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Cylindrical Decision Problems

for System Functions

M. B. THURAISINGHAM*

1 While investigating the one-one equivalence between various General
Combinatorial decision problems, Cleave [1] initiated the concept of system
functions. System functions are defined on natural numbers and their values
are finite sets of natural numbers. They have many properties in common with
those arising from Godel numbering various combinatorial systems. Thus the
decision problems defined for these combinatorial systems can also be defined
for system functions. Furthermore, if a property holds for a particular decision
problem for all system functions, then it also holds for that decision problem
for all these combinatorial systems.

In his study of the one-one equivalence between General Combinatorial
decision problems using system functions, Cleave [1] considered only a finite
number of decision problems. We have extended his study to include an infinite
number of decision problems. This is accomplished firstly, by defining a
generalized class of formulas in terms of a first-order language so that each
formula in this class corresponds to a decision problem for system functions
and secondly, by analyzing these formulas to determine whether the cor-
responding decision problems for various kinds of system functions are cylin-
ders. As stated by Cleave [1], we take this approach for the following reason:
“If P, and P, are two General Combinatorial decision problems which are
many-one equivalent and if each instance of P, and P, are cylinders, then they
are one-one equivalent” ([1], p. 254). This is the best possible equivalence one
can obtain.

*The author wishes to thank Dr. J. R. Hindley of the Department of Pure Mathematics,
University College of Swansea, UK. and Dr. J. P. Cleave of the Department of Pure
Mathematics, University of Bristol, UK. for their guidance.
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In Section 3, we define this generalized class of formulas (denoted GCF)
and also choose an infinite subclass of GCF and show that all the decision
problems (for a certain kind of system functions) which correspond to the
formulas of this subclass are either recursive or cylinders. The preliminary
definitions are given in Section 2.

2 In this section we define system functions as in [1] and also develop a
first-order language L which will be used to define the class GCF in Section 3.

Let f:N = P,,(N) where N is the set of all natural numbers and P,,(N) is
the set of all finite subsets of V.

For each X € P,,(N), define f(X) = U {7(x):x € X}. For each x € N, define
FoUx) = x, fi(x) = £(x), fM(x) = F(f™(x)).

Define f™X(x) ={y:x e f(¥)}. By y € Crx (or x € Cy~1y) is meant: y = x or
v € f(x) or there exist vy, Uy, . . ., v, (n 2 1) such that x =v,, y = v, and for each
(I<isn-1),v4 ef(vil).

.

By the expression \V xi-y € Cpx; we mean: x, € Cpx Vxz € Cpx V..,
Vxy € Cxy-y. =1

A system function is a function f:N = P,(N) such that there exist recur-
sive functions a and b such that for all x, f(x) = Dy(x) and f~1(x) = Djp(x) Where
D,, is the n'! finite set in some standard enumeration.

A system function f which has the property that for each x, f(x) has at
most one member is called a machine function. Clearly system functions
that arise from combinational systems such as Turing Machines and Markov
Algorithms are machine functions. The class of all system functions is denoted
by © and the class of all machine functions is denoted by M. Some of the deci-
sion problems for a system function f are as follows:

halting problem for f={x:(Ey)(y € Crx A f(¥) = ®)}
derivability problem for f= {(x, y):y € Cpx}
confluence problem for f = {(x, ¥):(Ez)(z € Csx A z € Cpy).

We now define a first-order language L as follows: The logical symbols of
L are A, v, ~, E, and parentheses.

(i) a denumerably infinite set of variables
(ii) a constant n for each n e N
(iii) a two-place predicate R and a one-place predicate Q.

A term is either a variable or a constant.

For each f e S, define a structure Ny as follows: The domain of Ny is N. Rf
and Qf are relations on N X N and N, respectively, where Rf = {(my, my):m, €
Crmy}. O = {m:f(m) = ®b. Clearly R’ is recursively enumerable and Qf is
recursive.

Satisfiability of a sentence of L in Ny is defined as follows: For each
ki, k€N,

Nt ER(ky, k) < (ky, ky) e RS
Ny EQ(ky) < (ky € ).

Satisfiability of compound sentences is defined in the usual ‘Tarski’ sense.
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The following specialized definitions and notations also are needed in
Section 3: Let F be a formula of L whose free variables are x,, x,, . . ., X, Fis
also denoted by F(x,, X,, . . ., X,). F/ is the set of all n-tuples which satisfy
F(xy, X3, . . ., Xp) in Ny; i.e., for any n-tuple (kxps kxys - 5 Kxy),

(kxy kg - - s ki) € FF > Np [ Flky,, ks . ., k).

In the n-tuple (kxl, kx,s - - -5 kx,), the subscripts x;, x,, . . ., X, are used merely
for convenience.

Let G C S. Then a formula F has a property P in G if and only if Fy has
the property P for all f € G. For example, F is a cylinder [nonsimple respec-
tively] in G if and only if F/ is a cylinder [nonsimple respectively] for all fe G.
By a nonrecursive and noncylindrical [simple respectively] counterexample for
F in G we mean there exists an f € G such that F/ is a nonrecursive nonclyinder
[simple respectively].

A formula F corresponds to_a decision problem D for the system func-
tions of G C S if and only if F/ = D[f] for all f € G, where D[ f] is the decision
problem D for f. net

A V-loop is a formula of the form V R(x;, xi+1) VR(xy, x;) where n =2,

n-1 i=1

X1,Xo, . . ., X are all variables and V R(x;, x;41) =R (xy, x)VR(x5, x3)V, . . .,
VR (xp-1, Xp). =
A V-path between x and y or a V-path from x to y is any formula F where
n-1

F is either R(x, y) or R(x, z)VR(z, y) or R(x, x{) v V R(x;, Xi+1)VR(xn, ¥)
=1

where n = 2, z, x4, X,, . . ., X, are variables. If x and y are variables, then Fis a
V-path between two variables. If x and y are constants, then F is a V-path
between two constants. If x is a constant and y is a variable, then F is a V-path
from a constant to a variable. If x is a variable and y is a constant, then Fisa
V-path from a variable to a constant.

By a A, v combination of R, Q, ~Q we mean any formula built from the
formulas of the form R(x, y), R(x, a), R(b, x), @(x), ~Q(x) using the connec-
tives a, v where x, y are variables and g, b, are constants. _

Similarly a V-combination of R is any formula built from the formulas of
the form R(g, x), R(x, b), R(x, y) using the connective v where x, y are
variables and g, b are constants. If F is any formula of L, then EF is a formula
of L of the form (Exq, X5, . . ., x,)F where n 2 1, x4, X5, . . ., X, are among the
free variables of F and F is an existential quantifier.

Let F be any V-combination of R. Then k ->—m is a subgraph of the
graphical representation of F if and only if R(k, m) is a subformula of F. For
example the graphical representation of the formula

R(xq, x2)VR(x3, x3)VR(xy, X3)

is shown in Figure 1.
Unless otherwise stated, x, y, z, Xy, 1, Z1, X3, V2, Z3, - . . denote variables
anda, b, ¢, a,, by, c1, @y, by, €y, . . . denote constants.

3 We now define the generalized class of formulas mentioned in Section 1.

Definition Generalized class of formulas (or GCF) contains any formula of
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the form K or EK where K is a A, v combination of R, Q, ~Q which does not
contain sentences and formulas of the form R(x, x) as subformulas.

We assume that no member of GCF contains sentences and formulas of
the form R(x, x) as subformulas because the inclusion of such formulas will not
give us any additional information. We have used only the predicates R and Q
in defining the language L because: (i) we have restricted ourselves to recur-
sively enumerable decision problems, and (ii) the predicates R and Q are
sufficient in defining decision problems such as the halting, derivability and
confluence problems. For example, the formula (Ey)[R(x, y) » Q(»)] corre-
sponds to the halting problem.

In Result (@), to be stated later, we choose an infinite subclass of GCF and
show that all the decision problems for machine functions which correspond
to the formulas of this subclass are either recursive or cylinders. The treatment
of other subclasses of GCF will utilize the same technique as the proof of
Result o which exhibits the essential points of our argument. We have restricted
ourselves to machine functions because: (i) it is possible to give nonrecursive
and noncylindrical counterexamples in © even for elementary formulas such as
R(x, ¥), R(x, a), R(a, x) [2]; and (ii) among the various kinds of combinatorial
systems, it is Turing Machines that are universally applied and the system
functions that arise from Turing Machines are machine functions.

Result (o) Each formula in the class A4, is either recursive or a cylinder in
N where A, consists of all members of GCF which are V-combinations of R
and which do not contain V-loops and formulas of the form R(g, x) as sub-
formulas.
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In order to prove Result (o), we need the following result:
Result (8) Each formula in the class A, is nonsimple in .
We will, however, prove the following stronger Result ().

Result () Each formula in the class A, is nonsimple in © where A4, consists
of all members of GCF which are V-combinations of R and which do not
contain V-paths between two constants and V-loops as subformulas.

We have excluded formulas which contain V-loops or formulas of the
form R(g, x) as subformulas as members of A;. Furthermore, we have also
excluded formulas which contain V-paths between two constants or V-loops as
subformulas as members of 4 ,.

This is because nonrecursive and noncylindrical counterexamples in It
can be given for the formulas R(g, x), R(x, ¥)VR(y, x) and simple counter-
examples in 6 can be given for the formulas R(g, x)VR(x, ¥)VR(y, b),
R(x, y)VR(y, x). Detailed proofs of these counterexamples can be obtained
in [2].

Proof of v: Let FEF(x,, X5, - . ., X,) belong to A, and x4, x,, . . ., x,, be all its

variables. Let y,, y,, . . ., ¥, be all the variables among x, x,, . . ., X, such that
for each i(i <i<m), F contains a subformula which is a V-path from y; to a
constant. Let z, z,, . . ., zx be all the variables among x,, x,, . . ., X, such that

for each i(1 < i < k) there does not exist a j(1 <j <m) such that z; = y; and
for each i(1 < i < k) either F contains a subformula which is a V-path from a
constant to z; or there exists a variable, say w, such that R(w, z;) is a sub-
formula of Fand w ¢ {¥,, ¥2, . . ., Ym}. Let

{tg, gy o b =8xq, Xgs o o Xnd — Wy, Yoo ymb Ulzy, 2o, .00,z b

For example, if the graphical representation of F is as shown in Figure 2, where
Xy, X2, X3, . . ., Xo are variables and g, b are constants then {y;, y,, y3} =
(X1, Xq, X3}, {Uy, U} =1{x4, X0}, and {2y, z,, 23, 24} = {xs, X6, X7, Xg}.

As F does not contain V-paths between two constants and V-loops as
subformulas, the following Conditions I-III hold:

Condition I. For each i(1 <i<m), there does not exist a constant, say g, such
that R(a, ;) is a subformula of F. If there exists a variable v such that R(v, y;)
is a subformula of F, thenv € {y;, y5 - - -» ¥m}. There exists a term, say u, such
that R(y;, u) is a subformula of F.

Condition II. For each i(1 <i < k), there does not exist a constant, say a, such
that R(z;, a) is a subformula of F. If there exists a variable v such that R(z;, v)
is a subformula of F, then v € {z,, z,, . . ., zx}. There exists a term, say u, such
that R(u, z;) is a subformula of F.

Condition III. For each i(1 <i <), there does not exist a constant, say g, such
that either R(u;, a) or R(g, u;) is a subformula of F. If there exists a variable v
such that R(v, ;) is a subformula of F, thenv e {y{, ¥,, . . ., Ym}. If there exists
a variable w such that R(y;, w) is a subformula of F, thenw € {z,; z,, . . ., zx}.
There exists a variable u such that either R(y;, u) or R(u, ;) (but not both) is a
subformula of F.
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It needs to be proved that Ffis nonsimple for each fe G. If Ff is recursive
for an f e€©, then it is nonsimple. Suppose FY is nonrecursive for an f € G. Then
the following statement * holds.

* There exists an n-tuple of numbers (ex,, €x,, - - -, €x,) Which is a member

of Ff such that at least one of
Crey,, Crey,, . .., Crey, Crleg, Cf—leZZ, oo Crley
is infinite.
Now, if * does not hold, a decision procedure can be given for F/ as
follows: Given an n-tuple (qxl, Qxp - - - qxy), ENUMerate

quyp Cf‘lyza cee Cf‘lymy Cf_lqh: Cf_lqzz, cee Cf_l‘hk~
If one of
Cf‘lyy quy2> LR Cf‘lym» Cf_quI’ Cf—quZa LR Cf_quk
is infinite, then as * does not hold
(Qxlv QXz’ RS} an) € Ff
Therefore one of the two Conditions al or a2 holds:

Condition al. There exists an i(1 < i < m) such that R(y;, w) is a subformula
of F where w is a term and q,, € Crq,, if w is a variable, a € Crq,, if w is a con-
stant, say aq.
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Condition a2. There exists an i(i < i< k) such that R(w, z;) is a subformula of
F where w is a term and’qzi € Crqy if wis a variable, g, € Cra if w is a constant,
say 4.

It can be seen that which ever condition holds, at some finite stage in the
enumeration of

Crdyy Cryys - - o Cryp Crlazy, Crlqay, - - o Gy,

it can be verified that (gx;, gx, - - - qx,) € Ffo1f Crdy, Crdyys - - o5 Crdy s
Cr1qy,, Cr1qy,, - - ., Cr1qy are all finite then all the members in each of the
sets Crqy,, Crdy,s - - - CrQy,,, Cr1qz,, Cr1qy,, . . ., Cr1qy;, are known. There-
fore for any subformula R(v, w) of F, it can be decided whether q,, € Crqy if
v and w are variables, q,, € Cra if w is a variable and v is the constant a, a € Crv
if v is a variable and w is the constant a@. Thus it can be decided whether
(@xy> Gxgs - - -5 Gxp) € F’. But, as F' is nonrecursive, there cannot exist a decision
procedure for it. Therefore the statement * holds.

Let (px;, Px,s - - -» Px,,) belong to F' and one of Crpy,, CPyys - - o CrDyps
Cr1pzy, Cf1pz,, - - -5 Cf71py; be infinite. Then there exists a number #(1 <¢<
m + k) such that one of the following Conditions b1 or b2 holds.

Condition bl Cypy, is infinite and if wy, w,, . . ., w; are all the variables among
X1, X3, - . ., X, such that for each i(1 < i <), R(w;, y;) is a subformula of F,
then Crqw,, Crqw,, - - -» Crqw, are all finite.

Condition b2 Cy~1p,, is infinite and if wy, w,, . . ., wy are all the variables
among Xy, X, . . ., X, such that for each i(1 <i<s), R(w;, ;) is a subformula
of F, then C¢~1qy,, Cr1qw,, - - ., Cr71qy, are all finite.

Let 7 be the least such number ¢ such that either bl or b2 holds. Suppose
Condition bl holds. Then K = K; X K, X . . ., K, is an infinite recursively
enumerable subset of F/ where for each i(1 <i<n):

K,’ = {qxi} ifx,- ?ﬁy;
s
Ki=Crqyz ‘]L__Jl Craw; if x; =y7.

For, if K is not a subset of F/, then there exists a member of K belonging to F’.
This can happen only if one of the following two Conditions C1 or C2 holds.

. s
Condition C1. There exists a member d of Cypy; — U Cfpw]. and an i(1 <i<y)
such that d e Cypy,. =1

s
Condition C2. There exists a member d of Crpy; — U Cfpw]. and a term u such
=1

that R(y7, u) is a subformula of F and p, € Crd if u is a variable,a € Crd if u is

a constant, say a.
s

Condition C1 cannot hold as d € Cpy; — U Cfpw]. implies d ¢ Cfpw]. for each
i1 <j<s). =1

Suppose Condition C2 holds. If u is a variable, then as d e Crpyy —
S
U Cfpw]. and p, € Crd, we have that p, € Crpy;. If u is a constant g, then as
j=1
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s
d € Crpyy ~ ]LJI Cfpw]. and a € Crd, we have that a € Crpy;. As R(y7, u) is a

subformula of F, this means that (P, Px,, ..., Px,) € F/. This is a contradic-
tion. Therefore Condition C2 cannot hold.
Thus X is a subset of F7. Furthermore, as U Cfpw is finite and Cypy, is
s

infinite and recursively enumerable, Cypy; ~ U Cfpw] is infinite and recursively
=1

enumerable. Therefore K is an infinite recursively enumerable subset of F7.

Suppose Condition b2 holds. Then by a similar argument it can be shown
that B=B, X B, X . . ., B, is an infinite recursively enumerable subset of F'
where for each i(1 < < n),

B; ={x;} if x; # zf
§
B;=Cs1py; = ]L=J1 Cf-lpw]. if x; = z7.

Therefore F7 is nonsimple.
This proves Result (7).

Proof of (a): We first need the following result due to Young [3]. Aset Pisa
cylinder if and only if there exists a recursive function g such that for all m
meP= W CP m eP=>W( CPand We 8(m) is infinite where W, is the n'™
recursively enumerable set in some standard enumeration.

We will now prove Result (@). Let F = F(x,, x,, . . ., X,) belong to 4, and
X1, Xa, - . ., X, be all its variables. A variable x of Fis placed in level 1 if there
does not exist a variable y such that R(y, x) is a subformula of F. As F does not
contain V-loops and formulas of the form R(g, x) as subformulas, there exists a
variable in level 1.

A variable x is placed in level i 2 2 if there is a term u such that R(x, u) is
a subformula of F and the maximum number of occurrences of R in a V-path
from a variable in level 1 to x is i — 1. For example, in the formula
R(xy, x,)VR(x,, x4)VR(x3, x3)VR(x4, X5), x; and x5 are in level 1, x, is in
level 2, and x, is in level 3. The graphical representation of this formula is
shown in Figure 3.

Assume that the number of levels is ¢. For each i(1 <i<?), let y;1, Viz, - - -
Yin; be all the variables in level i. For each (1 <i<¢) and j(1 <j < &), let

yl.‘]., yl?]., RPN %/ be all the variables and al] aU, e ng be all the constants such

that for each r and s (1 <r<kj, 1 <s<pj), R(yij, yij) and R(pjj, ai;) are sub-
formulas of F. Note that
t . hr
,U {Vit, Yizs -+ o J’ihif U U Y U {J’rlj, J’rzj, cee yf{.}= {xy, %, .. o, Xn}.
i=1 r=1  j=1 ]

We need to prove that F/ is either recursive or a cylinder for each fe M.
Suppose F' is nonrecursive for an fe M. Then from the result (v), F/ contains
an infinite recursively enumerable subset, say BY. It suffices to prove the
following statement (5).

(6) There exists a recursive function g such that for any n-tuple
(mxl» mx25 LS mxn);
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(my,, Myys - - oy Mx,) € i: wg(mxl,mX2,...,mxn) Qﬂi

(mxl, Mxyy - ooy mxn) eFl = Wg(mxl,mX2,...,mxn) QFf

and Wg(mxl,mxzw-,mxn) is infinite.
For, if (8) holds, then by Young’s result, ¥/ is a cylinder.
Proof of (8): For a given n-tuple (M, My,, . . ., my,), While executing the
programme to be given below, an infinite list L(my,, my,, . .., my,) will be
constructed. For convenience, this list will be denoted by L. Also in this
programme, by the statement ‘Place (M), My oy M) in Ly with k in
place of m,,” we mean the following: If My; = k, place (my,, My,, . . ., my,) in
Ling. 1f my; # k, place (my,, Mxy, .. ., My k, Mlxjors -+ o M) 0 Lyng.

Foreach i(1 <i <) and ](1 <] <h i), define

; 2 pj
Tij = {myl] M, ..., my’.‘]}, aj, ay, . . ., a; /3.

Programme  Start with Stage O of statement S} where Stage #(r = 0) of

statement S,!(l <i<t 1 <j<h)isas follows:

S,«j Stage r(r = 0). Compute f’(myl.].). @) Iff’(myl.].) =P orf’(myl.].) =f"’(my,.].)
for some e <r, then

(a) Go to Stage 0 of statement S/*" if j # &;.
(b) Go to Stage 0 of statement S}, ifj = #; and i # ¢.
(c) Place all members of Bf in Lyzifj=h;andi=¢

(ii) Iff’(myi].) € T;;, then place all members of Ffin L
(iii) Suppose neither (i) nor (ii) holds, then:

I If i = 1, place (my,, My,, . . ., My,) in Ly with f’(myl.j) in place of my;; and
go to Stage (r + 1) of statement S7.
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II. Suppose 2 <i <t Letz,, z,,..., z,4 be all the variables of F such that for
each k(l S k < q), R(zg, yij) is a subformula of F. Check whether there is a
k(1 < k < q) such that f¢(m;,) ‘f’(my ) for some e <r.

(a) If there does not exist such a £, place (M, Mx,, . . ., My,) in Ly with
f’(myl]) in place of my,; and go to Stage (r + 1) of statement S]

(b) Suppose (a) does not hold. Then let ky, ko, . . ., k, be all such k’s. For each
s(1 <s <u) check whether T;; N Cr (f4(my,)) # tIJ.

(b1) If for some s(1 <s<u) T;; N C (fe(mZkS)) #+ &, then place all members
of F/in Ly

(b2) If for all s(l<s<u), T; N Cf (fe(mZk )) = &, then

(6 1) Go to Stage 0 of statement S/* if j # hy

(0 2) Go to Stage 0 of statement S,+1 ifj=h;and i #1t

(6 3) Place all members of B/ in L,,; if j = h; and i = 1.

This ends the programme.

It is possible to do the checkings described in the programme because for
each k(1 <k <gq), there exist u, v(l Su <iand 1 <v<hy)such that zz =y,
and statement S’ is executed only after all the statements S/ d (where ¢ <iand
1<d<h,orc=iandd <j) are executed, and in each Stage r executed in
statement Sd, either conditions (i) or (iii)II(b)(b2)(6 1) or (ii)II(b)(b2)(0 2)
occurred if ¢ # 1 and condition (i) occurred if ¢ = 1. We will first prove that the
list L,,; is infinite. If all the members of BT or Ff are placed in Ly, then it is
infinite. While executing the programme, if one of the statements ‘“Place all
members of B/ in Lp;” or “Place all members of Flin Ly3” is not encountered,
then there exists a statement Scd (where 1 <c <tand 1 <d <h,) such that for
each » 2 0, condition (iii)II(a) occurs at Stage r if ¢ # 1 and condition (iii)l
occurs at Stage r if ¢ = 1. Furthermore, for each » = 0, a new n-tuple is placed
in L,; during Stage r. Therefore L,y is infinite. Next we will prove the
following statement (¢1).

(@1) (M), Mgy .oy ) € FF = Ly CFT (), ey, . .y my,) € FF = Ly CFY

Suppose (My,, My,, .. ., My,) € F! and there exists a member Uy, Ugy . o oy Uy)
of FI such that (uy, Uy, . . ., up) € Lyz. This is possible only if there exist
j,r (1 <j<tandr>1)such that one of the following three conditions holds:

(P1) R(xj, x¢) is a subformula of F where 1 <k <n, my, € Cfmx] fr(my,) ¢
Crmy; and (uy, Uy, . ., Un) = (Mx, My oo My FT(Mx), Mg e ).

(P2)  R(x;, x) is a subformula of F where 1 < k <n, My € Cfmx] My, ¢
Cf(fr(mxj)) and (uy, Uy, ..., Up) = (mxl: Mixgs oo o Mixj_y fr (mx])a Mxjpys - mxn)

(P3)  R(xj, @) is a subformula of F where g is a constant, a € Cfmx] a ¢
Cf(fr(mx])) and (ula uz, .. un) (mxl mx2’ .. mx] 1’ f (mx]), mx]+1’ .. mxn)

Now u € Cpv and w € Cqu = w € Cyv, therefore condition P1 cannot hold.
Suppose either condition P2 or P3 holds; i.e., w € Cfmx and w ¢ Ce(f" (mx]))
where w is either my, or a, then there exists a r <r such that w= f—(mx ). Now,
the n-tuple (M, Mgy o v oy My S(my,), my, e o M) where s > r may be
placed in L, only if there is an e <r such that f e(mx )=f° (mx]), in which case
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w € Cs(f*(my;)). Therefore, (my,, my,, . . ., my;_y [T(My), My, oo M)
cannot be placed in L. This is a contradiction. Thus Ff'n Lz = ®. Suppose

My Mgy o oy My, ) € FT and there is a member (Uuq, Uy, . . ., Uy) of F' such that
(uy, Uy, - . -, up) € Lyz. This is possible only if there exist j, r (1 <j <t and
r 2 1) such that one of the following three conditions holds:

(@l)  R(xj, xg) is a subformula of F where 1 < k < n, my, ¢ Cfmx] My, €
Cr(f"(mx)) and (uy, Uy, .. o Un) = (Myy, My, oo My, [1(My), My, ooy M),

(@2) R(xj, a) is a subformula of F where g is a constant, a ¢ Cfmx ., A€
Cr(f7(my)) and (uy, ug, .. un) = (M), My, - My, [1(M), My, mx,,)

(@3)  R(xj, xx) is a subformula of F where 1 <k <n, My ¢ Cfmx], fr (my,) €
Cf(mxj) and (uq, Uy, .. ., Up) = (mxlx Mixps - o s Mxp_ys fr (mxk) UCTRTR mxn)

Now, u € Csv and w e Cru = w e Cyv. Therefore conditions (q1) or (q2) cannot
hold. Furthermore, condition (iii) of any stage in the statement S Q<c<t,
1 <d < h;) of the programme ensures that if the condition (q3) holds, then
(my), Myyy oy My, [Tmyy)s Mypyys - - - Mx,) is placed in Ly only if
My, Myyy o o oy My) € Ff. Thus we arrive at a contradiction. Therefore
Ly;NFl =

This proves the statement (¢1). For any n-tuple (M, My, - . ., My,), there
exists a corresponding list L(my,, my,, . . ., my,) and the Godel number of the
programme for enumerating this list is effectively calculable from (my,,
My,, - - -, Mx,); i.e., there exists a recursive function % such that for each n-tuple
(M, My, - . oy Myy), Ry, My, . .., My) is the Godel number of the pro-
gramme which enumerates the list L(my, my,, . . ., mxn)- Therefore the
following statement (¢2) holds.

(¢2)  There is a recursive function g such that for each n-tuple (my,, my,, . . .,
Myxd), L(mxly Mgy« « oy Myy) = wg(mxl,mX2,...,mxn)-
The statements (¢1), (¢2) and the fact that L(my, my,, . . ., my,) is infinite,

imply the statement (§). Therefore by Young’s result, F! is a cylinder. This
proves Result ().
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