Homogeneous Boolean Algebras with Very Nonsymmetric Subalgebras

SABINE KOPPELBERG and J. DONALD MONK

We prove the following theorems.

Theorem 1 For every Boolean algebra A there are extensions $C \supseteq B \supseteq A$ such that B and C are homogeneous, every endomorphism or automorphism of A extends to an endomorphism or automorphism of B, and no nontrivial one-one endomorphism of B extends to an endomorphism of C.

Theorem 2 Assume (\diamond). There is an ω_1 -Souslin tree T such that the regular open algebra B of T is homogeneous and has a complete subalgebra A onto which no nontrivial automorphism of B restricts.

These theorems were motivated by the following question raised by Štěpánek: Does there exist a complete homogeneous Boolean algebra B with a complete homogeneous subalgebra A such that no nontrivial automorphism of A extends to B? Here a Boolean algebra B is called homogeneous if every principal ideal $B \upharpoonright b = \{x \in B \mid x \leq b\}$ for $b \neq 0$ is isomorphic to B; because of $B \cong B \upharpoonright b \times B \upharpoonright -b, B \upharpoonright b$ is also called a factor of B. B is said to be rigid if it has no nontrivial automorphism.

Štěpánek's question arose from the following facts. Every Boolean algebra A can be embedded into a homogeneous complete algebra B such that every automorphism of A extends to B (see [4] and [5]). Every A can be embedded into a complete rigid B-of course, no nontrivial automorphism of A extends to B (see [7]). Every A can be embedded into a complete B without homogeneous or rigid factors such that either every or no nontrivial automorphism of A extends to B (see [8] and [9]).

We assume acquaintance with [6] for the proof of Theorem 1 and with [1] or [3] for Theorem 2.

Received September 9, 1981; revised October 7, 1982

Proof of Theorem 1: Let A be given. Choose an ordinal α with $cf \alpha = \omega$ such that $|A| \leq \exists_{\alpha}$. Let $\kappa = \exists_{\alpha}$ and $\lambda = 2^{\kappa}$, so $\kappa^{\omega} = \lambda$.

Next, let A' be a Boolean algebra such that $|A'| = \kappa$ and each $A' \upharpoonright a$ where a > 0 contains a disjoint subset of power κ . By [4], there is a Boolean algebra A'' with $|A''| = \kappa$ such that the free product

$$B = A * A' * A''$$

is homogeneous; clearly $|B| = \kappa$ and each $B \uparrow b$ where b > 0 has a disjoint subset of power κ . B satisfies the conditions on A in the proof of Theorem 12 in [6]. Hence there is an atomless κ -complicated Boolean algebra B' such that

$$B \subseteq B' \subseteq (B * F)^{compl},$$

where F is the free Boolean algebra on λ free generators and D^{compl} denotes the completion of D. Note that the embedding from B to B' preserves all meets and joins existing in B. By [2], choose E such that

$$C = B' * E$$

is homogeneous.

Now let f be a nontrivial one-one endomorphism of B and assume that \overline{f} is an endomorphism of C extending f. Choose $b \in B$ such that b > 0 and $b \cdot f(b) = 0$ and let $(a_{\alpha})_{\alpha < \kappa}$ be a disjoint family in $B \upharpoonright b \setminus \{0\}$. By κ -complicated-ness of B', there is an $S \subseteq \kappa$ satisfying:

(1) There is some x ∈ B' such that a_α ≤ x for α ∈ S and a_α·x = 0 for α ∈ κ\S
(2) There is no y ∈ B' such that f(a_α) ≤ y for α ∈ S and f(a_α)·y = 0 for α ∈ κ\S.

Write, since $\overline{f}(x) \in C = B' * E$,

$$\overline{f}(x) = \sum_{i < n} b_i \cdot e_i$$

where $b_i \in B'$, $e_i \in E$. But then $y = \sum_{i < n} b_i$ is an element of B' contradicting (2): for $\alpha \in S$, we have $a_{\alpha} \leq x$, $f(a_{\alpha}) \leq \overline{f}(x)$, so $f(a_{\alpha}) \leq \sum_{i < n} b_i$. For $\alpha \in \kappa \setminus S$, we have $a_{\alpha} \cdot x = 0$, $f(a_{\alpha}) \cdot \overline{f}(x) = 0$, so $f(a_{\alpha}) \cdot \sum_{i < n} b_i = 0$.

Proof of Theorem 2: Let $(S_{\alpha})_{\alpha < \omega_1}$ be a sequence for (\diamond) . It is sufficient to construct a normal Souslin tree T of length ω_1 with levels U_{α} and objects $g_{\alpha uv}$, $\tilde{\alpha}$ such that the following claims (1) to (4) are satisfied.

(1) (a) For $\beta < \alpha < \omega_1$ and $u, v \in U_{\beta}$, $g_{\alpha uv}$ is an automorphism of $T_{\alpha} = \bigcup_{\gamma < \alpha} U_{\gamma}$

such that $g_{\alpha uv}(u) = v$ (b) $g_{\alpha uv} \subseteq g_{\alpha' uv}$ for $\beta < \alpha \le \alpha' < \omega_1$ (c) $g_{\lambda uv} = \bigcup_{\alpha uv} \{g_{\alpha uv} | \beta < \alpha < \lambda\}$ if λ is a limit ordinal such that $\beta < \lambda < \omega_1$.

For $u, v \in U_{\beta}$, $\bigcup_{\beta < \alpha} g_{\alpha uv}$ is then an automorphism of T mapping u to v. The

regular open algebra B of T will then be homogeneous.

- (2) (a) For $\alpha < \omega_1, \alpha$ is an equivalence relation on U_{α}
 - (b) if $\beta < \alpha < \omega_1$, $y \approx y'$ and $x, x' \in U_\beta$ are such that x < y, x' < y', then $x \approx x'$
 - (c) if $\beta < \alpha < \omega_1, x_{\beta} x', y \in U_{\alpha}$ and x < y, then there are infinitely many $y' \in U_{\alpha}$ such that x' < y' and $y_{\alpha} y'$
 - (d) if $\beta < \alpha < \omega_1$, $x \in U_{\beta}$, then there are $y, y' \in U_{\alpha}$ such that x < y, y' and $y \neq y'$.

The sequence $(_{\alpha})_{\alpha < \omega_1}$ then gives rise to a complete subalgebra A of B (see [3]).

(3) $(S_{\alpha})_{\alpha < \omega_1}$ diagonalizes each possible uncountable antichain of T and each possible nontrivial automorphism of B restricting to A.

The most complicated case to consider is: S_{λ} codes a maximal antichain a of T_{λ} plus a nontrivial automorphism ϕ of $T_{\lambda} \upharpoonright c$, where $c \subseteq \lambda$ is closed unbounded in λ . For two branches b, b' of length λ in T_{λ} , let $b \approx b'$ mean that for each $\alpha < \lambda$, $x_{\alpha \alpha} x'_{\alpha}$ where x_{α} (respectively, x'_{α}) is the unique element of $b \cap U_{\alpha}$ (respectively, $b' \cap U_{\alpha}$). Then choose U_{λ} such that the set Z of λ -branches in T_{λ} corresponding to points in U_{λ} satisfies:

- (a) $\bigcup Z = T_{\lambda}$
- (b) $b \cap a \neq \phi$ for $b \in Z$
- (c) Z is closed under the obvious action of each $g_{\lambda uv}$ (where $u, v \in U_{\beta}, \beta < \lambda$) and of ϕ on the λ -branches of T_{λ}
- (d) if $b \in Z$, $x \in b \cap U_{\alpha}$, $x_{\alpha} x'$, then there is some $b' \in Z$ such that $x' \in b'$ and $b \approx b'$.

The existence of Z satisfying this countable list of requirements is most easily seen by a forcing style argument.

(4) If S_λ codes (a,φ) and U_λ is chosen as in (3), then there are u,u', v,w ∈ U_λ such that φ(u) = v, φ(u') = w under the obvious action of φ on U_λ and such that u _λ u' but v _λ w.

This guarantees that (the automorphism of B induced by) ϕ does not restrict to A.

REFERENCES

- [1] Devlin, K. and H. Johnsbraten, *The Souslin Problem*, Lecture Notes in Mathematics 405 (1974).
- [2] Grätzer, G., "Homogeneous Boolean algebras," Notices of the American Mathematical Society, vol. 20 (1973), A, p. 565.
- [3] Jech, T., "Simple complete Boolean algebras," *Israel Journal of Mathematics*, vol. 18 (1974), pp. 1-10.
- [4] Koppelberg, S., "A lattice structure on the isomorphism types of complete Boolean algebras," pp. 98-126 in Set Theory and Model Theory, Lecture Notes in Mathematics 872 (1981).
- [5] Kripke, S., "An extension of a theorem of Gaifman-Hales-Solovay," Fundamenta Mathematicae, vol. 61 (1967), pp. 29-32.

356 SABINE KOPPELBERG and J. DONALD MONK

- [6] Monk, J. D., "A very rigid Boolean algebra," Israel Journal of Mathematics, vol. 35, 1-2 (1980), pp. 135-150.
- [7] Štěpánek, P. and B. Balcar, "Embedding theorems for Boolean algebras and consistency results on ordinal definable sets," *The Journal of Symbolic Logic*, vol. 42 (1977), pp. 64-75.
- [8] Štěpánek, P., "Boolean algebras with no rigid or homogeneous factors," *Transactions* of the American Mathematical Society, vol. 270 (1982), pp. 131-147.
- [9] Štěpánek, P., "Embeddings of Boolean algebras and automorphisms," Abstracts of the American Mathematical Society, vol. 3, no. 1 (1982), p. 131.

Sabine Koppelberg II. Mathematisches Institut Freie Universität Berlin Königin-Luise-Str. 24-26 D-Berlin 33, West Germany J. Donald Monk Department of Mathematics University of Colorado Campus Box 426 Boulder, Colorado 80309