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KM and the Finite Model Property

M. J. CRESSWELL

In [2] Fine proved, among other things, that KM has the finite model
property.1 Fine's proof uses normal forms and gives quite a pretty decision
procedure for a variety of modal systems. Our aim in this note is to adapt
Fine's proof so that it comes closer to a canonical-model type of completeness
proof.

KM is K with the additional axiom

M LMp D MLp.

KM is of interest because Goldblatt has proved that its frames are not char-
acterized by any first-order condition on an accessibility relation.2 Now
Segerberg has shown in [7], p. 33, that any logic with the finite model property
has the finite frame property. From this it follows that any logic with the finite
model property is complete in the sense of being characterized by a class of
frames (more specifically by a class of finite frames); we shall prove that KM is
so characterized. This means that KM is a complete logic which does not corre-
spond to a first-order condition.

We begin with a finite set P of propositional variables. Where P is such a
set, let Φn be the set of all wff (of some langauge of propositional modal logic)
made up from P which are of modal degree n or less (see [5], p. 50). Strictly
we should indicate that Φn depends on P, and write something like Φn/P, but
we can understand some fixed set to be involved throughout the discussion.

Now Φn will be infinite, but it will contain only finitely many non-
equivalent formulas ([5], p. 54). In other words any subset Λ of Φn will split
into a finite number of classes of the form \β: hjf β = a\ for some ae Φn. Let
γ Λ be the conjunction of all these a. So every wff in Λ is equivalent in K to one
of the conjuncts of 7 Λ . Obviously 7 Λ e Φ n .

A set Λ C Φn will be said to be rc-maximal iff for every wff β e Φn, either
β e A or ~β e Λ.

If Δ is a normal propositional modal logic (e.g., see [1], pp. 64f, or [7],
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p. 12), then a set Λ of wff is said to be Δ-consistent iff there is no finite set
lβl9 . . . ,&} C Λ such that \~A -(f t Λ . . . Λ ft*).

Given a logic Δ and a finite set P of propositional variables let Wn (relative
to Δ and P) be the set of all ^-maximal Δ-consistent sets of wff of Φn. Obvi-
ously Wn is finite, though its members will not be.

Where x e Wn then yx has an important property which we note for future
use:

Lemma 1 If x, y e Wn then yx e y iffx = y.

The proof relies solely on principles of K.3

Theorem 2 If A is a Δ-consistent set of wff of Φn, then there is some x e Wn

such that Λ C i

The proof is standard (see, e.g. [5], pp. 151f)
We are now going to be interested in a special kind of finite 'canonical'

model. In this model the worlds come in levels depending on the modal degree
of the wff in them. Given a finite set P of variables and a logic Δ we define the
P/mlΔ-model (for each natural number m). The 'worlds' in this model are
simply the members of any Wn, for n < m.

R is defined as follows: xRy iff

(1) x e Wn and y e Wn-l9 and for every wff α: e Φw-χ: if La e x then ae y

or

(2) x e Wo and x = y.4

Where <ΐ = (W, R) then 3Γ is clearly a finite frame. The canonical model
Thy is defined on this frame in the usual way by adding an assignment to the
variables. For each p e P, and each x e Wn, x e V(p) iff p e x. (Since p e P, then
p e Φn; if p 4 P then the definition may be arbitrary.)

Theorem 3 For any wff β e Φn, where n < m, and any x e Wn:

Thy ^βiffβex.

Proof: The proof is standard, by induction on the construction of β; the only
thing to remember is the level of β at each stage. Obviously the theorem holds
for p e P. For the truth functors we simply note that if ~β e Φn then so is β,
and if α v β e Φn then so are a and β. The induction for L is perhaps worth
doing in full:

Suppose Thy Ax Lβ, where x e Wn and Lβ e Φn. If Lβ e Φn then n > 1, so
there is some y e Wn-γ such that xRy and Thy Ay β. Now β e Φn-λ and, by the
induction hypothesis, β 4 y- So, by definition of R, Lβ 4 x.

Suppose Lβ 4 x, where x e Wn and Lβ e Φn. As before if Lβ e Φn then
n>\. Consider the set LΓ{x) of all δ such that Lδ e x. Clearly L~(x) U j~j3| C
<£>„_! and, since Δ is a normal modal logic and ~Lβ e x, L~(x) U \~β\ is
Δ-consistent. So, by Theorem 2, L~(x) U ί~β} C y, for some y e W^-i Since
~β e y then β 4 y and so, by the induction hypothesis, Thy Ay β. But xRy and so
Thy Ax Lβ. This completes the proof of the theorem.

Using Lemma 1 we have the following corollary of Theorem 3:
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Corollary 4 For any n <m, ifx, y e Wn, then 2ft/ (̂  yy iffx = y.

Consider now the logic D which is K with the addition of M(p D p).
Suppose p e P.

Lemma 5 If A is a normal modal logic which contains D then, for any P
and m, if c^(= (W, R)) is the frame of the P/m/A-model then, for every x e W,
there is some y e W such that xRy.

Proof: Suppose x e Wni where n > 1. Then, if Δ contains D, M(p D p) e x
(since M(p D p) e Φn for all n > 1). So by Theorem 3, 2ft/ 1= M{p D p). So
there is some y such that 7n/ \~ p D p and xRy. If x e WQ then xRx. In either
case there is some y e W such that xRy.

Lemma 6 KM contains D.

Proof: M is equivalent in K to M(Mp D Lp) and \j Mq D M(p D p). So
KM \-D.

The next theorem is the crucial theorem of the paper.

Theorem 7 // Δ is KM then, for every number m and every finite set P of
variables, the frame ^ of the P/m/A-model is a KM frame.

Proof: Suppose cΓ(= {W, R)) is not a KM frame. Let %/(= {£", V)) be the
P/m/Δ-model. Then there is some model Tϊv* = {^, K*>, such that for some
w* e Wn (for some n < m): Tfts* Aw* LMp D MLp. (Obviously if any instance
of M fails on <f then this one does.)

We first note that n > 1 for suppose that n = 0 or n = 1. In either case, if
w*Rx then x e Wo. So suppose 7n/* \== LMp. Then 7h/* t^ Mp for every x e Wo

such that w*Rx. By Lemmas 5 and 6 there is at least one such x, and, by the
definition of R, for x e Wo, if xRy then x = ̂ . So since 2ft/* ^ Mp, then
2ft/* ^ Lp, So 2ft/* 1= MLp. In other words M cannot fail where w* e Wo

or Wx.
So we may suppose that n > 1. We show how to define a wff δp of Φr t_2

such that 7)vAw* LMδp D MLδp.
We define δp as follows. δ p is the disjunction

( y X l v . . . v y x k )

where {x1? . . ., x^\ = V*(p) Π W/Λ_2 If t n i s s e t i s empty then let δp be ~(q D q)
for some q e P. Clearly δp e Φπ-2

Lemma 8 For any propositional variable p and any x e Wn-2,

?^* \%piff7n/ ^χδp.

Proof: If 2ft/* t^ p then x e F*(p), but x e H ŵ_2 and so yx is one of the
disjuncts of δp. By Corollary 4, %/ ^ yx, and so 2?̂  t^ δ p .

If ?%/* =jx p then yx is not one of the disjuncts of δ^. So either (1) δp is
~ ( ^ D ̂ r)5 or (2) δ p is a disjunction, each disjunct of which is some yy for
y e Wn-2 and x Φ y. If (1) then clearly 7ft; Ax δp. If (2) then, since x and
y e Wn-2 and x Φ y, by Corollary 4, 2^=1^7^. But this is so for every disjunct
of δp. So 7)v Ax δp. This proves the lemma.
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We want to show that

7?ι/=\w*LMδp DMLδp.
5

Now 7?u* =1W LMp D MLp and so (1) 7?u* 1= LMp and (2) 7?ι/* =lw*
MLp. From (1) we have 7?ι/* ̂ Mp for every x such that w*i?x. (Obviously
x e Wn-V) This means that for every such x we have ?%/* t=p for some >> such
that x/?y. Obviously y e Wn-2 and so, by Lemma 8, Tfis ^ δ p . And so %/ ^
Mδp for every x such that w*Rx. So ?%/ 1= LMδp.

From (2) we have that Tfts* Ax Lp for every x such that w*Rx. (Obviously
x e WΛ_i ) So %/* Ay p for some .y such that xRy. Obviously y e Wn-2 and so,
by Lemma 8, 7n/ Ay δp, so Tru Ax Lδp, for every x such that w*Rx. So Tίv =lw*
Λflδp. So ^ / =iw* LMδp DMLδp.

But δ p e Φw_2 and so LMδp DMLδp e Φn, and so, by Theorem 3, LMδp D
MLδp 4 w*. But w* is ft-maximal and so ~(LMδp D MLδp) e w*.

But this contradicts the fact that w* is jOί-consistent. So LMp D MLp
cannot fail at any point on / . So no instance of M can fail on ^ i.e., <f is a
XM-frame. This establishes Theorem 7.

Theorem 9 AΛf Λα,s the finite model property.

For proof, suppose a is not a theorem of JKM. Then, where P is the set of
all the variables in a and m is the modal degree of α, by Theorem 2, there is an
m-maximal .Oί-consistent set x such that ~ α e x. Obviously x is a point in
the P/m/KM-model, Tru = ( ^ , V), and so, by Theorem 3, ??z/ ^ α. Now ^ is
finite and, by Theorem 7, ^ is a JΏkf-frame. So if o: is not a theorem of KM
then α fails on a finite JΏlί frame. So any wff is a theorem of KM iff it is valid
on all finite KM frames; i.e., KM has the finite model property.

Corollary 10 KM is complete.

NOTES

1. KM is discussed in [6] on pp. 74-76. In this paper we use the terminology of frames,
models, etc. as developed by Segerberg (see [7]) on the basis of [6]. (An account of this
is given in [1].)

2. Goldblatt in [3] and van Bentham in [8] give (different) proofs that the class of all KM
frames is not first-order definable. In Part II of [4], pp. 40-42, Goldblatt proves the
stronger result that no class of frames which characterizes KM is first-order definable.

3. Lemma 1 need not hold where x and y are not in the same Wn. For suppose x e Wn and
consider any m > n. x will be a consistent set of wff of Φ m , and so there will be a y e Wm

such that x C y. Obviously yx ey and yet xΦy.

4. This means that each bottom-level world is related to itself and itself alone. Alternatively
we could follow Fine ([2], p. 232) and add a world (we could call it ω) to which each
member of Wo is related, ω would be related to itself alone. This procedure enables Fine
to generalize the proof to other systems besides KM as described in Note 5 below.

5. We note that LMp D MLp is a formula of the kind Fine calls 'uniform' ([2], p. 232). That
is to say each propositional variable occurs within the scope of exactly the same number
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of modal operators, in this case two. Because LMp D MLp is uniform its truth at w* e Wn

depends on the truth of p only in worlds in Wn_2, a fact which is crucial in the proof of
Lemma 8. Fine defines a logic to be uniform iff all its axioms are uniform and it is able to
prove an analogue of Theorem 7 for all uniform logics (using the variation described in
Note 4 above).

Examples of nonuniform modal logics are the 'standard' systems such as T, S4, B,
and 55. The proof given in this paper does not apply to them without adaptation,
although in these particular cases the adaptations actually make for simpler structures,
because we only need one level of worlds. (Fine [2], p. 235, calls such models 'ungraded'.)
We do however need a more complicated definition oϊR. Suppose Δ is one of T, S4, B, or
S5. Then let the Δ/ra/P-canonical model have as its set of worlds just Wm. For T, let xRy
be defined as: For every a such that La e Φm, La ex => a ey. For S4: La ex =>La ey,
for B: La e x => a e y and La e y => a e x, and for S5: La ex <=>La ey. Obviously the
frames have the right properties, and the analogue of Theorem 3 is not hard to prove. The
method can obviously be generalized to many other systems, but the definitions ofR will
need to be tailored to each particular case.
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