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A New Foundation for the

Theory of Relations

STEPHEN D. COMER*

Relation algebras are characterized using certain multivalued algebraic
systems called polygroupoids. The connection between these concepts provides
a basis for an alternative to the usual approach to the study of relations.
Examples of polygroupoids are given as well as an application to the theory of
relations.

1 Introduction The purpose of this paper is to outline a new approach to
the calculus of relations. Relation algebras were introduced by Tarski in [ 11 ] as
an abstract algebraic system defined by a natural set of axioms. The principal
models for these axioms are obtained from collections of binary relations on a
set using the set-theoretic operations of union, intersection, relation composi-
tion, and converse. Such algebras are known as representable relation algebras.
Not all models of Tarski's axioms are representable (cf. [9] , [ 10]). The present
study developed as an outgrowth of an investigation into ways of characterizing
"nonrepresentable" relation algebras (cf. [3], [4]). The characterization given
in Section 4 is an extension of the relationship (cf. [8], Section 5) between
certain relation algebras and systems called Brandt groupoids. Nowadays, these
systems are just called "groupoids" in category theory (cf. [6]). Basically, the
idea in the treatment below is to replace the use of groupoids by multivalued
groupoids in Tarski's complex algebra construction and thereby extend the
relationship in [8] to all relation algebras.

The results in this paper can be developed using the language of category

This research was supported in part by National Science Foundation grant no. MCS-
8003896 and by the Citadel Development Foundation.

Received January 25, 1982; revised June 7, 1982



182 STEPHEN D. COMER

theory; however, the categories involved are "multicategories" which have not
been studied to the author's knowledge. Instead we employ standard termi-
nology from universal algebra.

Tarski's theory of relation algebras is reviewed in Section 2. The notion of
a polygroupoid is introduced in Section 3 with examples. The basic characteri-
zation is presented in Section 4. Ideas similar to those in this section have been
independently worked out by Brian McEvoy. In a final section we consider a
problem about relation algebras raised by G. Birkhoff at the Jόnsson Sym-
posium. We settle Birkhoff s question using the polygroupoid approach to rela-
tion algebras that is the main thesis of this paper.

2 Relation algebras In [8] a relation algebra (RA) is defined as an algebra
of the type .C4, +, , 0, 1, , Γ, u> where 0, 1, and Γ are elements of A, +, , and

are binary operations on A, u is a unary operation on A, and the following
axioms hold:

Ro {A, +, , 0, 1) is a Boolean algebra.
Ri (x y) z = x;(y;z)forall x, y, z e A.
R2 \'\x = x = x; 1' for all x e A.
R3 the formulas (x y)-z = 0, (xu;z)-y = 0, and (z;yu)-x = Oare equivalent

for all x, y, z e A.

The following class of examples motivated the definition.

Example 2.1: Consider a system (&, U, Π, φ, X2, I, "*, Iχ) where U/ is a
collection of binary relations on a set X that contains φ, X2, and Iχ = \(x, x)\
x e X\ and 01/ is closed under the operations of union U, intersection Π,
relation composition I, and converse ~*. Such a system is called a proper
relation algebra. A relation algebra is representable if it is a subalgebra of a
product of proper relation algebras.

Before introducing another class of examples we recall the notion of a
complex algebra ([8], Definition 3.8). Consider a system

(*) 21 =(A,RO,RU. . .)

where /?,- C Ani+1 for each i. The complex algebra of 21, denoted (S[2I], is the

system

εta'i] = <^α>, u, n, φ, A , ΛJ, /??,.. .>

where -P(A) is the collection of all subsets of A and, for each /,

Rf:f>iAyίi-*f>(A)

is defined for Xo, . . ., Xni-ι Q A by

R?(X0,.. .,Xni-0 = \x e A: 3x0 eX0,..., 3xn.^ e Xni-ι'(xo,. ., xni-h *) 6 Φ *•

Theorem 3.10 of [8] asserts that every normal Boolean algebra with
operators is isomorphic to a regular subalgebra of the complex algebra of some
system of type (*). We show in Section 4 that, in the case of relation algebras,
natural systems of multivalued groupoids can be used. As a prelude we mention
another class of examples of relation algebras treated in [8], Section 5.
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Example 2.2: A generalized Brandt groupoid is a partial algebraic system

where is a partial binary operation on A} I C.Ay ~1 is an operation on A, and
the following axioms hold:

(i) For every x e A, there is a y e A such that x`y e A.
(ii) For any x, y, z e A, if x-y and (x-y) z are in A oxy-z and x-(y-z) are in

A, then all four elements are in A and (x->>)-z = x-(yz).
(iii) For any x e^4, x e /iff x x = Λ\

(iv) The formulas x-y = z, x ' ^ z = >>, and z y ' 1 = x are equivalent for all
x, y, z e A.

The complex algebra €[.?!] of a generalized Brandt groupoid .51 is a complete
atomic relation algebra such that 0 Φ 1 and every atom is a functional element
(Theorem 5.5 of [8]). Conversely, every such RA is isomorphic to the complex
algebra of some generalized Brandt groupoid.

Remark 2.3: The notion of a generalized Brandt groupoid is the same as the
categorical notion of groupoid, i.e., a category in which every morphism is
invertible (see [6]). Moreover, the notion of a Brandt groupoid introduced in
[8] is exactly that of a connected groupoid in the categorical sense.

3 Polygroupoids The goal of this section is to introduce a multivalued
version of a generalized Brandt groupoid. First some terminology.

A partial multivalued operation f of rank π o n a set A is a function from
An into `-P(A). We call / a multivalued operation on A if dom(f) = An where
dom(f) = \{(xί9 . . ., xn) e An: f(xΪ9 . . ., xn) Φ </>]. A partial multivalued algebra is
a system ,21 = (A, f0, / l 5 . . .) where each fi is a partial multivalued operation on
A. These are just systems of type (*) with a different notation. A system 21 is a
multivalued algebra if dom(fj) = Ani for each // with rank «z .

Several conventions are useful. A partial operation on A extends to an
operation on f>(A). Namely, if/: An -• f>(A) and Xu...,XnCA, then

f(Xu . . ., Xn) = U •{/(*!, . . ., χ π ) : X ι e Xu . . ., xn e Xnl

In particular, if X\ = 0 for some /, f(Xh . . ., Xn) - φ. We also identify {x} with
Λ: when convenient.

Definition 3.1 A poly groupoid is a partial multivalued algebra

where is a partial multivalued binary operation on A, I C A, and - 1 is an
operation on A that satisfies the following axioms:

(i) (x y)-z =x (y z) for all x, yt z eA
(ii) x`I- x =Ix for a l l* eA

(iii) the formulas x e y-z, y e x z"1, and z e y~x-x are equivalent for all
xy y, z e A.

Notice that both sides of (i) could be φ. Interpret (i) as saying that if
either side is nonempty, then both sides are and the sets are equal.
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The notion of a polygroup studied in [3] and [4] is a special case of 3.1.
A polygroupoid 21 = (A, , e, "x> is a polygroup if e e A and dom(-) = A2. That
is, a polygroup is a polygroupoid with a single identity element and total
operations.

We conclude this section with some examples.

Example 3.2: An ordinary group is a polygroup. More generally, suppose H is
a subgroup of a group G. Define a system

G//H=<\HgH:geGl,*,H, "*>

where (HgH)~ι = Hg~ιH and (//^i/) * (Hg2H) = {Hgxhg2H\ h e H\, The algebra
of double cosets G//H is a polygroup introduced in [5].

The next example is an extension of Example 3.2 that produces polygroupoids
which are not, in general, polygroups.

Example 3.3: Assume G is a finite group and Hu . . ., Hm are subgroups. Let
A = {HigHj`. i, j = 1, . . ., m and g e G\\ and / = •{:{?,-: / = 1, . . ., m\. Define ~* and
* on A by (HigHjY1 = Hβ'`Hi and (#,*#/) * (#,;>#,) = iHiXgyH,: g e Hj and
/ = Hi The double coset system (A, *,/, -1> is a polygroupoid. Its complex
algebra is a representable RA in the sense of Example 2.1, the representation
being constructed on the disjoint union of the right coset spaces.

The next example has a different flavor.

Example 3.4: Suppose Γ is a distance regular graph with vertex set V (see [ 1 ]).
Let d(u, v) denote the shortest distance between vertices u and υ in Γ. Define *
and ` 1 on the set A = 11,. . ., d\ where d is the diameter of Γ as follows:

Γ 1 = i

k e i * / iff for every u, υ e V with d(u, υ) = k there exist w e V
such that d{u, w) = i and d(w, υ) = j .

Notice that the definition above implies that 0 is the identity element. The
system (A, *, 0, -1> is a polygroup. As a concrete example consider the cube Q3

which has diameter 3. The polygroup derived from β 3 on 0, 1, 2, 3 has a multi-
plication table for * given below.



THE THEORY OF RELATIONS 185

* I 0 1 2 3

0 0 1 2 3
1 1 02 13 2
2 2 13 02 1
3 3 2 1 0

The example above has many extensions. For example, in [4] it is shown
that a poly group can be derived from an association scheme (cf. [2]) and from
coherent configurations (cf. [7]).

4 The characterization In this section we extend the relationship men-
tioned in Example 2.2 to all relation algebras. The following lemma summarizes
some useful elementary properties of polygroupoids.

Lemma 4.1 If (A, , /, ` 1) is a polygroupoid, then the following hold for all
x, y e A:

(1) If y e I and xy Φφ, then x y = x. Similarly, x y -y if x e I and xy φφ
(2) x el implies x- x = x.
(3) X'χ-ιniΦφandχ-χ-χ(MΦφ.
(4) x`y OIΦφimpliesy = x~ι.
(5) (x-`y`^x.
(6) x e I implies x~ι = x.
(7) IJC X " 1 Π/l = 1 and \x~ι-x Π/L= 1.
(8) (x yTι=y-ι χ-χ.

Proof: The proofs are routine. To give one illustration, we establish (4).
Suppose e e xy Π /. Then by 3.1(iii) and 3.1(ii), y e x~ιe C χ~ιI = {x'1}.
Therefore, j> = x~ι.

When the general complex algebra construction (Section 2) is applied to a
polygroupoid 7?ι/ = (M, , /, ` 1) we obtain the system

%\1h/\ = <^(M), U, Π, φ,M, •*, /*, ` 1 *)

where /* = / and, for X, Y C M,

X-l*=\x-l:xeX\,

and

X-* Y={z e M: z e x-y for somex e X andy e Y\.

The * will be dropped when the meaning is clear from the context. The follow-
ing result characterizes complete atomic RA 's.

Theorem 4.2 The complex algebra (£[7?ι/] of a polygroupoid 9?iy is a
complete atomic relation algebra with 0^=1. Conversely, if

H = C4,+, ,0 , 1,;, Γ,u>

is a complete atomic RA with 0 Φ 1, M is the set of all atoms of 21, and
I = {x e M: x < Γl, then Thy- (M, ,/, u> is a polygroupoid and M =$[7H/].

Proof: It is easy to check that &[7?ι/] is a complete atomic RA: axiom Rois
obvious and axioms Rlf R2, and R3 are easy extensions of 3.1(i), (ii), and (iii)
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to subsets. Conversely, it is also straightforward to verify that the system 7ft/ is
a polygroupoid. Now define a map F: A -> -P(M) by

F(a) = \u eM\ u <a]

for all a e A. It is again routine to check that F is a one-one homomorphism
since 21 is atomic. Ontoness follows from the fact that 21 is complete.

The system 7ft/ constructed in Theorem 4.2 is called the atomic structure
of the relation algebra 21 >. The following corollary is immediate from Theorem
4.2 and Theorem 4.21 of [8].

Corollary 4.3 Every relation algebra is embeddable in the complex algebra
of a polygroupoid.

Both 4.2 and 4.3 can be specialized in various ways. Classes of RA's give
rise to classes of polygroupoids and vice versa. For example, in [3] and [4] it
was shown that integral RA 's correspond to polygroups. As another variation
on this theme we consider the important class of simple RA's.

A polygroupoid 7ft/ - (M, , /, -1> is called connected if for all x, y e I there
exist z e M such that x z = z and z y = z. Thinking of 7ft/ as a "multicategory"
the condition just means that the underlying graph is connected.

The following lemma and its proof are analgous to Theorem 5.4 in [8].

Lemma 4.4 For every polygroupoid 7ft/ the following are equivalent:

(1) 7ft/ is connected
(2) for all x, y there exist z such that x` zΦφ and z y Φφ
(3) for all x, y there exist u, υ such that x eu y υ.

Theorem 4.5 The complex algebra of a connected polygroupoid is a simple
RA. Conversely, if SI. is a simple RA, its atomic structure 7ft/ is connected.

Proof: By 4.4, if 7ft/ is connected and φ Φ X C M, then M X M = M. It follows
that &[Ϋft/] is simple using Theorem 4.10 in [8]. Conversely, if 21 is simple,
then for all x, y e M, x < 1 y 1 which implies that x e u y υ for some u, v e M.
Thus 7ft/ is connected by 4.4.

Since simplicity is preserved under complete extensions (cf., 4.21 of [8])
we obtain

Corollary 4.6 Every simple relation algebra is embeddable in the complex
algebra of a connected polygroupoid.

5 An application The results in Section 4 suggest that relation algebras
(and hence properties of relations) can be studied via polygroupoids. In [4] it
was shown how polygroups introduce a wide range of combinatorial configura-
tions into the study of integral relation algebras. In this section we illustrate
how polygroupoids are useful in the verification of properties of relation
algebras. The particular implication verified in 5.1 below gives an affirmative
answer to a question raised by G. Birkhoff at the Jόnsson Symposium.

Proposition 5.1 The implication R; S = S; R = Γ =* S = R'1 holds in every
relation algebra.
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Proof: Since the statement is universal it suffices to verify it in all complete
atomic RA's. By the representation 4.2 we may regard R and S as subsets of a
polygroupoid (M, •,/, ~ι) and assume R S = S R= I (hence both are nonempty).
In order to show R'1 C S assume r e R. Now, using 3.1 (ii), / = RS, and 3.1 (i)

r 1 = rι i = r1'(R S) = (rι R)S,

so r~ι e u s for some s e S and u e r~ι R. By 3.1 (Hi) and the fact that Si? =/
implies Λ"1- S~ι = 7"1 = / (use 4.1(8)), it follows that

ueΓιs-ιCR-ι S-ι = L

Therefore, u`sΦφ and u e I which yields u s = s by 4.1(1). Hence r"1 e us = s
which gives r~ι = s e S. Since r was arbitrary, R~ι C S. Similarily, S'1 C 7̂  which
implies SCR'1. Thus .R"1 = S as desired.

Although a direct proof of the above from the axioms for iL4's no doubt
exists, the line of reasoning above illustrates that properties of relation algebras
and their proofs are "almost like" group (or groupoid) theory when treated
from the viewpoint of polygroupoids.
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