Homogeneous Boolean Algebras with Very Nonsymmetric Subalgebras

SABINE KOPPELBERG and J. DONALD MONK

We prove the following theorems.
Theorem 1 For every Boolean algebra A there are extensions $C \supseteq B \supseteq A$ such that B and C are homogeneous, every endomorphism or automorphism of A extends to an endomorphism or automorphism of B, and no nontrivial one-one endomorphism of B extends to an endomorphism of C.

Theorem 2 Assume (\diamond). There is an ω_{1}-Souslin tree T such that the regular open algebra B of T is homogeneous and has a complete subalgebra A onto which no nontrivial automorphism of B restricts.

These theorems were motivated by the following question raised by Štěpánek: Does there exist a complete homogeneous Boolean algebra B with a complete homogeneous subalgebra A such that no nontrivial automorphism of A extends to B ? Here a Boolean algebra B is called homogeneous if every principal ideal $B \upharpoonright b=\{x \in B \mid x \leqslant b\}$ for $b \neq 0$ is isomorphic to B; because of $B \cong B \upharpoonright b \times B \upharpoonright-b, B \upharpoonright b$ is also called a factor of B. B is said to be rigid if it has no nontrivial automorphism.

Štěpánek's question arose from the following facts. Every Boolean algebra A can be embedded into a homogeneous complete algebra B such that every automorphism of A extends to B (see [4] and [5]). Every A can be embedded into a complete rigid B-of course, no nontrivial automorphism of A extends to B (see [7]). Every A can be embedded into a complete B without homogeneous or rigid factors such that either every or no nontrivial automorphism of A extends to B (see [8] and [9]).

We assume acquaintance with [6] for the proof of Theorem 1 and with [1] or [3] for Theorem 2.

Proof of Theorem 1: Let A be given. Choose an ordinal α with $c f \alpha=\omega$ such that $|A| \leqslant \beth_{\alpha}$. Let $\kappa=\beth_{\alpha}$ and $\lambda=2^{\kappa}$, so $\kappa^{\omega}=\lambda$.

Next, let A^{\prime} be a Boolean algebra such that $\left|A^{\prime}\right|=\kappa$ and each $A^{\prime} \upharpoonright a$ where $a>0$ contains a disjoint subset of power κ. By [4], there is a Boolean algebra $A^{\prime \prime}$ with $\left|A^{\prime \prime}\right|=\kappa$ such that the free product

$$
B=A * A^{\prime} * A^{\prime \prime}
$$

is homogeneous; clearly $|B|=\kappa$ and each $B \upharpoonright b$ where $b>0$ has a disjoint subset of power $\kappa . B$ satisfies the conditions on A in the proof of Theorem 12 in [6]. Hence there is an atomless κ-complicated Boolean algebra B^{\prime} such that

$$
B \subseteq B^{\prime} \subseteq(B * F)^{c o m p l}
$$

where F is the free Boolean algebra on λ free generators and $D^{\text {compl }}$ denotes the completion of D. Note that the embedding from B to B^{\prime} preserves all meets and joins existing in B. By [2], choose E such that

$$
C=B^{\prime} * E
$$

is homogeneous.
Now let f be a nontrivial one-one endomorphism of B and assume that \bar{f} is an endomorphism of C extending f. Choose $b \in B$ such that $b>0$ and $b \cdot f(b)=0$ and let $\left(a_{\alpha}\right)_{\alpha<\kappa}$ be a disjoint family in $B \upharpoonright b \backslash\{0\}$. By κ-complicatedness of B^{\prime}, there is an $S \subseteq \kappa$ satisfying:
(1) There is some $x \in B^{\prime}$ such that $a_{\alpha} \leqslant x$ for $\alpha \in S$ and $a_{\alpha} \cdot x=0$ for $\alpha \in \kappa \backslash S$
(2) There is no $y \in B^{\prime}$ such that $f\left(a_{\alpha}\right) \leqslant y$ for $\alpha \in S$ and $f\left(a_{\alpha}\right) \cdot y=0$ for $\alpha \in \kappa \backslash S$.
Write, since $\bar{f}(x) \in C=B^{\prime} * E$,

$$
\bar{f}(x)=\sum_{i<n} b_{i} \cdot e_{i}
$$

where $b_{i} \in B^{\prime}, e_{i} \in E$. But then $y=\sum_{i<n} b_{i}$ is an element of B^{\prime} contradicting (2): for $\alpha \in S$, we have $a_{\alpha} \leqslant x, f\left(a_{\alpha}\right) \leqslant \bar{f}(x)$, so $f\left(a_{\alpha}\right) \leqslant \sum_{i<n} b_{i}$. For $\alpha \in \kappa \backslash S$, we have $a_{\alpha} \cdot x=0, f\left(a_{\alpha}\right) \cdot \bar{f}(x)=0$, so $f\left(a_{\alpha}\right) \cdot \sum_{i<n} b_{i}=0$.

Proof of Theorem 2: Let $\left(S_{\alpha}\right)_{\alpha<\omega_{1}}$ be a sequence for (\diamond). It is sufficient to construct a normal Souslin tree T of length ω_{1} with levels U_{α} and objects $g_{\alpha u v}, \widetilde{\propto}$ such that the following claims (1) to (4) are satisfied.
(1) (a) For $\beta<\alpha<\omega_{1}$ and $u, v \in U_{\beta}, g_{\alpha u v}$ is an automorphism of $T_{\alpha}=\bigcup_{\gamma<\alpha} U_{\gamma}$ such that $g_{\alpha u v}(u)=v$
(b) $g_{\alpha u v} \subseteq g_{\alpha^{\prime} u v}$ for $\beta<\alpha \leqslant \alpha^{\prime}<\omega_{1}$
(c) $g_{\lambda u v}=\bigcup\left\{g_{\alpha u v} \mid \beta<\alpha<\lambda\right\}$ if λ is a limit ordinal such that $\beta<\lambda<\omega_{1}$.

For $u, v \in U_{\beta}, \bigcup_{\beta<\alpha} g_{\alpha u v}$ is then an automorphism of T mapping u to v. The regular open algebra B of T will then be homogeneous.
(2) (a) For $\alpha<\omega_{1}, \widetilde{\alpha}$ is an equivalence relation on U_{α}
(b) if $\beta<\alpha<\omega_{1}, y_{\tilde{\alpha}} y^{\prime}$ and $x, x^{\prime} \in U_{\beta}$ are such that $x<y, x^{\prime}<y^{\prime}$, then $x_{\tilde{\beta}} x^{\prime}$
(c) if $\beta<\alpha<\omega_{1}, x_{\widetilde{\beta}} x^{\prime}, y \in U_{\alpha}$ and $x<y$, then there are infinitely many $y^{\prime} \in U_{\alpha}$ such that $x^{\prime}<y^{\prime}$ and $y_{\tilde{\alpha}} y^{\prime}$
(d) if $\beta<\alpha<\omega_{1}, x \in U_{\beta}$, then there are $y, y^{\prime} \in U_{\alpha}$ such that $x<y, y^{\prime}$ and $y_{\alpha}^{\ngtr} y^{\prime}$.
The sequence $(\widetilde{\alpha})_{\alpha<\omega_{1}}$ then gives rise to a complete subalgebra A of B (see [3]).
(3) $\quad\left(S_{\alpha}\right)_{\alpha<\omega_{1}}$ diagonalizes each possible uncountable antichain of T and each possible nontrivial automorphism of B restricting to A.

The most complicated case to consider is: S_{λ} codes a maximal antichain a of T_{λ} plus a nontrivial automorphism ϕ of $T_{\lambda} \upharpoonright c$, where $c \subseteq \lambda$ is closed unbounded in λ. For two branches b, b^{\prime} of length λ in T_{λ}, let $b \approx b^{\prime}$ mean that for each $\alpha<\lambda, x_{\alpha} \widetilde{\alpha} x_{\alpha}^{\prime}$ where x_{α} (respectively, x_{α}^{\prime}) is the unique element of $b \cap U_{\alpha}$ (respectively, $b^{\prime} \cap U_{\alpha}$). Then choose U_{λ} such that the set Z of λ-branches in T_{λ} corresponding to points in U_{λ} satisfies:
(a) $\bigcup Z=T_{\lambda}$
(b) $b \cap a \neq \phi$ for $b \in Z$
(c) Z is closed under the obvious action of each $g_{\lambda u v}$ (where $u, v \in U_{\beta}, \beta<\lambda$) and of ϕ on the λ-branches of T_{λ}
(d) if $b \in Z, x \in b \cap U_{\alpha}, x_{\widetilde{\alpha}} x^{\prime}$, then there is some $b^{\prime} \in Z$ such that $x^{\prime} \in b^{\prime}$ and $b \approx b^{\prime}$.

The existence of Z satisfying this countable list of requirements is most easily seen by a forcing style argument.
(4) If S_{λ} codes (a, ϕ) and U_{λ} is chosen as in (3), then there are $u, u^{\prime}, v, w \in U_{\lambda}$ such that $\phi(u)=v, \phi\left(u^{\prime}\right)=w$ under the obvious action of ϕ on U_{λ} and such that $u_{\widetilde{\lambda}} u^{\prime}$ but $v_{\lambda}^{\star} w$.

This guarantees that (the automorphism of B induced by) ϕ does not restrict to A.

REFERENCES

[1] Devlin, K. and H. Johnsbraten, The Souslin Problem, Lecture Notes in Mathematics 405 (1974).
[2] Grätzer, G., "Homogeneous Boolean algebras," Notices of the American Mathematical Society, vol. 20 (1973), A, p. 565.
[3] Jech, T., "Simple complete Boolean algebras," Israel Journal of Mathematics, vol. 18 (1974), pp. 1-10.
[4] Koppelberg, S., "A lattice structure on the isomorphism types of complete Boolean algebras," pp. 98-126 in Set Theory and Model Theory, Lecture Notes in Mathematics 872 (1981).
[5] Kripke, S., "An extension of a theorem of Gaifman-Hales-Solovay," Fundamenta Mathematicae, vol. 61 (1967), pp. 29-32.
[6] Monk, J. D., "A very rigid Boolean algebra," Israel Journal of Mathematics, vol. 35, 1-2 (1980), pp. 135-150.
[7] Štěpánek, P. and B. Balcar, "Embedding theorems for Boolean algebras and consistency results on ordinal definable sets," The Journal of Symbolic Logic, vol. 42 (1977), pp. 64-75.
[8] Štěpánek, P., "Boolean algebras with no rigid or homogeneous factors," Transactions of the American Mathematical Society, vol. 270 (1982), pp. 131-147.
[9] Štěpánek, P., "Embeddings of Boolean algebras and automorphisms," Abstracts of the American Mathematical Society, vol. 3, no. 1 (1982), p. 131.

Sabine Koppelberg
II. Mathematisches Institut

Freie Universität Berlin
Königin-Luise-Str. 24-26
D-Berlin 33, West Germany

J. Donald Monk
Department of Mathematics
University of Colorado
Campus Box 426
Boulder, Colorado 80309

