conditions on A in the proof of Theorem 12
in [6]. Hence there is an atomless K-complicated Boolean algebra B' such that

BCB' C(B *F)comPι,

where F is the free Boolean algebra on λ free generators and Dcompl denotes the
completion of D. Note that the embedding from B to Bf preserves all meets
and joins existing in B. By [2], choose E such that

C = B' *E

is homogeneous.
Now let / be a nontrivial one-one endomorphism of B and assume that

/ is an endomorphism of C extending /. Choose b e B such that b > 0 and
b-f(b) = 0 and let {aOί)Oί<κ be a disjoint family in B \ b\ f0!. By K-complicated-
ness of B\ there is an S C κ satisfying:

(1) There is some x e B1 such that aa < x for a e S and aa-x = 0 for a e κ\S
(2) There is no y e Bf such that f(aa) < y for a e S and f(aa)'y = 0 for

a e κ\S.

Write, since/(x) eC = B'*E,

f(x)=Σbi ei
i<n

where b( e B\ ez e E. But theny = £ } */ is an element of i?; contradicting (2):
i<n

for α e 5, we have aa<x, f(aa) <f(x), so f(aa) < ^ ft, . For a e κ\S, we have
i<n

aa x = 0, f(aa)'f(x) = 0, so /(a β ) ^ */ = 0.

Proof of Theorem 2: Let (Sa)ot<ωi be a sequence for (0). It is sufficient to

construct a normal Souslin tree T of length ωx with levels Ua and objects

^αtiϋj s s u c n t n a t the following claims (1) to (4) are satisfied.

(1) (a) For β < a. < ω x and w, i; e C/̂ , gαMϋ is an automorphism of Ta = (J ί/7

7<Q!

such that gauυ(u) = v
(b)g a u υ ζga>uυ foτβ<a<a' <ωi
( c) Sλuυ = M ί̂ α«y Iβ <θί<λ\ if λ is a limit ordinal such that β < λ < ω x .

For w,y e ί/̂ , M galw is then an automorphism of T mapping u to υ. The
l8<α!

regular open algebra B of T will then be homogeneous.
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(2) (a) For a < ωu g is an equivalence relation on Ua

(b) if β < a < ωu y % yf and x,xr e Uβ are such that x < y, xf < y\ then
x-gx'

(c) if β < a < ωu x % x\ y e Ua and x <y, then there are infinitely many
y' e Ua such that x' <y' and^ %y'

(d) if β < a < ω 1 ? x e Uβ, then there are y,y' e Ua such that x <y,y' and

The sequence (S)Q :<CJ1 then gives rise to a complete subalgebra^ of B (see [3]).

(3) {SOί)OL<ωι diagonalizes each possible uncountable antichain of T and
each possible nontrivial automorphism of B restricting to A.

The most complicated case to consider is: Sλ codes a maximal antichain a of
Tλ plus a nontrivial automorphism φ of 7\ t c, where c £ λ is closed un-
bounded in λ. For two branches b,b' of length λ in 7\, let b « 6' mean that
for each a < λ, xa s x'a where xa (respectively, x'a) is the unique element of
b Π ί/α (respectively, &' Π ί/α). Then choose Uλ such that the set Z of
λ-branches in 7\ corresponding to points in Uλ satisfies:

(a) U Z = Tλ

(b)bΓ)aΦ φ forbeZ
(c) Z is closed under the obvious action of eachgλuv (where u,v e Uβ, β < λ)

and of φ on the λ-branches of 7\
(d) if b e Z, x e b Π ί/̂ , x a Λ:', then there is some bf e Z such that x' e bf

and b » &'.

The existence of Z satisfying this countable list of requirements is most easily
seen by a forcing style argument.

(4) If Sλ codes (a9φ) and Uλ is chosen as in (3), then there are u,u', υ,w e Uλ

such that φ(u) = v, φ{u) - w under the obvious action of φ on Uλ and
such that u ^ u but υ -ζw.

This guarantees that (the automorphism of B induced by) φ does not restrict
to .4.
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