
188

Notre Dame Journal of Formal Logic
Volume 24, Number 2, April 1983

Cylindrical Decision Problems

for System Functions

M. B. THURAISINGHAM*

1 While investigating the one-one equivalence between various General
Combinatorial decision problems, Cleave [ 1 ] initiated the concept of system
functions. System functions are defined on natural numbers and their values
are finite sets of natural numbers. They have many properties in common with
those arising from Godel numbering various combinatorial systems. Thus the
decision problems defined for these combinatorial systems can also be defined
for system functions. Furthermore, if a property holds for a particular decision
problem for all system functions, then it also holds for that decision problem
for all these combinatorial systems.

In his study of the one-one equivalence between General Combinatorial
decision problems using system functions, Cleave [ 1 ] considered only a finite
number of decision problems. We have extended his study to include an infinite
number of decision problems. This is accomplished firstly, by defining a
generalized class of formulas in terms of a first-order language so that each
formula in this class corresponds to a decision problem for system functions
and secondly, by analyzing these formulas to determine whether the cor-
responding decision problems for various kinds of system functions are cylin-
ders. As stated by Cleave [1], we take this approach for the following reason:
"If P1 and P2 are two General Combinatorial decision problems which are
many-one equivalent and if each instance of Px and P2 are cylinders, then they
are one-one equivalent" ([1], p. 254). This is the best possible equivalence one
can obtain.

*The author wishes to thank Dr. J. R. Hindley of the Department of Pure Mathematics,
University College of Swansea, U.K. and Dr. J. P. Cleave of the Department of Pure
Mathematics, University of Bristol, U.K. for their guidance.
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In Section 3, we define this generalized class of formulas (denoted GCF)
and also choose an infinite subclass of GCF and show that all the decision
problems (for a certain kind of system functions) which correspond to the
formulas of this subclass are either recursive or cylinders. The preliminary
definitions are given in Section 2.

2 In this section we define system functions as in [1] and also develop a
first-order language L which will be used to define the class GCF in Section 3.

Let f:N -> PW(N) where N is the set of all natural numbers and PW(N) is
the set of all finite subsets of N.

For each X e PW(N), define f(X) = U ifto` x e XI For each xeN, define
f°(x) = xt f\x) = f(x)9 fm+1(x) = f(fm(x)).

Define f~\x) = iy:x e f(y)\\. By y e CfX (or x e Cfiy) is meant: y = x or
y e f(x) or there exist υu υ2, . . ., vn {n > 1) such that x = vuy = vn and for each
/(I < / < « - I),i;/+1e/(i;/).

n-i

By the expression y Xi-ι e CfXi w e niean: x2 e CfXιVx3 e CfX2V[ . . .,
Vxn e CfXn-v

 i=1

A system function is a function f:N -> PW(N) such that there exist recur-
sive functions a and b such that for all x, f(x) = Da^ dndf~\x) = £>&(*) where
Dn is the nth finite set in some standard enumeration.

A system function / which has the property that for each x, f(x) has at
most one member is called a machine function. Clearly system functions
that arise from combinational systems such as Turing Machines and Markov
Algorithms are machine functions. The class of all system functions is denoted
by 6 and the class of all machine functions is denoted by 1. Some of the deci-
sion problems for a system function /are as follows:

halting problem for/= \x:(Ey)(y e CfX Λ f(y) = Φ)}
derivability problem for/= I{(JC, y):y e Cfx]
confluence problem for/= {(x, y)\(Ez)(z e CfX τ\ z e Cfy)\.

We now define a first-order language L as follows: The logical symbols of
I are Λ, V, ̂ , .£, and parentheses.

(i) a denumerably infinite set of variables
(ii) a constant^ for each n e N

(iii) a two-place predicate R and a one-place predicate Q.

A term is either a variable or a constant.
For each/e S, define a structure Nf as follows: The domain of Nf is N. R^

and Qf are relations on N X N and N, respectively, where R? = \(mlf m2):m2 e
Cfm^. (/ = {m:f(m) = Φli. Clearly R? is recursively enumerable and (/ is
recursive.

Satisfiability of a sentence of L in Nf is defined as follows: For each
klf k2eN,

Nf ^R{kλ,k2)+-+(klyk2)eRf
Nf 1= Q(kϊ) <-• (*! β Qf).

Satisfiability of compound sentences is defined in the usual 'Tarski' sense.
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The following specialized definitions and notations also are needed in
Section 3: Let F be a formula of L whose free variables are xίf x2, . . ., xn. F i s
also denoted by F(xlf x2i. . .,xn). F? is the set of all ^-tuples which satisfy
F(xv x2,. . ., xn) in Nf\ i.e., for any rc-tuple (kXv kXy . . ., fc*Λ),

(Λ^, ^ 2 , . . ., Λ^) eFf*-+Nf \=F(kXv kxr . . ., kXn).

In the w-tuple (Λ^, kXv . . ., Λ^), the subscripts xlf x2, . . ., xn are used merely
for convenience.

Let G C S. Then a formula F has a property P in G if and only if Ff has
the property P for all f e G. For example, F is a cylinder [nonsimple respec-
tively] in G if and only if F? is a cylinder [nonsimple respectively] for al l/e G.
By a nonrecursive and noncylindrical [simple respectively] counterexample for
F in G we mean there exists a n / e G such that F?is a nonrecursive nonclyinder
[ simple respectively ].

A formula F corresponds to_a decision problem D for the system func-
tions of G C S if and only if F? = D[f] for al l/e G, where D[f] is the decision
problemD for/ π - 1

A F-loop is a formula of the form V R(xi, X/+i)FR(.x:rt, jq) where n>2,
n-ί i=i

xίfx2, . . ., xn are all variables and y ^(x,-, xi+1) =R(xx, x2)VR(x2, x 3 ) F , . . .,
VRfrn-u xn). i=ί

A K-path between x and y or a F-path from x to ^ is any formula F where
«-i

F is either R(χ, y) or R(x, z)VR(z, y) or Λ(JC, xj v V ^fe, x/+i)ra(x«, y)
/=i

where w > 2, z, x ^ x2? •> *M a r e variables. If x and 7 are variables, then F is a
K-path between two variables. If x and y are constants, then F is a K-path
between two constants. If x is a constant and ^ is a variable, then F is a K-path
from a constant to a variable. If x is a variable and y is a constant, then F is a
F-path from a variable to a constant.

By a Λ, v combination of R, Q, ~Q we mean any formula built from the
formulas of the form R(x, y), R(x, a), R(b, x)9 Q(x), ~Q(x) using the connec-
tives Λ, v where x, y are variables and a, 6, are constants.

Similarly a F-combination of R is any formula built from the formulas of
the form R(a, x), R(x, b), R(x, y) using the connective v where x, y are
variables and a, b are constants. If F is any formula of L, then EF is a formula
of L of the form (Exίf x2,. . ., xn)F where n > 1, xlt x2,. . ., xn are among the
free variables of F and E is an existential quantifier.

Let F be any F-combination of R. Then k -»— m is a subgraph of the
graphical representation of F if and only if R(k, m) is a sub formula of F. For
example the graphical representation of the formula

R{xl9x2)VR{xitx^VR(pcl9xz)

is shown in Figure 1.
Unless otherwise stated, x, y, z, xίf ylf zx, x2, y2, z2, . . . denote variables

andα, b, c, au b_x, c_Xi a2> b2, c2, . . . denote constants.

3 We now define the generalized class of formulas mentioned in Section 1.

Definition Generalized class of formulas (or GCF) contains any formula of



CYLINDRICAL DECISION PROBLEMS 191

Figure 1

the form K or EK where K is a Λ, V combination of R, Q, ~Q which does not
contain sentences and formulas of the form R(x, x) as subformulas.

We assume that no member of GCF contains sentences and formulas of
the form R(x, x) as subformulas because the inclusion of such formulas will not
give us any additional information. We have used only the predicates/? and Q
in defining the language L because: (i) we have restricted ourselves to recur-
sively enumerable decision problems, and (ii) the predicates R and Q are
sufficient in defining decision problems such as the halting, derivability and
confluence problems. For example, the formula (Ey)[R(x, y)λ Q(y)] corre-
sponds to the halting problem.

In Result (α), to be stated later, we choose an infinite subclass of GCF and
show that all the decision problems for machine functions which correspond
to the formulas of this subclass are either recursive or cylinders. The treatment
of other subclasses of GCF will utilize the same technique as the proof of
Result a which exhibits the essential points of our argument. We have restricted
ourselves to machine functions because: (i) it is possible to give nonrecursive
and noncylindrical counterexamples in 6 even for elementary formulas such as
R(x, y), R(x, a), R(a, x) [2]; and (ii) among the various kinds of combinatorial
systems, it is Turing Machines that are universally applied and the system
functions that arise from Turing Machines are machine functions.

Result (a) Each formula in the class A j is either recursive or a cylinder in
1 where A x consists of all members of GCF which are F-combinations of R
and which do not contain F-loops and formulas of the form R(a, x) as sub-
formulas.
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In order to prove Result (α), we need the following result:

Result (β) Each formula in the class A j is nonsimple in 1.

We will, however, prove the following stronger Result (7).

Result (7) Each formula in the class A2 is nonsimple in 6 where A2 consists
of all members of GCF which are F-combinations of R and which do not
contain F-paths between two constants and F-loops as subformulas.

We have excluded formulas which contain F-loops or formulas of the
form R(a, x) as subformulas as members of Ax. Furthermore, we have also
excluded formulas which contain F-paths between two constants or F-loops as
subformulas as members of A2.

This is because nonrecursive and noncylindrical counterexamples in 3R
can be given for the formulas R(a, x), R(x, y)VR(y, x) and simple counter-
examples in S. can be given for the formulas R(a, x)VR(x, y)VR(y, b),
R(x, y)VR(y, x). Detailed proofs of these counterexamples can be obtained
in [2].

Proof of 7: Let F S F ( x l f x2, . . ., xn) belong to A2 and xlt x2, . . ., xn be all its
variables. Let yίt y2, . . ., ym be all the variables among xlf x2,. . ., xn such that
for each /(/ < / < m), F contains a subformula which is a F-path from yι to a
constant. Let zlt z2, . . ., z& be all the variables among xx, x2, . . ., xn such that
for each /(I < / < &) there does not exist a /(I < / < m) such that z, = yj and
for each /(1 < z < &) either F contains a subformula which is a F-path from a
constant to zz or there exists a variable, say w, such that R(w, z, ) is a sub-
formula of F and w $ \yx, y2,. . ., ym\. Let

{Ulf U2, . . ,,Ut\ ={X1,X2, - Xnl ~ Uyi,y2> ->yml U Ul>*2> Zktt-

For example, if the graphical representation of F is as shown in Figure 2, where
*i> *2> χ3> - J χ9 a r e variables and a, b_ are constants then \yXy y2, y3\ =
{xu x2, x3\, \ulf u2\ = ίx4, x9\, and [zu z2, z3, z4] = {x5, x6, xlt xs\.

As F does not contain F-paths between two constants and F-loops as
subformulas, the following Conditions I-IΠ hold:

Condition I. For each /(I < / < m), there does not exist a constant, say a, such
that R(a, yt) is a subformula of F. If there exists a variable v such that R(υ, y{)
is a subformula of F, then υ e {ylt y2, . . ., ym^ There exists a term, say u, such
that R(yi, u) is a subformula of F.

Condition II. For each /(I < / < k), there does not exist a constant, say β, such
that R(zif a) is a subformula of F. If there exists a variable 1; such that i?(z/, ϋ)
is a subformula of F, then 1; e {zj, z2, . . ., z^}. There exists a term, say u, such
that R(u, Zi) is a subformula of F.

Condition III. For each /(I < / < t)9 there does not exist a constant, say α, such
that either R(uiy a) or R(a, u{) is a subformula of F. If there exists a variable 1;
such that R(υ, ufi is a subformula of F, then 1; e \ylf y2, . . ., ym\. If there exists
a variable w such that R(Ui, w) is a subformula of F, then w e [zx\ z2, . . ., z#i.
There exists a variable w such that either R(uiy u) or Λ(w, wz ) (but not both) is a
subformula of F.
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a
Figure 2

It needs to be proved that F? is nonsimple for each / e 6. If F? is recursive
for an f e G, then it is nonsimple. Suppose F? is nonrecursive for a n / e 6. Then
the following statement * holds.

* There exists an w-tuple of numbers (eXy eXv . . ., eXn) which is a member
of F? such that at least one of

cfeyv

 cfeyv •> cfeym> cΓle*v cΓle*v - c / - 1 ^

is infinite.

Now, if * does not hold, a decision procedure can be given for F? as
follows: Given an rc-tuple {qXy qXv . . ., qXn), enumerate

cf«yv cf4y2> ' ' - c / ^ m C/" 1^!' c Γ ^ v ' ' " c /" 1 «^

If one of

C / ^ r C / ^ 2 ' •> C /^m' C/" 1^!' CΓι^v - ' - C / - 1 ^

is infinite, then as * does not hold

(Qxv Qx2,' ',Qxn)eFf

Therefore one of the two Conditions al or a2 holds:

Condition al. There exists an z'(l < / < m) such that R(yj, w) is a subformula
of F where w is a term and qw e Cfqy. if w is a variable, a e Cfqyi if w is a con-
stant, say a.
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Condition a2. There exists an /(/ < / < fc) such that R(w, z, ) is a subformula of
F where w is a term and| qZi e Cfqw if w is a variable, qZi e Cfa if w is a constant,
say a.

It can be seen that which ever condition holds, at some finite stage in the
enumeration of

cf<lyv cf1y2> ' •> C / < W cΓι4*v Cf-iqZr . . ., Cf-iq2k,

it can be verified that (qXy qXr . . ., qXn) e Ff. If Cfqyy Cfqyv . . ., Cfqym>

Cf~ιqZι, Cf-iqZr . . ., Cf~1qZk are all finite then all the members in each of the
sets Cfqyv Cfqyv . . ., Cfqym, Cf^qZv Cf-iqZr . . ., Cf-iqZJζ are known. There-
fore for any subformula R(v, w) of F, it can be decided whether qw e Cfqυ if
υ and w are variables, qw e Cfa if w is a variable and υ is the constant a, a e CfV
if v is a variable and w is the constant a. Thus it can be decided whether

(qχχ> Qχ2`> - - -> Qxn) € ^` ^ u ^ ' a s ^ ^s n o n r e c u r s i v e ? there cannot exist a decision
procedure for it. Therefore the statement * holds.

Let (pXv pXr . . .,pXn) belong to Ff and one of Cfpy, Cfpyy . . ., Cfpym,
Cf-ιpZv Cf-ιpZ2,. . ., Cf~1pZk be infinite. Then there exists a number t{\ <*t<
m + k) such that one of the following Conditions bl or b2 holds.

Condition bl Cfpyt is infinite and if wlf w2, . . ., ws are all the variables among
xlt x2, . . ., xn such that for each /(I < / < s), R(Wi, yt) is a subformula of F,
then CfqWv CfqWr . . ., CfqWs are all finite.

Condition b2 Cf~1pZt is infinite and if wίf w2, . . ., ws are all the variables
among xίt x2,. . ., xn such that for each /(I < i^s)9 R(W(, yt) is a subformula
of F, then Cf-iqWy Cf-iqWr . . ., Cf-^qWg are all finite.

Let ί be the least such number t such that either bl or b2 holds. Suppose
Condition bl holds. Then K = Kx X K2 X . . ., Kn is an infinite recursively
enumerable subset of F? where for each /(I < / < « ) :

s

For r if Γ̂ is not a subset of F Γ, then there exists a member of K belonging to FΛ
This can happen only if one of the following two Conditions Cl or C2 holds.

s

Condition CL There exists a member d of Cfpyj - \J Cfpw. and an /(1 < / < s)
such that d e C/pw..

 / = 1

Condition C2. There exists a member d of C/p-μ̂  - | J Cfpw. and a term u such

that Λ(^F> w) is a subformula of F and pu e Cfd if u is a variable, α e C/c? if M is
a constant, say α.

Condition Cl cannot hold as d e Cfpyj - (J CfPw,- implies d 4 CfPw,- f° r each

J(l<j<s). / = 1

Suppose Condition C2 holds. If u is a variable, then as J e Cfpyj -
s

U Cfpw. and pu e Cfd, we have that pu e Cfpyj. If u is a constant a9 then as
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s

d e CfPyγ - U Cfpw. and a e Cfd, we have that a e Cfpyγ. As R(yj> u) is a

subformula of F, this means that (PXv PXr . . ., PXn) e FΛ This is a contradic-
tion. Therefore Condition C2_cannot hold. s

Thus K is a subset of FΛ Furthermore, as (J Q`Pw/ is finite and C/Py. is
s /=1 '

infinite and recursively enumerable, Cfpyγ - U CfPwj *s infinite and recursively

enumerable. Therefore K is an infinite recursively enumerable subset of FΛ
Suppose Condition b2 holds. Then by a similar argument it can be shown

that B = Bx X B2 X . . ., #« is an infinite recursively enumerable subset of F^`
where for each /(I < / < n),

Bi = ίx/} if Xj Φzγ
s

Bi = CripZJ - U C/-ipw/ if Xi = zf.

Therefore F? is nonsimple.
This proves Result (7).

Proof of (a): We first need the following result due to Young [3]. A set Pis a
cylinder if and only if there exists a. recursive function g such that for all m,
m e P=> Wg{m)CPy m e P =» Wg{m)CP and Wg{m) is infinite where Wn is the nth

recursively enumerable set in some standard enumeration.
We will now prove Result (α). Let F = F(xlf x2, . . ., xn) belong to Ax and

xlf x2, . , xn be all its variables. A variable x of F i s placed in level 1 if there
does not exist a variable y such that R(y, x) is a subformula of F. As F does not
contain F-loops and formulas of the form R(α, x) as subformulas, there exists a
variable in level 1.

A variable x is placed in level i > 2 if there is a term u such that R(x, ύ) is
a subformula of F and the maximum number of occurrences of R in a K-path
from a variable in level 1 to x is / - 1. For example, in the formula
R(xx, x2)VR(x2, X4)VR(x3, X4)VR(x4, x5), xx and x3 are in level 1, x2 is in
level 2, and JC4 is in level 3. The graphical representation of this formula is
shown in Figure 3.

Assume that the number of levels is t. For each /(1 < / < t), let yilt yi2,. . .,
ythi be all the variables in level /. For each (1 < / < t) and /(I < / < A,-), let

•̂ 7' ^z7' * `'^ii ^ e a u > t n e variables and^?., αf., . . ., α?f be all the constants such
that for each r and s (1 < r < fc; , 1 < 5 < p ; ), Λ(^/; , j / ; ) and R(yη, αf/) are sub-
formulas of F. Note that

ί t hr

U {^1. ^ 2 J . . . , ythi\ u U u U b λ , ^ / , . . . , ykjλ = U i , ^2, . ., ^ i
z=l r=l /=1 ; ' /

We need to prove that F? is either recursive or a cylinder for each f e M.
Suppose F f is nonrecursive for an / e M. Then froiη the result (7), F? contains
an infinite recursively enumerable subset, say i?Λ It suffices to prove the
following statement (δ).

(δ) There exists a recursive function g such that for any ^-tuple
(mXv mXv . . ., mXn),
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^> > xs

xx

Figure 3

(mXl, mXr . . ., mXn) e F_[_^ ^g{mXrmXr...,mXn)^

(mXv mXv . . ., mXn) e F* =* Wg(mXrmXr...,mXn) QF*

and ^g(mXvmX2,...,mXn) is infinite.

For, if (δ) holds, then by Young's result, F? is a cylinder.

Proof of (δ): For a given ft-tuple (mXv mXv . . ., mXγι), while executing the
programme to be given below, an infinite list L(mXv mXv . . ., mXn) will be
constructed. For convenience, this list will be denoted by Lm~. Also in this
programme, by the statement "Place {mXy mXr . . ., mXn) in Lm~ with k in
place of % . " we mean the following: If mx. = k, place (mXy mXv . . ., mXn) in
Lm-. lfmXf Φ k9 place (mXv mXr . . ., mXf_u k, mXf+v . . ., mXn) in Lm-.

For each f(l < / < t) and /(I </ < hi), define

Tij = \my}r myff9 . . ., my*f, ajf, a
2

φ . . ., af/l

Programme Start with Stage 0 of statement S{ where Stage r(r > 0) of
statement Sj(l < / < t, 1 < / < hi) is as follows:

SJ Stage r{r > 0). Compute fr(myij). (i) If fr(myi/) = Φ oτfr(myij)=fe(myif)
for some e <r, then

(a) Go to Stage 0 of statement S/+1 if/ # A, .
(b) Go to Stage 0 of statement S}+ί if/ = fy and i Φ t.

(c) Place all members of B? in Lm- if/ = /zz and / = t.

(ii) If fr(my..) e Tij, then place all members of F? in Lm~.

(iii) Suppose neither (i) nor (ii) holds, then:

I. If i = 1, place (mXv mXr . . ., mXγ) in Lm- with fr(jnyij) in place ofmyi and
go to Stage (r + 1) of statement S{.
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II. Suppose 2 < i < t. Let zu z2, . . ., zq be all the variables of F such that for
each k(\ < k <q)9 R(zk, yφ is a subformula of F. Check whether there is a
k(\<k<q) such that fe(mZk) = fr{myij) for some e < Λ

(a) If there does not exist such a k, place (mX l, m^2, . . ., mXn) in Lm- with
fr{myij) in place of ra^ . and go to Stage (r + 1) of statement 5/.
(b) Suppose (a) does not hold. Then let kί, k2, . . ., &w be all such fc's. For each
s(l<s<u) check whether 7// Π Cf (fe(mZks)) Φ Φ.
(bl) If for some 5(1 < s < w) 7# Π Cf (fe(mZk )) =£ Φ, then place all members
ofFfinLm-.
fl>2) If for all 5(1 < s < «), 7# Π C/ (fe(mZk)) = Φ, then

(0 1) Go to Stage 0 of statement s/+ 1 if; Φ hi
(θ 2) Go to Stage 0 of statement Si+1 if/ = A, and i Φ t
(0 3) Place all members ofB? in Lm- if/ = Λz and / = ί.

This ends the programme.

It is possible to do the checkings described in the programme because for
each k(\ <k <q), there exist u, υ(l < u < i and 1 < υ < h u ) such that z^ = yuv

and statement 5/ is executed only after all the statements Sf? (where c < / and
1 < d < hc or c - i and d < /) are executed, and in each Stage r executed in
statement S$, either conditions (i) or (iii)H(b)(b2)(θ 1) or (iii)Π(b)(b2)(0 2)
occurred if c Φ 1 and condition (i) occurred if c = 1. We will first prove that the
list Lm- is infinite. If all the members of B? or F^ are placed in Lm-, then it is
infinite. While executing the programme, if one of the statements "Place all
members of Bf in Lm~" or "Place all members of F ̂ in Lm-" is not encountered,
then there exists a statement S^ (where 1 < c < t and 1 <d <hc) such that for
each r > 0, condition (iii)II(a) occurs at Stage r if c Φ 1 and condition (iii)I
occurs at Stage r if c = 1. Furthermore, for each r > 0, a new «-tuple is placed
in L m - during Stage r. Therefore Lm- is infinite. Next we will prove the
following statement (φl).

(φ\) (mX l > m X 2 , . . . , mXn)eFf=*Lm- CF* (mXv mXr . . ., mXn) e ^ -* Z w - CF^.

Suppose (mXv mXv . . ., mXγι) e F? and there exists a member (w^ u2, . . ., ww)
of F-f such that (w^ u2, . . ., MW) e L w -. This is possible only if there exist
/, r (1 < / < t and r > 1) such that one of the following three conditions holds:

(PI) R(XJ, Xk) is a subformula of F where 1 <k <n, mxk e Cfmx , fr(mXk) 4
CfmXj and (uv u2, . . ., un) = (mXχt mXv . . ., mXk_v fr(mXk), mXk+1, . . ., mXn).

(P2) /?(x7 , x^) is a subformula of F where 1 < k < w, mXA: e Cfmx , mxk 4
Cf(f(mX})) and (wx, w2,..., «„) = {mXy mXv ..., mXf_r fr(mXf), mXf+v . . . , mXn).

(P3) i^(x/, Λ) is a subformula of F where a is a constant, a e Cfmx , a 4
Cf{f{mXj)) and (ul9 u2,..., un) = (mX l, mXv ..., m x / _ r fr(mXf), mXf+v . . ., mXn).

Now w e C/i; and w e CfU => w β C/υ, therefore condition PI cannot hold.
Suppose either condition P2 or P3 holds; i.e., w e Cfmx and w i Cf(fr(mx.))
where w is either mXk or a, then there exists a r < r such that w = f-(mx.). Now,
the H-tuple (mX l, m^2, . . ., mXj_v fs(mXf), mXf+v . . ., mXn) where s > r_ may be
placed in Lm- only if there is an e < r_ such that fe(mx ) = fs(mxX in which case
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w e Cf(fs(mXJ)). Therefore, (mXγ mXy . . ., mXj_v fr(rnXj), mXJ+v . . ., mXγι)

cannot be placed in Lm-. This is a contradiction. Thus F^` Π Lm- = Φ. Suppose
mxv

 mχv - - J mχγ) e F^ a n d there is a member (ult u2, . . ., wΛ) of F? such that
(uίt u2, . . ., un) e Lm-. This is possible only if there exist /, r (1 < / < ί and
r> \) such that one of the following three conditions holds:

(ql) R(xj, Xk) is a subformula of F where 1 < k < n, mXk 4 CfmXj, mXJζ e
Cf(fr(mXj)) and (ul9 u2,.. ., wπ) = (mΛl, m, 2 , . . . , mXj_v fr(mXj), mXj+v . . ., mXn).

(q2) /?(*/, fl) is a subformula of F where α is a constant, a 4 Cfinx.t a e
Cf(f(mXf) and (ulf u2,..., un) = (m^ r mXv . . ., m ^ _ r fr(mXf), mXf+v . . ., mXn).

(q3) i^(x/, Xjt) is a subformula of F where 1 < k < π, mX ) t ^ Cfinx., fr(mXk) e
Cf(mXf) and (wx, M2, . . ., wΛ) = (mX l, mXv . . ., m ^ _ r fr(mXk), mXJc+v . . ., mXn).

Now, w e C/i; and w e C/w =» w e C/u. Therefore conditions (ql) or (q2) cannot

hold. Furthermore, condition (iii) of any stage in the statement S^(2 < c < t,

1 < d < /zc) of the programme ensures that if the condition (q3) holds, then

(mXγ mXr . . ., mXk_v fr(mXk), mX]ζ+v . . ., mXn) is placed in I m - only if

(mX l, m^, . . ., mXn) e F?. Thus we arrive at a contradiction. Therefore

Lm-nFf=Φ.
This proves the statement (01). For any ft-tuple (mXί, mXv . . ., mXn), there

exists a corresponding list L(mXv mX2, . . ., mχn) and the Godel number of the
programme for enumerating this list is effectively calculable from (mXv

mXr . . ., mχn)', i.e., there exists a recursive function h such that for each «-tuple
(mXy mXv . . ., mXn), h(mXy mXv . . ., mXn) is the Gδdel number of the pro-
gramme which enumerates the list L(mXγ mXv . . ., mXn)> Therefore the
following statement (φ2) holds.

(02) There is a recursive function g such that for each «-tuρle (mXv mXv . . .,

mχd)> L(mXv mXv . . ., mXn) = ^g(mXί>mX2,...,mXny

The statements (01), (02) and the fact that L(mXv mXv . . ., mXn) is infinite,
imply the statement (6). Therefore by Young's result, F? is a cylinder. This
proves Result (a).
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