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Inaccessible Worlds

I. L. HUMBERSTONE

This note presents some considerations on the logic of inaccessibility from
the point of view of the Kripke semantics for modal logic. That is, we are
interested in the logical properties of the usual language of propositional modal
logic (say with ~, a, and OO as primitive) as enriched by a new intensional
primitive B with the semantical clause:

[m] For any model (W, R, V) and any pointx e W, (W, R, V) E B iff for
all y € W such that not Rxy, (W, R, V) 5 o

The other connectives receive the clauses familiar from the standard definition
of truth (at a point in a model) in Kripke semantics.! We write O(#) for the dual
of O(M). In the enriched language, thus understood, many classes of frames are
expressible which are not expressible in the customary language. (We speak of a
formula’s expressing a class of frames when the formula is valid on all and only
frames in the class, where a formula is valid on a frame (W, R) just in case it is
true at every point in every model (W, R, V) on that frame.) Here are five
simple examples:

. The class of irreflexive frames, expressed by: Mp = p

. The class of asymmetric frames, expressed by: p > O#p

. The class of intransitive frames, expressed by: Mp = 0O0Op

. The class of strongly connected frames (i.e., frames (W, R) such that for
all x, y € W either Rxy or Ryx), expressed by: p > BOp

5. The class of universal frames (i.e., frames (W, R) with R = W X W),

expressed by: B(p A ~p).

S W -

Apart from any purely technical interest such examples may have, some of
them are of obvious relevance when the unenriched language is thought of in
tense-logical terms (thinking of O as Prior’s G, [5]). Further applications are
suggested by the fact that we may sometimes wish to consider an operator O

Received November 30, 1981, revised June 21, 1982



INACCESSIBLE WORLDS 347

with the reading: Ow is true iff « is true only at accessible (sc. R-related) worlds,
since Oa may be defined as M~«. For example, in deontic logic, where O and
¢ are thought of as expressing obligatoriness and permissibility, respectively,
one may wish to consider the unorthodox notion of strong permissibility, P,
defined thus: Po =4 M~q, since all frames will then validate the equivalence

(Pocn PB) <> P(av B)

much loved by the proponents of ‘free-choice’ permission.? Our attention in
what follows, however, will not be on selling any particular application of the
machinery but on isolating axiomatically the logic most appropriately regarded
as a minimal system in the enriched language.

For the smoother application of the familiar concepts and established
results of intensional logic, we pursue this project within the framework of
bimodal logic [5], of which the following is a general characterization. The
language of truth-functional logic is extended by two primitive intensional
operators, 0, and O, and the semantics is cast in terms of frames(W, R,, R,),
the definition of truth at a point in a model proceeding via the usual clauses
together with:

(W, Ry, Ry, V) K O« iff for all y such that R;xy, (W, Ry, Ry, V) Ko,
i=1,2.

By K? we mean the system axiomatized by the three schemata:

(AO) « where « is any substitution instance in the present language of a
truth-functional tautology

and
(A)) (=1,2)0i(ax~>p)~>O; a~>0;p),

together with modus ponens and the two rules o to FO;« as rules of proof.
K? is determined by the class of all frames (W, R,, R,) and among its more
interesting extensions are systems determined by classes of frames characterized
in terms of the relation between R, and R,. The best known case (due to
Lemmon [5]) is the class of frames in which R, is the converse of R,, of
special significance as a minimal tense logic, which determines that extension of
K?* which has for its proper axioms instances of the schema:

oa—>0;0afori#j; i je 1,2},

More recently, several logicians have investigated the constraint that R, should
be the ancestral of the relation R, and found the extension of K2 determined
by the class of frames in which that constraint is met [6]. For present purposes,
of course, what we are interested in is the class of all frames (W, R;, R,) in
which R, is the complement of the relation R,; that is, those frames in which
for all x, y € W, R,xy iff not R,xy. We call such frames complementary, and to
emphasize our interest in them we shall write R* and R~ for R, and R,, and
revert, for vividness, to our original notation of ‘0’ and ‘W’ in place of ‘0O
and ‘00,".

Transposed into the setting of bimodal logic, then, our quest is for the
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system determined by the class of all complementary frames. It is clear that
this system will be a proper extension of K2. Here for example, are some
nontheorems of K2 which are unfalsifiable at any point in a model on a
complementary frame:

(a) OT v T (where ‘T’ abbreviates some tautology)
(b) @p~>p)v (Mg —>q)
(c) (Oep v #Op) = (Op v #p).

So what we want is a set of axioms from which such formulas as these are
deducible but from which no formula not valid on every complementary frame
is deducible.

The solution to our problem turns out to be quite simple: we need only
add as axioms to K2 instances of a single schema. To state the schema we use
‘W’ to stand for strings of any (including zero) length of occurrences of the
weaker operators ‘O’ and ‘4#’, and similarly ‘S’ as schematic over strings of ‘0
and ‘@, the ‘strong’ modal operators.® The schema then reads:

(%)  W(Oarmp)—>S(avp).

We refer to the system axiomatized by adding all instances of (*) to the basis
described above for K2 as K? + (*). That this system is sound with respect to
the class of all complementary frames reduces to the claim that (*) is valid on
every such frame, and the correctness of this claim may be seen as follows.
Suppose some formula of the form (*) is false at a point x in a model on a
complementary frame. Thus for this model—call it (W, R*, R™, V) or 72 for
short—we have:

7 EW@Oormp) but 7 K S(av p).

From the first of these facts, we conclude that x is the first element of a
sequence of members of W each related to its predecessor either by R* or by
R~, whose last member is a point y such that 7 5 O A M. (If we write |WI
to denote the length of the prefix W, then we may say more specifically that
this sequence is of length IW|, understanding that in the case where |W| = 0, the
point y is just x itself.) Similarly, from the second fact, we conclude that x
begins an (R* U R")-chain of length |S|, whose last member is a point z such
that 7 I av 8. Now, since the frame of this model is complementary, either
R*yz or R7yz. But the first is ruled out by our having 7 |§ O« (since
m tzy Oa A WP) together with 7 t « (since 7 ¥ av ), and the second by
our having 72 5 BB (since 7 E Oo n MB) together with 7 I B (since
7v v B). So it is not possible for an instance of () to be false in any model
on a complementary frame.

The ‘soundness’ half of our claim that K2+ () is determined by the class
of all complementary frames thus established, we turn to the proof of com-
pleteness. The argument we use is modeled after Cresswell’s adaptation to
modal logic of the method Henkin used to prove the completeness of first-order
logic, rather than the more widely known adaptation of that method due to
Scott and Makinson [1]. (In the former case maximal consistent sets of
formulas are correlated with elements of the falsifying model but the correla-
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tion is not required to be one-one, so that there is more freedom in construct-
ing the required accessibility relation than on the latter approach—as generally
implemented—in which the maximal consistent sets are identified with the
points of the model serving to falsify any given nontheorem. The ‘canonical
models’ of the latter approach are not, as they stand, very helpful in delivering
the completeness result we are after.) An overall description of the procedure is
as follows. We begin with the negation of a nontheorem of K%+ (%), and blow
it up to a maximal consistent set of formulas (taking maximal consistency here,
and below, relative to K2+ (*)). This set of formulas will be associated with a
point, the ‘root’ of a tree we are going to construct. Its lower nodes will
likewise be associated with maximal consistent sets of formulas in such a way
that the resulting tree will be a model verifying the formula we started with at
the root (or ‘top node’) of the tree. The schema (*) will be appealed to in order
to show that this can be done in such a way that the frame of the model in
question is complementary. We now fill in some of the details, skimming over
those familiar from general post-Henkin completeness proofs.

Let « be the formula whose negation is unprovable in K2+ (%), and I" a
maximal consistent set containing «. We call the top node of our tree <I?, and
in general will use finite sequences (', 8, . . ., B,) for formulas f;, to label the
nodes. These sequences can be construed in any convenient way (e.g., as partial
functions from positive integers to formulas and sets thereof) which does not
identify (I’ with I". For such a sequence x, the sequence x f is the n + 1-termed
sequence, taking x to be of length n, whose first n positions are filled as in x,
and whose final term is the formula 8. With each of the points x in the tree we
associate a set of formulas f(x). For the top node we stipulate that f((I'")) =T.
Now, for any formula of the form Of in I', we adjoin as an immediate descen-
dant below (I a point (", 0f) and take f(I", Of) to be some maximal consistent
extension of the set {#} U {ylOy e I'}. Similarly, for any formula 63 in ', we
subjoin the point (I", 8), with f(I", #8)) a maximal consistent extension of
{8} U {y!m~y e I'}. (The consistency of the sets in question, given the consistency
of T, follows from facts about provability in K?; the extendibility to maximal
consistent sets from Lindenbaum’s Lemma applied to the present language.) To
points of the first kind, we stipulate that <I") is to bear the relation R*, and to
points of the second kind, R~. We continue to build the tree downward,
defining f as we go, in the same manner. For example, if 08’ € f((T, #68)), we
provide as an immeidate R*-related descendant a new point (I, 8, O8') with
f(T, #8,0B)) being some maximal consistent extension of {B'} U {ylOy e
F(T, #8)}. And so on. (Typically, the whole tree thus constructed will have
both infinite branches and infinitary branching. We are not here interested in
finite models.) Calling the totality of nodes in the tree W, we define a model on
the frame (W, R*, R™) by specifying that V(p;, x) for a propositional variable p;
and a point x € W, is to be T iff p; € f(x). By standard arguments, we may show:

(k%) For any formula 8,\W, R*, R, V) EBiff B € f(x), forall x e W.

So far so good; but of course the frame of this model is not complementary,
since although the relations R* and R~ are mutually exclusive (disjoint), they
are not jointly exhaustive (do not have W X W for their union), as no point is
related to any points other than its immediate descendants by either of the
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relations R*, R~. We must now show that it is possible to extend R* and R~ so
that they come to jointly exhaust W X W, without jeopardizing the truth of
(#%). So take a pair of (not necessarily distinct) points y, z with neither R*yz
nor R7yz. We claim it must be possible, consistently with (**), to add the pair
(¥, 2) to R* or else to add it to R™. For, if not, this can only be because for
some formula 8, OB € f(y) while 8 ¢ f(z), and also for some formula 7,
B~y € f(»¥) while v ¢ f(z). But each of the points y and z is located finitely
many steps down the tree from the top node (I'"). Say y is m steps down; more
specifically that for some formulas 8, .. ., 8, ¥ =<, W84, . . ., WpBm), Where
each W; is either © or ¢. And let z = (', W8, . . ., W, By for some formulas
Bi, .. ., By, with the ‘W)’ notation similarly understood. Using “S;’ for ‘00" if W}
is ‘0’, and for ‘W’ if W] is ‘¢’, consider the instance of (*):

W,.. W,(OpAEY)=>S,...8,BV).

Ex hypothesi, the location of the point y in the tree and the truth of each of
0B and My at y (in (W, R*, R™, V)) guarantee that the antecedent of this
formula is true at <I'"), and so therefore that its consequent is. But that would
mean we must have (W, R*, R™, V) E B v v, whereas we have had to suppose
that (W, R*, R~, V) s Band (W, R*, R™, V) I v (since this follows from (*) and
the assumption that 8 and v fail to belong to f(z)).

So either it is possible to preserve (*) while adding {y, z) to R* or it is
possible to preserve (#) while adding (y, z) to R™. Thus we complete our
specification of the falsifying model (for the originally supposed nontheorem
~a) by saying that one or other (but not both) of these extensions is made to
R* or R~ for each unrelated pair {y, z). This makes the frame of the model a
complementary frame, and because (**) was not interfered with, we may still
conclude that the given nontheorem is false at the node (I in that frame,
according to the model indicated, and thus, that K? + (*) is complete with
respect to the class of complementary frames.

The fact that we have found K2+ (*) to be the system determined by the
class of complementary frames shows that we have succeeded in locating the
correct logic for that class of frames in one sense of ‘correct logic’: the sense
approporiate to what has been called the theory of completeness, as opposed
to the theory of correspondence [7]. The relevant question from the latter
point of view may be put with the aid of Lewis’s helpful term ‘range’ [3]: the
range of a system being the class of all those frames on which every theorem of
the system is valid. What system, we may ask, has for its range the class of
complementary frames? The answer is: no system. For suppose that class is the
range of a system Z, and consider two complementary frames (W, R*, R™) and
(X, §*, S7) with W N X = ¢; each of these frames, ex hypothesi, validates every
theorem of Z. But then it follows from the Generation Theorem for bimodal
logic that no theorem of .Z can fail to be valid on the frame (W U X, R* U S*,
R~ U S7); so the range of Z includes a frame which is patently not comple-
mentary [S]. Thus there is a striking contrast between the class of bimodal
frames in which the two relations are converses—the class of importance in
tense logic—and the class of bimodal frames in which the two relations are
complementary. For in the former case the minimal system of tense logic,
mentioned above, is not just determined by the class of frames concerned, but
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has that class for its range, while in the latter case only the determination
result is available. We close by noting some repercussions of this fact.

In the first place, we observe that no formula expresses (in the sense of
our opening paragraph) the class of complementary frames: for by the com-
pleteness result such a formula would have to be a theorem of K2+ (*), while
we have seen that some noncomplementary frames validate every theorem of
that system. In fact by standard arguments, one may go further than this and
show that neither the class of frames in which R* and R~ are mutually exclu-
sive, nor the class of frames in which these relations are jointly exhaustive, is
expressible. Secondly, we note the muting effect of these facts on the original
promise of using the extended language to express hitherto inexpressible classes
of frames (Examples 1-5). One must retreat to the weaker position of saying
that the formulas mentioned in those examples are valid on, among the
complementary frames, all and only such frames as meet the cited conditions.
This point appears to tell against the suitability of the original formulation of
the truth conditions of ‘B’-formulas and in favour of the bimodal approach.*
Finally, it is worth mentioning the noncumulativity (or nonadditivity, as it is
often put) of completeness proofs achieved by the method employed here, in
contrast to those based on canonical models without further constructions
(such as Segerberg’s bulldozing). For example, the class of frames (W, R*, R
which are complementary and have R* reflexive can be shown, by a similar
Cresswellian procedure, to determine K2 + (*) + D« = «. Likewise, mutatis
mutandis, for the case of R~ reflexive (the case of Example 1). Clearly,
however, no complementary frames can validate both schemata; yet, far from
being determined by the empty class of frames, which implies inconsistency for
the logic concerned, the system is consistent and has among its range all those
far-from-complementary frames in which R* and R~ coincide as W X W.

NOTES

1. See [1], [5] for background, terminology, and notation not explained here. We use v, =,
and <—> for the defined truth-functional connectives, ‘p’, ‘q¢’, . . . for propositional
variables, and ‘e’, ‘§’, . . . as metalinguistic variables ranging over formulas. The m/4
notation is due to my colleague T. E. Karmo, as are Examples 1-3 below, and therewith
the stimulus for investigating this topic.

2. I am here mentioning, rather than endorsing, this suggestion, which may be extracted
from some of von Wright’s remarks in [8]; see also [4]. On the subject of ‘only’, let me
mention that part of my interest in the subject of inaccessibility arose from pondering
over a misprint in Leblanc’s [2], where (at p. 232) the truth-conditions for formulas of
the form O« are given in terms of the truth of « at all and only accessible worlds. This
raises a question not to be pursued here: for which modal logics can a notion of validity
which coincides with theoremhood be given based on this deviant truth-definition?

3. ‘Strong’ and ‘weak’ are useful labels not to be taken too literally in the present context
since the logic on offer here proves neither op = Op nor mp > 4p.

4. At least for theoretical reasons: for on the original approach, the contrast between what I
have just distinguished as stronger and weaker claims cannot be drawn.
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