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An Axiomatization of Predicate

Functor Logic

STEVEN T. KUHN

1 Introduction Predicate Functor Logic is a formal system devised by
Quine to provide a natural variable-free equivalent of elementary logic. It is
described, in its most recent form, in [9]; but the ideas go back to [8] and
[7]. In [9] Quine discusses the problem of exhibiting a simple and complete
"proof procedure" for predicate functor logic, i.e., a procedure for recursively
enumerating the formulas of predicate functor logic whose elementary logic
counterparts are valid. This paper describes one such procedure.1 We provide
an interpretation for predicate functor logic which is consonant with Quine's
remarks. The class of formulas valid with respect to this interpretation is
axiomatized by a recursive set of axioms and rules. The proof that this
axiomatization is complete is an adaptation of the Henkin completeness proof
for elementary logic. It does not require translations between predicate functor
and elementary logic. The axiomatization is not as simple as might be desired:
nonprimitive symbols are needed to display the axioms conveniently. But a
closely related system is shown to have a simple and perspicuous axiomatiza-
tion.

2 Predicate functor logic The language of predicate functor logic con-
tains symbols of two varieties. First, for each n > 0 there is a countable collec-
tion of n-ary atomic predicates. For convenience we take these to be just the
ft-ary predicates of elementary logic. Second, there are the predicate functors,
Ί , Π , p , P , [,],and/.

For n > 0 the set of n-ary predicates satisfies the following conditions:

1. All ft-ary atomic predicates are ft-ary predicates.
2. If Pn and Qm are n-ary and m-ary predicates, respectively, then

{Pn Π Qm) is a mαx(ra,n)-ary predicate.
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3. If Pn is an «-ary predicate, then ~\Pn and ?Pn are n-ary predicates,
[Pn is an w+l-ary predicate, ]P" is an n-l-ary predicate (unless n = 0,
in which case it is an n-aτy predicate), and pPn is an rc-ary predicate
(unless n < 1, in which case it is a 2-ary predicate).

4. / is a 2-ary predicate.

A predicate is a string of symbols which, for some n, can be shown to be an
n-ary predicate on the basis of 1-4. (We make the usual assumptions that the
initial collection of symbols is pairwise disjoint, and that juxtaposition in
the metalanguage represents concatenation in the object language.) JLPF is the
set of all predicates. A sentence of JLpp is a 0-ary predicate. Henceforth we
use P, Q, R and Pn

9 Qn

9 Rn, as metamathematical variables ranging over predi-
cates in JLpp and n-aiy predicates in JLpp, respectively, φ and φ are used
similarly as variables over formulas of elementary logic.

A model is a pair M = (&,<£) where \JJ is a nonempty set (the domain
of M) and J is a function from w-ary atomic predicates of Jipp to subsets of
`,jyn. The members of jyω are called arrays of individuals, or simply arrays.
Suppose M = {&,Λ) is a model and 0 = (du d2, . . . > is an individual array onΛ/.
Then /> w fr we of a in M (written ςM F P9 or simply 'Λ \=P` when confusion is
unlikely) if one of the following holds:

1. P is an atomic rc-ary predicate and (dϊ9 . . ., dw) e J(P)
2 . P = Ί β a n d n o t α I=Q
3 . P = Q n ^ andα t=Qandα t=/?
4. P = p Q « a n d < d2, du d3, d4,...)^Qn

5.P=PQn a n d (dn, du . . ., dn-u dn+u ...)ΪQn

6.P=[βand<έ/ 2 ,rf 3 , . . .> t=β

7.P= ]βand.<d0>di> •> ̂  Q f o r s o m e do e ^
•8./> = /andd 1 = d2.

i> & /rae /n Λf (written 'ilί t= P') if M F P for all individual arrays a on M.P is
valid (' 1= i") if it is true in all models. If Γ C £PF then Γ & true of a in M
CM £ Γ ) if, for all /> e Γ, Λf £ />.

5 Abbreviations Superscripts on functors or on bracketed groups of
functors are used to indicate iterations. For example, ' ] 3 / " means ]]]P,
'(Pp)2<2` means PpPpβ, and 'P°Q' means Q. The following abbreviations will
be useful (n,k>0):

l . (βI>Λ) = Ί ( Q n - | Λ )
2.((2#Λ) = ( ( Q D Λ ) n ( Λ D β ) )
3. 1 = (/ Π Ί / )

4 f τ r , n = (P ( " + 1 ) - f c (Pp) f e - 1 Q' I i f fc<n
fc I okiQ" n [fe"2 Ί 1 ) otherwise

5. σΐQ = σtιQ
6.τkQ = ]σk+1(mσϊlιQ)
7 T<fc1,...,ifcn>Q = ϊ>nTjfcn_, + i . . . Tk1+n-iQ
8. IfT C Z/-F, rte« Γ* = ίτ<2, 4,. . ., 2Π)/"1: i"1 e Γ).

Notice that if Q is an n-ary predicate σkQ is a max(n,k)-suy predicate, τkQ is

a max(n - l,fc)-ary predicate and τ<jc1,...,kn)Q i s a n wi ary predicate where
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m = max(k1 + n - 1, k2 + n - 2, . . ., kn). Outermost parentheses in the name of
a predicate are often dropped.

Lemma 1 For all models M = (&,<ί) and all a = (dl9 d2, . . . > in &ω,

a. a \=QDRiffa `φQora`PR
b. a \=:Q#R iff either a ^Qanda t=R or a #Q and a #R
c. a \fi 1
d.. α 1= σ*β ///<d*, d t , . . ., dk-x, dk+ί, ...)\=Q
e. a t= σ ^ β ///<d2,. . ., d*, d l f d* + 1 , . . . > 1= Q
f. e t = r i t Q i / / < d i f c , d 1 , . . . > l = ί 2
g a \=τ(kh..,ikn)Q iff(dkv . . . , dkn, dl9 d 2 , . . . > I=Q.

4 Elementary logic The models and "arrays" defined in Section 2 are
easily recognized as ordinary models and assignments of elementary logic.
If υu υ2,. . . is an enumeration of the variables of elementary logic then we can
regard a formula of elementary logic as true in M under a if it is true in M
when the Γth coordinate of a is assigned to v, . So it makes sense to ask whether
there is a predicate in JLpp which is true under the same conditions as a given
formula of elementary logic. For example, the sentence "Ί ] "KP1 Π Ί Q 1 ) of
JCPF i s ^ r u e ̂ n a model M if and only if the sentence Vx^x Λ ̂ Q 1 *) of ele-
mentary logic is true in M. To find equivalents of other sentences requires
some ingenuity. Predicate functor logic contains no variables, so the effect
of permuting, repeating, and deleting variables must be obtained by appropriate
use of functors. But, as Quine remarked, it can be done: whatever is expressible
in elementary logic is expressible in £PF and vice versa.

To show this it is convenient to use a fact noted by Tarski: every formula
of elementary logic with identity is equivalent to one in which each fc-ary
predicate (except ί = ') is followed by υu . . ., v^ Let - ^ b e the set of formulas
of elementary logic which have this property and let JL be the set of all
formulas of elementary logic. We define a translation tt from JLT into JLppby
induction:

tι(Pυι...υk) = P
. / \ \ojOirIiij <k

ίiΠΦ) = Ίίi(ψ)

ίi(φΛ Ψ) = tι(φ)ntί(φ)

t1((3υj)φ)=]σ/+ιlσfιt1(φ)-

Similarly, we define a translation t2 from JLpp into ̂ | :

hif`) = vι = υ2

t2(P") = PVι...υn

t2OQ) = -t2(Q)
t2(QnR) = t2(Q)M2(R)
t2(pQ)=t2(Q)[υuv2lυ2,υ1]
t2(PQn) = /2(Q)[»i,. . ., vn/vn,vu . .., i;,,.,]
h([Qn) = t2(Q)[υu . . .,vn/υ2,. . .,υn+1]

t2(]Qn) = 3»»+i(ί2(β)[ι>i, ., vn+ιlυn+uvu ..., vn]).
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Lemma 2 (a) IfM t= 0, then M t= ^(0). (b) IfM £ P, then M 1= t2(P).

Corollary Ifφ and P are sentences of^τand-£pF> t^ιen ^ Φ implies ^ tx{φ),
t= P implies 1= /^(P) tfftd t= 0 <-* ^(^i(0)) ^ oίΛer words, predicate functor
logic and elementary logic are equivalent in the sense ofKotas and Pieczkowski
i l l

5 Axiomatization To state the axioms and rules properly we need to know
conditions under which the A:'th coordinate in the array a is relevant to P's
being true of a.2

Definition P depends on coordinate k if k > 1, P φ 1 and one of the
following hold:

a. P is an ft-ary atomic predicate and k < n
b. P = Ί β and β depends on coordinate k
c. P = (Q Π R) and either Q or R depends on coordinate k
d.P= PQn and either k = 1 and β" depends on coordinate n or 2 < k < #

and β" depends on coordinate « - 1
e. P = p<2" and either A: = 1 and Qn depends on coordinate 2 or k = 2 and

Qn depends on coordinate 1 or 3 < k < n and β depends on coordinate k
ί. P= [Q and Q depends on coordinate k - 1
g. P = ] Q and β depends on coordinate k + 1.

Lemma 3 (a) //P does not depend on coordinate k, then (du . . ., djc, . . . >
\= P iff (du . . . , 4 , > *= Λ (b) Ifnkli...ikn+p)Pn depends on coordinate j,
thenj e \ku . . .,&„;!.

Let PF be the smallest subset of JLPF which contains all instances of the
following axiom schemes and is closed under the following rules.

Al Any predicate schema which can be obtained from a tautology by a
uniform substitution of predicate variables for sentence letters, Ί for ~ and Π
for A (for example P^>(Q^>P),Q#Q)
A2 r<1,...,«>P«#P"
A3 τ{kι_.ikn)P»#τ{kί,...)kn+p)P»
A4 r α 1 , . . . > ^ > Ί P # Ί r < ^ . . . , ^ > P

A5 r{kh...^(P'` Π Q?) # (T{kh...,^P' Π r<* l f...,^>β>), wftere * = /wαx(/,/)
A6 τ(k>k)I
A7 r<Λ*>/ 3 τ{kj)I

A8 (^</,/>^ n ^</,ife> )̂ D ^<i,/t>^
A9 (r<^ 1 } . . ,iku.. . 5 k γ ι ) P Π r<^.f/l.>/) 3 r < Λ l f . . . f / / t . . . , ^ > P
A 1 0 r«ί gP^#rM, *„./"
All r<ίtl9...fkn)pPn#τ<k^kl9kz9,.m9kn)Pn

A12 .̂....ĝ -̂ r̂ ,,,,̂ -1

A13 %...ΛΓ^ftι ylΛ
Rl If P and P D β are in PF, then so is β.

R2 If (P Π r<jfco,...,Ak>Q) 3 i? is in PF and neither P (Ί r<jt1,...litΛ>]Q nor R
depends on coordinate k0, then (P Π r<jtlf .,itM>] β ) ^ Λ is in PF.
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It is easy to check that each instance of A1-A 13 is valid and that Rl and R2
preserve validity. Hence every member of PF is valid. To prove the converse
we need a few definitions and lemmas.

Definitions Suppose Γ C PF. Γ is consistent if it does not contain Gu . . .,
Gn such that (Gj Π . . . Π Gn) D 1 is in PF. Γ is maximal consistent if it is
consistent and it has no proper extension which is consistent. Γ is saturated
if it is maximal consistent and in addition it contains τ(kOi...,kn)P f ° r some
k0 whenever it contains τ(kh.,.,kn)P-

Lemma 4 For all Γ, if Γ* is consistent it can be extended to a saturated
set Γ+ C £PF.

Proof: Let Pίf P2, . . . be an enumeration of JLPFsuch that if Pz = τ(kh...,kn)]Q
then Pi+ί - τ(kOy...ikn)Q for some k0 such that k0 is odd, kQ is distinct from
ku . . .,kn, and none of the P/'s which appeared previously in the list depend
on k0. (Such a k0 will always be available because each Pj depends on at most
finitely many coordinates.) We define a sequence of subsets of JLpp by induc-
tion: Γo = Γ*. Γ / + 1 = Γ U {Pi+1\ if this is consistent and Γ, + 1 = Γ U lΊP/ + 1 )
otherwise. Let Γ+ = (J Γ, . It is easy to check that Γ+ is a maximal consistent

extension of Γ*. To see that Γ+ is saturated, suppose τ(kh...,kn)]Q e Γ+.
τ{kXi.. .,kn)] Q must appear in the enumeration oίXpp`, say it is Pj. It is sufficient
to show Pj+i e Γ/ + 1. But this can fail only if Γ; U {P/+1} is inconsistent. Since
Γ+ is consistent Γ7 must contain Pj. Hence, if PJ+1 $ Γ / + 1 then (Gx Π . . . (Ί
Gn ^ τ(ko,...,kn)Q) ^ 1 is in PF for some Gί9. . ., Gn in Γ/. But k0 is odd, so
nothing in Γ* depends on it. Furthermore k0 was chosen so that Pu . . ., Pj
and T{kh...ikn)^ Q do not depend on it. By Rule 2, therefore, (Gx Π . . . Π GnΓ\
T(kh kn)] Q) ̂  -i- is in PF which violates the consistency of Γ7 .

Lemma 5 // Γ* is consistent there is a model M and an array a such that
M £r*.

Proof: Let Γ+ be a saturated extension of Γ*. Let ~ be the binary relation
on positive integers defined:

/~/iffr< / f / >/eΓ + .

By Axioms A6, A7, and A8 it follows that ~ is an equivalence relation. Let
[/] be the equivalence class of i under ~. Let ff = {[i]: i < ω\; let a = <[1],
[2], . . . >; and for atomic P\ let (Pn) = {<[*il, ., [*«]>: τ{kh...,kn)Pn e Γ+ί.
Then M = <^,J> is a model and α is an array onM. It can be proved by induc-
tion on the length of Pn that <[£J, [k2],. . . > t= Pn iff τ(kl,...,kn)Pn e Γ+. We
do three cases and leave the others to the reader.

Case i. Pn=L <[fcj, [Λ2], . . . > ̂ Pn iff [ΛJ = [k2] iff r<^^ 2>/e Γ+.

Qwβϊϊ. P w = ?Qn and w > 2. < [ ^ ] , [Λ2],. . . > v ^ P β π iff <[ΛΛ], [ΛJ, . . .,

[kn-ih Ikn+ih > t= β Λ iff r Λ | l f * l f . . . . i ^ Q * e Γ+ iff τ{kl,...,kn)*Qn e Γ+

(by A10).
Cα5e Hi. Pn = )Qn+1. If ([ΛJ, [Λ2], . . . > t= ] β " + 1 , then <^0, ku . . . > 1= β w + 1

for some A:o. By induction hypothesis, T(ko,...,kn)
 = Q w + 1 € Γ+ for some A:o. By
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A13 τ(kli,,,)kn)]Qn+1 e Γ+. Conversely, if τ{kh...ikn)]Qn+1 e Γ+, then since

Γ+ is saturated T{ko,...,kn)Qn+ι e Γ+ for some k0. By induction hypothesis

<Jfc0, ku...)\= βw + 1. 'Hence (kl9 k2,. . . ) 1= ] Qn+ί.

To complete the proof of Lemma 5 observe that M t= Pn iff τ<if ...Λ>PΠ e Γ+

iff Pn e Γ+ (by A2). Since Γ* C Γ+, M £ Γ*.

Lemma 6 // Γ w consistent so is Γ*.

Proof: If not, then (Gj Π . . . Π GM) D 1 is in P F for G of the form r<2,..., 2ki)pi

where P/ e Γ. By A3 and A5, it follows that r<2} 4)...,2,m>(Λ Π . . . Π PΛ) D 1 is

in PF where m = maxXkf. 1 < z < wl. By m applications of R2, ] w (Pi Π . . . Π

PΛ) D 1 is in PF. But by m applications of A13, r<i (... f W>(Λ Π . . , Π ? n ) D

] m (P! Π . . . Π Pn) is in PF. Hence (Λ Π . . . Π Pw) D ί is'in P F which violates

the consistency of Γ.

Theorem 1 If V is consistent there is a model M and an array a such that

M£Y.
Proof: If Γ is consistent, then by Lemma 6, so is Γ*. So by Lemma 5 there

is a model M and an̂  array a = {dud2,. . . > such that M 1= Γ*. But if a' =

id29d4,...)thenM £'ϊ\

Corollary ^PiffPePF.

6 Logic without identity The version of predicate functor logic described
here is that of [9]. In [8] the 0-ary functor / is not present. In its stead is a
unary functor S called "reflection" with the truth condition:

(au . . .,an) \=SA iff (auaua2, . . .,an) ^PA.

The resulting system is equivalent to predicate logic without identity.
Our axiomatization and completeness proof can easily be adapted to this

system. First, for all numbers m and n, we can define a complex functor im>71

such that (flu . . ., am,. . ., ap) 1= im%nA iff (au . ., am-l9 an> am+u , <*p) ^ ^
A6-A9 are replaced by:

B6 imtnin,mP # im,nP
"I ιm,nιp,m* fr lm>nιp,n*

B8 r< f c l ) . . . ) A : m > . . .^ p )/ m ) Π P#r</ r i ) . . . ) A : m _ 1 ) f c m / : m + 1 ) . . . ) ^>P.

The remaining axioms are kept intact. The completeness proof is unchanged
except that the definition of the relation ~ of Lemma 5 becomes:

m~ niίfA # im^nA is a member of Γ* for all A.

7 Restoring free variables In the first section of [8] Quine points out that
the introduction of variable binding operators in mathematics coincides with
the failure of some attractive rules of substitution. Since all variable binding
can be reduced to variable binding by quantifiers, the replacement of quan-
tifiers by functors can be regarded as the reduction of a convenient, but con-
ceptually complicated, idea to a simpler (though less convenient) one. It should
provide, as Quine says, " . . . an analysis of the idea of the bound variable: an
explanation with all the clarity of the discrete and blocklike terms and simple
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substitutions characteristic of algebra" ([9], p. 215). But predicate functor
logic is a more radical departure from elementary logic than is needed for this
reduction. The language of predicate functor logic dispenses not only with
variable binding operators, but with the variables themselves—both bound
and free. In this section we consider a variant of JLpp in which the free variables
are restored. We call the new language -LpFγ.

A basic formula of -Lppγ is a n ^-ary predicate (not necessarily atomic)
followed by n individual variables of -£. A formula of JLPFV is something built
up from the basic formulas in the usual way using the connectives Λ and Ί . A
sentence of £ppγ is a formula containing no individual variables. For example
P° Λ ]P ] (β 2 Π R1) is a sentence of JLPFV. LPFv is identified with the set of
its formulas, a, β9 y are used as metamathematical variables ranging over JLppy.
Truth for formulas of -ίppγ can be defined succinctly by using the notion of
truth for predicates of JLpp defined previously: If If is a model and a is an array
on M then

\.atPnυkχ. . . υkniϊϊ(dkv . . .,dkn, du . . . > \=Pn

2.a l=Ία iff note \=ot
3. a t=α:Λ βiffα ^ α a n d α t=β.

M \= a iff for all α, (M,a) 1= a.
PFV is the smallest subset of JLppγ containing all instances of the follow-

ing schemas and closed under the following rules.

Bl All tautologous formulas
B2 ( P m Π Qn)χx . . . x m a x i m > n ) <-> ( P m x λ . . . x m N P n x x . . . x n )
B 3 ~\Pxx . ' . . * „ < - • ~ P x x . . . x n

B 4 I x x
B 5 Ixy^Iyx
B6 (Ixy Λ lyz) -• Ixz
B7 (Pxx . . .xnAlxίyί)-^Pyίx2. . . xn

B8 ?Pxι...xn++Pxnxι...xn-ι

B9 pPxί. . .xn++Px2xί. . .xn

BIO [Pxx.. .xn++Px2. . .xn

Bll Pxo .xn^]Pxi- -Xn-

51 If a and a -> β are in PFV then so is β.
52 If (a Λ Px 0 . . . xn) -+ β is in PFV and JC0 does not occur in β or
a Λ JPxj . . . xn, then α: Λ ]PXX . . . xn -> β is in PFF.

Lemma 7 PFF contains all instances of the following schemas:

(a) σkQ
nxx ...xn«+ QnXk*\ - Xk-iXk+i .xn,ifk<n

(a') σ ^ x i . . . Xk++QnXkXi Xn-u ίfk>n

(b) TjtQ^i . Xm ++ QnXkX\ - ΛΓΛ-I, where m = max(k,n)

(c) rot! ΛΛ+P> Qn^ l *m ̂  G^ifc! Xkn> where m = max(kx, . . ., kn+p,
n+p).

Proof: Lemmas 7a and 7a' can be proved easily using B5 and B6. 7c follows
from 7b. We prove 7b for the case k <n. First, notice that each conditional
in the following list is in PFV:
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Qnxkxi. . . Xn-ι -» Okl1Q
nxkxkx1. . . xk-! . . . xn-x (by 7a5a')

Qnxkx1.. . Xn-i -* IxkXk A ̂ ^ Q ^ ^ x j . . . x*-ix*+i. . . Xn-i (by B4)
Qnxkxx .. . xΛ-i -> (/ Π Okl1Q

n)xkxkx1 . . . x*-i**+i . . . *„_! (by B2)
β ^ x x . . . xn.x -» σjt+1(/Π σ ^ i β " ) ^ ^ ! . . . *n-i (by 7a, a')
( 2 ^ x i . . . Xn-i -> ]σjt+i(/ Π σίΛfi11)^! *«-i (by Bl 1)
QnXkXt . . . Xn-ι "* TitQΛXi Xn-l

Next, let y be any variable distinct from xu . .., xn-χ. Then the following are
also in PFV:

σk+ί(I Π σk+χQn)yxι . . . xΛ-i -> (/ Π σ^+1

1Q'2)^^i. **-i**+i /̂i-i
(by 7a)

σ/t+i(/ Π OjfeAG")^!. . . xn-\ -+ (fxky Λ oklxQ
nxkyxλ.. . xk-xxk+χ. . . xw-i)

(by B2)
σΛ+i(/ Π oϊ^ζDyxx. . . xΛ-! -• (/yx^ Λ Q ^ X J . . . x ^ ) (by B5 and 7a)
σk+ι(I Π σ^Λβ")^! . . Xn-ι ̂  QnXkX\ - ^ - i (by B7)
]σ^+1(/ Π σ£1Q

n)x1 . . . *„_! -• Qnxkxι . . . xΛ-i (by S2)
rytQwXi . . . Xn-i -* β π x ^ i X/i-i.

Hence, τkQ
nxx . . . xrt-! <-> QnXkX\ *«-i is i n P F F .

We now define translations between JLpp and\£PFV:

Let ^ ( P 7 2 ) ^ . . . ι v
Let s2(Pnvkl. . . vkn) = τ<* l f.. .,^>PW

s2(aΛβ) = s2(a)ns2(β)
s2(~a) = Ί J2(«).

Lemma 8

(a)Λί t=Pϊ//Λί tfj^P)
(b)Λf \=aiffM \=s2(ά)
(c) ifPePF,sx(P)ePFV
{ά)sxs2(ά)<r+aePFV.

Proof: Lemma 8a follows from the definitions. 8b can be proved by a
routine formula induction. To prove 8 c, notice first that by Lemma 7 c,
si(τ(kh...,kn)P) ^ Pvkι . . . υkn is in PFV. Using this fact it is easy to check
that the translations of Al,. . ., A12 are in PFV and that PFFis closed under
the translations of Rl and R2. 8d can also be easily proved by using Lemma 7c.

Theorem 2 \=aiffae PF.

Soundness is routine. To prove the other direction, suppose 1= a.. By Lemma 8b,
E= s2(a). By the corollary to Theorem 1, s2(a) e PF. By Lemma 8c, Sι(s2(o0) e
PFV, and by Lemma 8d, a. e PFV.

NOTES

1. Axiomatizations of similar systems have been given by Bernays [1], Nolin [6], Howard
[3], and Craig [2]. Craig's axioms are particularly simple. Only Nolin's system, however,
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is "autonomous" in the sense Quine requests, and his completeness proof rests on transla-
tions with a previously axiomatized version of predicate logic.

2. The definition and lemma which follow are needed only to establish strong completeness.

Every valid formula of ^_pρ can be derived in the axiom system obtained by replacing

R2, which follows axiom schema A13, by R2w: If (Pm Π τ(ko^tt)kn)Qp) D Rs is in PF

and ko>max(m,n,p,s,k1, . . ., kn) then (PmΠ τ(ku...tkn)]Qp) DRS isinPF.
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