Automorphisms of ω-Octahedral Graphs

J. C. E. DEKKER

I Preliminaries This paper is closely related to [2] which deals with automorphisms of the ω -graph Q_N associated with the ω -cube Q^N and [3] which deals with the ω -graph Oc_N associated with the ω -octahedron Oc^N . We use the notations, terminology, and results of [2]. The propositions of [2] are referred to as A1.1, A1.2, ..., A2.1, A2.2, ... etc., those of [3] as B1.1, B1.2, ..., B2.1, B2.2, ... etc.

For $n \ge 1$ the *n*-octahedral graph is defined as the complete *n*-partite graph $K(2, \ldots, 2)$ with two vertices in each of its partite sets ([4], p. 69). Let Oc_n have $\mu = (0, ..., 2n - 1)$ as set of vertices and ((0, 1), ..., (2n - 2, 2n - 1))as class of its partite sets. Define f as the permutation of μ which for $0 \le k \le$ n-1 interchanges 2k and 2k+1. Call the vertices p and q of Oc_n opposite, if they correspond to each other under f, then p and q are adjacent, iff they are not opposite. Throughout this paper the symbols v, v_0 , v_1 denote nonempty sets, and μ and μ_{ν} stand for sets of cardinality ≥ 2 . An *involution without fixed* points (abbreviated: iwfp) of a set μ is a permutation f of μ such that $f^2 = i_{\mu}$ and $f(x) \neq x$, for $x \in \mu$. The iwfp f of μ is an ω -iwfp, if it has a partial recursive one-to-one extension. With every imp f of μ we associate a graph $G_f = \langle \mu, \theta \rangle$, where θ consists of all numbers $can(x, y) \in [\mu; 2]$ such that $f(x) \neq y$. Note that the iwfp f is uniquely determined by G_f . The graph $G = \langle \mu, \theta \rangle$ is octahedral, if $G = G_f$, for some iwfp f of μ . The octahedral graph $G_f = \langle \mu, \theta \rangle$ is ω -octahedral, if f is an ω -iwfp of μ . The vertices p and q of the octahedral graph G_f are opposite, if f(p) = q; thus p and q are adjacent iff they are not opposite. According to B2.2 an ω -octahedral graph $G_f = \langle \mu, \theta \rangle$ is a uniform ω -graph for which there exists a nonzero RET N such that $Req \mu = 2N$ and $Req \theta =$ 2N(N-1). Define the functions d_0 and d_1 by: $\delta d_0 = \delta d_1 = \varepsilon$, $d_0(x) = 2x$, $d_1(x) = 2x + 1$. With every set v we associate the sets $v_0 = d_0(v)$, $v_1 = d_1(v)$, and $\mu_{\nu} = \nu_0 \cup \nu_1$. The standard ω -iwfp associated with the set ν is the ω -iwfp f of μ_{ν} such that f(2x) = 2x + 1 and f(2x + 1) = 2x, for $x \in v$. The standard ω octahedral graph Oc_{ν} associated with the set ν is the ω -graph $G_f = \langle \mu_{\nu}, \theta_{\nu} \rangle$,

Received May 27, 1981

where f is the standard ω -iwfp of μ_{ν} associated with the set ν . According to B2.3 a graph is ω -octahedral iff it is ω -isomorphic to some standard ω -octahedral graph. When studying the effective automorphisms of ω -octahedral graphs we may therefore restrict our attention to standard ω -octahedral graphs.

For nonempty sets α and β we have by B2.4: $\alpha \simeq \beta$ iff $Oc_{\alpha} \simeq Oc_{\beta}$. For a nonzero RET N we define Oc_N as Oc_{ν} , for any $\nu \in N$. Thus Oc_N is uniquely determined by N up to ω -isomorphism.

2 Automorphisms of Oc_{ν} An automorphism (ω -automorphism) of Oc_{ν} is an isomorphism (ω -isomorphism) from Oc_{ν} onto itself. We choose the notion of an ω -automorphism of Oc_{ν} as the formal equivalent of the intuitive notion of an effective automorphism of Oc_{ν} . We refer to [2] (p. 122) for the definitions of the groups $Per(\nu)$, $Per_{\omega}(\nu)$, P_{ν} of permutations. Let

Aut Oc_{ν} = the group of all automorphisms of Oc_{ν} , Aut_{ω} Oc_{ν} = the group of all ω -automorphisms of Oc_{ν} ,

and put $\sigma_x = (2x, 2x + 1)$, for $x \in \varepsilon$. An automorphism of $Oc_\nu = \langle \mu_\nu, \theta_\nu \rangle$ is a permutation of μ_ν which preserves adjacency or equivalently which preserves nonadjacency, i.e., which maps each pair of opposite vertices of Oc_ν onto a pair of opposite vertices. A permutation g of μ_ν is therefore an automorphism of $Oc_\nu = \langle \mu_\nu, \theta_\nu \rangle$ iff it permutes $\{\sigma_x | x \in \nu\}$. In symbols,

(1)
$$g \in Aut \ Oc_{\nu} \iff (\exists f) [f \in Per(\nu) \& g(\sigma_x) = \sigma_{f(x)}, for x \in \nu].$$

If the automorphism g of Oc_{ν} and the permutation f of ν are related by (1), then g is not uniquely determined by f. For given f, the function g can for each $x \in \nu$ still map σ_x onto $\sigma_{f(x)}$ in either of two ways, namely:

(i)
$$g(2x) = 2f(x) + 1$$
, $g(2x + 1) = 2f(x)$ or
(ii) $g(2x) = 2f(x)$, $g(2x + 1) = 2f(x) + 1$.

Consider the case where ν is finite, say $\nu = (0, ..., n-1)$, for $n \ge 1$, hence $\mu_{\nu} = (0, ..., 2n-1)$. Then the function f such that $g(\sigma_x) = \sigma_{f(x)}$, for $x \in \nu$, can be chosen in n! different ways. For each choice of f we can still choose g in 2^n different ways by choosing a subset α of ν such that: (i) holds for $x \in \alpha$ and (ii) for $x \notin \alpha$. Thus if ν is a finite set of cardinality n, the automorphism group of Oc_{ν} is a finite group of cardinality $2^n \cdot n!$ Let us now examine Aut Oc_{ν} for an arbitrary set ν , i.e., let us drop the condition that ν be finite. We define

(2) $H(\nu) =_{df} \{ g \in Aut \ Oc_{\nu} | g(\sigma_x) = \sigma_x, \ for \ x \in \nu \},\$

(3) $K(\nu) =_{df} \{g \in Aut \ Oc_{\nu} | g(x) \equiv x \pmod{2}, \text{ for } x \in \mu_{\nu} \}.$

Note that $H(\nu)$, $K(\nu) \leq Aut Oc_{\nu}$. In order to characterize $H(\nu)$ and $K(\nu)$ in a different manner we define for $\alpha \subset \nu$, $h \in Per(\nu)$,

(4)
$$\delta \phi_{\alpha} = \mu_{\nu}, \begin{cases} \phi_{\alpha}(2x) = 2x + 1, \ \phi_{\alpha}(2x + 1) = 2x, \ for \ x \in \alpha, \\ \phi_{\alpha}(2x) = 2x, \ \phi_{\alpha}(2x + 1) = 2x + 1, \ for \ x \notin \alpha, \\ (5) \quad \delta \psi_{h} = \mu_{\nu}, \ \psi_{h}(2x) = 2h(x), \ \psi_{h}(2x + 1) = 2h(x) + 1, \ for \ x \in \nu. \end{cases}$$

We write $S(\nu)$ for the class of all subsets of ν and $\alpha \oplus \beta$ for the symmetric difference of α and β .

428

Proposition C2.1 For every set ν ,

(a) $H(\nu) = \{\phi_{\alpha} \in Aut \ Oc_{\nu} | \alpha \in S(\nu)\},\$ (b) $K(\nu) = \{\psi_{h} \in Aut \ Oc_{\nu} | h \in Per(\nu)\},\$ (c) $H(\nu) \cong \langle S(\nu), \oplus \rangle$ and $K(\nu) \cong Per(\nu).$

Proof: Denote the right sides of (a) and (b) by $H^*(\nu)$ and $K^*(\nu)$ respectively. Relations (4) and (5) imply that $H^*(\nu) \subset H(\nu)$ and $K^*(\nu) \subset K(\nu)$. Now assume $f \in H(\nu)$ and $g \in K(\nu)$. Put $\alpha = \{x \in \nu | f(2x) = 2x + 1\}$, h(x) = the number ν such that $g(\sigma_x) = \sigma_y$. Then $f = \phi_{\alpha}$, $g = \psi_h$, hence $H(\nu) = H^*(\nu)$ and $K(\nu) = K^*(\nu)$. This proves (a) and (b). As far as (c) is concerned, $\psi_h \psi_k = \psi_{hk}$, for h, $k \in Per(\nu)$, so that $K(\nu) \cong Per(\nu)$. The mapping $\alpha \to \phi_\alpha$ maps $S(\nu)$ onto $H(\nu)$ by (4) and C2.1(a). This mapping is one-to-one, since $\alpha = \{x \in \nu | \phi_\alpha(2x) = 2x + 1\}$, for $\alpha \in S(\nu)$. Now assume α , $\beta \in S(\nu)$. Then $\phi_\alpha \phi_\beta(2x) = 2x + 1$, for $x \in \alpha \oplus \beta$, while $\phi_\alpha \phi_\beta(2x) = 2x$, for $x \notin \alpha \oplus \beta$. Thus $\phi_\alpha \phi_\beta(2x) = \phi_{\alpha \oplus \beta}(2x)$ and similarly we see that $\phi_\alpha \phi_\beta(2x + 1) = \phi_{\alpha \oplus \beta}(2x + 1)$. Hence $\phi_\alpha \phi_\beta = \phi_{\alpha \oplus \beta}$ and $\langle S(\nu), \oplus \rangle \cong H(\nu)$. This completes the proof of (c).

Let H, $K \leq G$, where G is a group with unit element i. We write $G = H \times K$, if G is the semidirect product of H by K, i.e., ([5], p. 212), if

- $(6) \quad HK = G,$
- (7) $H \cap K = (i),$
- (8) $H \triangleleft G$.

If we also have $K \triangleleft G$ we call G the *direct* product of H and K. For a set ν we define

(9) $H_{\omega}(v) = \{g \in H(v) | g \text{ has a partial recursive } 1-1 \text{ extension} \},$ (10) $K_{\omega}(v) = \{g \in K(v) | g \text{ has a partial recursive } 1-1 \text{ extension} \},$

so that $H_{\omega}(\nu) \leq H(\nu)$, $K_{\omega}(\nu) \leq K(\nu)$ and $H_{\omega}(\nu)$, $K_{\omega}(\nu) \leq Aut_{\omega} Oc_{\nu}$. We also see that $H_{\omega}(\nu) = H(\nu)$, $K_{\omega}(\nu) = K(\nu)$, if ν is finite, while $H_{\omega}(\nu) < H(\nu)$, $K_{\omega}(\nu) < K(\nu)$, if ν is infinite. For in the latter case, $H_{\omega}(\nu)$ and $K_{\omega}(\nu)$ are denumerable, while $H(\nu)$ and $K(\nu)$ have cardinality c.

Proposition C2.2 For every set ν ,

(a) Aut $Oc_{\nu} = H(\nu) \times K(\nu)$, (b) $Aut_{\omega} Oc_{\nu} = H_{\omega}(\nu) \times K_{\omega}(\nu)$.

Proof: To prove (a) we shall verify (6), (7), and (8) for $H = H(\nu)$, $K = K(\nu)$, and $G = Aut Oc_{\nu}$.

Re (6). Since $H(\nu)$, $K(\nu) \leq Aut Oc_{\nu}$, it suffices to prove

 $g \in Aut \ Oc_{\nu} \Rightarrow (\exists \alpha)(\exists h) [\alpha \in S(\nu) \& h \in Per(\nu) \& g = \phi_{\alpha}\psi_{h}].$

Assume the hypothesis. By (1) there is an $f \in Per(\nu)$ such that $g(\sigma_x) = \sigma_{f(x)}$, for $x \in \nu$. Then ψ_f is an automorphism of Oc_{ν} by C2.1(b), hence so are ψ_f^{-1} and $g\psi_f^{-1}$. However,

$$g\psi_f^{-1}(\sigma_x) = g\psi_f^{-1}(\sigma_x) = g(\sigma_f^{-1}(x)) = \sigma_{ff}^{-1}(x) = \sigma_x$$

so that $g\psi_f^{-1} \in H(\nu)$, say $g\psi_f^{-1} = \phi_{\alpha}$, where $\alpha \in S(\nu)$. Then $g = \phi_{\alpha}\psi_f$ and $g \in H(\nu) K(\nu)$.

Re(7). Immediate by (4) and (5).

Re(8). We only need to prove $\psi_f^{-1}H(\nu)\psi_f \subset H(\nu)$, for $f \in Per(\nu)$, i.e.,

$$h \in H(\nu) \& f \in Per(\nu) \Rightarrow \psi_f^{-1}h\psi_f \in H(\nu).$$

Assume the hypothesis. Then $\psi_f^{-1}h\psi_f \in H(\nu)$, since

 $\psi_f^{-1}h\psi_f(\sigma_x) = \psi_f^{-1}h\psi_f(\sigma_x) = \psi_f^{-1}h(\sigma_{f(x)}) = \psi_f^{-1}(\sigma_{f(x)}) = \sigma_x.$

This proves (a). To verify (b) we need to show that (6), (7), and (8) hold for $H = H_{\omega}(\nu)$, $K = K_{\omega}(\nu)$, and $G = Aut_{\omega}Oc_{\nu}$.

Re(6). Since
$$H_{\omega}(\nu)$$
, $K_{\omega}(\nu) \leq Aut_{\omega}Oc_{\nu}$, it suffices to prove

 $g \in Aut_{\omega}Oc_{\nu} \Rightarrow (\exists h)(\exists k)[h \in H_{\omega}(\nu) \& k \in K_{\omega}(\nu) \& g = hk].$

Assume the hypothesis. By (a) there exists a unique ordered pair $\langle h, k \rangle$ of functions such that $h \in H(v)$, $k \in K(v)$ and g = hk. Let \overline{g} be a partial recursive one-to-one extension of g. Put $\overline{v} = \{x \mid 2x \in \delta \overline{g} \& 2x + 1 \in \delta \overline{g}\}$, then $v \subset \overline{v}$, where \overline{v} is r.e. Define $\overline{v}_0 = \{2x \mid x \in \overline{v}\}, \overline{v}_1 = \{2x + 1 \mid x \in \overline{v}\}$, then $\overline{v}_0 \cup \overline{v}_1$ is a r.e. superset of $v_0 \cup v_1$. Define the function \overline{h} by: $\delta \overline{h} = \overline{v}_0 \cup \overline{v}_1$ and

 $\overline{h}(2x) = 2x \& \overline{h}(2x+1) = 2x+1$, if $\overline{g}(2x)$ is even and $\overline{g}(2x+1)$ odd, $\overline{h}(2x) = 2x+1 \& \overline{h}(2x+1) = 2x$, if $\overline{g}(2x)$ is odd and $\overline{g}(2x+1)$ even.

Then \overline{h} is a partial recursive extension of h. Let p, $q \in \delta \overline{h}$, $p \neq q$, say $p \in \sigma_{x,2}$, $q \in \sigma_y$, for $x, y \in \overline{\nu}$. If x = y we have $\sigma_x = \sigma_y = (p,q)$; then $\overline{h}(p) \neq \overline{h}(q)$, since h is one-to-one on σ_x . If $x \neq y$ we have $\overline{h}(p) \in \sigma_x$, $\overline{h}(q) \in \sigma_y$, where σ_x and σ_y are disjoint, hence $\overline{h}(p) \neq \overline{h}(q)$. Thus the partial recursive function \overline{h} is one-to-one and $h \in H_{\omega}(\nu)$. Since g and h have partial recursive one-to-one extensions, so has $h^{-1}g = k$; thus $k \in K_{\omega}(\nu)$.

Re(7). From $H_{\omega}(\nu) \leq H(\nu)$, $K_{\omega}(\nu) \leq K(\nu)$ and $H(\nu) \cap K(\nu) = (i)$. *Re*(8). We only need to prove

$$h \in H_{\omega}(\nu) \& k \in Per_{\omega}(\nu) \Rightarrow \psi_h^{-1}h\psi_k \in H_{\omega}(\nu).$$

Assume the hypothesis. Then ψ_k has a partial recursive one-to-one extension (since k has one), hence so has $\psi_k^{-1}h\psi_k$. However, $\psi_k^{-1}h\psi_k \ \epsilon \ H(\nu)$ by (a), hence $\psi_k^{-1}h\psi_k \ \epsilon \ H_{\omega}(\nu)$.

Remark: If card $\nu \ge 2$ the two semidirect products are not direct. For let $p, q \in \nu, p \neq q$ and h be the permutation of ν which interchanges p and q, then $\psi_h \in K(\nu)$. Put $\alpha = (p)$, then

$$\phi_{\alpha}\psi_{h}\phi_{\alpha}^{-1}(2p) = \phi_{\alpha}\psi_{h}\phi_{\alpha}(2p) = \phi_{\alpha}\psi_{h}(2p+1) = \phi_{\alpha}(2q+1) = 2q+1,$$

so that $\phi_{\alpha}\psi_{h}\phi_{\alpha}^{-1}(2p) \not\equiv 2p \pmod{2}$ and $\phi_{\alpha}\psi_{h}\phi_{\alpha}^{-1} \notin K(\nu)$. Hence $K(\nu) \triangleleft Aut Oc_{\nu}$ is false. The functions ϕ_{α} and ψ_{h} can also be used to show that $K_{\omega}(\nu) \triangleleft Aut_{\omega} Oc_{\nu}$ is false.

3 Representation by ω -groups We define the following subclasses of the class S(v) of all subsets of v:

$$S_{fin}(\nu) = \{ \alpha \subset \nu | \alpha \text{ is finite} \}, S_{cof}(\nu) = \{ \alpha \subset \nu | \nu - \alpha \text{ is finite} \}, \\S_{fcf}(\nu) = S_{fin}(\nu) \cup S_{cof}(\nu), S_{\omega}(\nu) = \{ \alpha \subset \nu | \alpha \text{ is separable from } \nu - \alpha \}.$$

The classes $S_{fin}(\nu)$ and $S_{cof}(\nu)$ are equal iff ν is finite, disjoint iff ν is infinite. Moreover,

- (11) $S_{fin}(\nu) \subseteq S_{fcf}(\nu) \subseteq S_{\omega}(\nu) \subseteq S(\nu)$, for all ν ,
- (12) $S_{fin}(\nu) = S_{fcf}(\nu) = S_{\omega}(\nu) = S(\nu)$, if ν is finite,
- (13) $S_{fcf}(\nu) \subset S_{\omega}(\nu) \subset_+ S(\nu)$, if ν is infinite.

The proper inclusion in (13) follows from: if v is infinite, then card $S_{\omega}(v) = \aleph_0$ and card S(v) = c. We need a characterization of the sets v for which $S_{fcf}(v) = S_{\omega}(v)$. This clearly depends only on N = Req v. Recall that an RET N is *indecomposable*, if A + B = N implies that A or B is finite. Thus every finite RET is indecomposable and every indecomposable RET is an isol. It is known that there are c infinite, indecomposable isols. Note that for N = Req v,

- (14) $(\exists \alpha) [\alpha \subset \nu \& \alpha | \nu \alpha \& \alpha \notin S_{fcf}(\nu)] \iff N \ decomposable,$
- (15) $S_{fcf}(\nu) = S_{\omega}(\nu) \iff N$ indecomposable.

We define

(16)
$$\begin{cases} D_{fin}(\nu), D_{fcf}(\nu), D_{\omega}(\nu), D(\nu) \text{ are the groups under } \oplus \text{ formed} \\ by \text{ the classes } S_{fin}(\nu), S_{fcf}(\nu), S_{\omega}(\nu), S(\nu) \text{ respectively.} \end{cases}$$

It follows from (11), (12), (13), (15), and (16) that for $N = Req \nu$,

- (17) $D_{fin}(v) \leq D_{fcf}(v) \leq D_{\omega}(v) \leq D(v)$, for all v,
- (18) $D_{fin}(\nu) = D_{fcf}(\nu) = D_{\omega}(\nu) = D(\nu)$, if ν is finite,
- (19) $D_{fcf}(v) \leq D_{\omega}(v) < D(v)$, if v is infinite,
- (20) $D_{fcf}(v) = D_{\omega}(v) \iff N$ is indecomposable.

In the proof of C2.1(c) we noted that the mapping $\alpha \rightarrow \phi_{\alpha}$, for $\alpha \in S(\nu)$ is an isomorphism from $D(\nu)$ onto $H(\nu)$.

Proposition C3.1 The mapping $\alpha \rightarrow \phi_{\alpha}$, for $\alpha \in D_{\omega}(\nu)$ is an isomorphism from $D_{\omega}(\nu)$ onto $H_{\omega}(\nu)$.

Proof: Let $H'(\nu)$ be the image of $D_{\omega}(\nu)$ under the mapping $\alpha \to \phi_{\alpha}$, for $\alpha \in D(\nu)$. Suppose $\alpha \in D_{\omega}(\nu)$, say $\alpha = \nu \cap \overline{\alpha}$, $\nu - \alpha = \nu \cap \overline{\beta}$, for disjoint r.e. sets $\overline{\alpha}$ and $\overline{\beta}$. Put $\overline{\nu} = \overline{\alpha} \cup \overline{\beta}$ and let $\phi_{\overline{\alpha}}$ be defined in terms of $\overline{\alpha}$ and $\overline{\nu}$ as ϕ_{α} is defined by (4) in terms of α and ν . Then $\phi_{\overline{\alpha}}$ is a partial recursive one-to-one extension of ϕ_{α} so that $\phi_{\alpha} \in H_{\omega}(\nu)$; hence $H'(\nu) \subset H_{\omega}(\nu)$. Now suppose $\phi_{\alpha} \in H_{\omega}(\nu)$ and \overline{g} is a partial recursive extension of ϕ_{α} . Then

$$\alpha = \{x \in \nu | \phi_{\alpha}(2x) = 2x + 1\}, \quad \nu - \alpha = \{x \in \nu | \phi_{\alpha}(2x) = 2x\},\\ \alpha \subset \{x | 2x \in \delta \overline{g} \& \overline{g}(2x) = 2x + 1\}, \quad \nu - \alpha \subset \{x | 2x \in \delta \overline{g} \& \overline{g}(2x) = 2x\},$$

where the sets on the right sides of the inclusions are r.e. and disjoint. Thus $\alpha \in D_{\omega}(\nu)$ and $\phi_{\alpha} \in H'(\nu)$; hence $H_{\omega}(\nu) \subset H'(\nu)$. We conclude that $H'(\nu) = H_{\omega}(\nu)$.

Let $N = Req \nu$. We know ([2], Sections 4 and 5) that the group P_{ν} of all finite permutations of ν can be represented by (i.e., is isomorphic to) the uniform ω -group P_N of order N! In order to represent the group $D_{fcf}(\nu)$ by an ω -group we need an effective enumeration without repetitions of the class $S_{fcf}(\varepsilon)$. We choose the enumeration $\langle \sigma_n \rangle$, where

(21) $\sigma_{2n} = \rho_n$, $\sigma_{2n+1} = \varepsilon - \rho_n$, for $n \in \varepsilon$.

Henceforth " σ_x " will only be used as defined in (21). Define for $\nu \subset \varepsilon$ and $x, y \in \varepsilon$,

$$\begin{split} \delta_{\nu} &= \begin{cases} \{2n \in \varepsilon | \sigma_{2n} \subset \nu\}, & \text{if } \nu \text{ is finite,} \\ \\ \{2n \in \varepsilon | \sigma_{2n} \subset \nu\} \cup \{2n+1 \in \varepsilon | \sigma_{2n} \subset \nu\}, \text{ if } \nu \text{ is infinite,} \end{cases} \\ \tilde{d}(x, \nu) &= can(\sigma_x \oplus \sigma_y), D_{fcf}(\nu) = \langle \delta_{\nu}, d_{\nu} \rangle, \text{ where } d_{\nu} = \tilde{d} | \delta_{\nu} \times \delta_{\nu}, \end{split}$$

then it is readily seen that

$$\alpha \cong \beta \Rightarrow D_{fcf}(\alpha) \cong_{\omega} D_{fcf}(\beta)$$
, for nonempty sets α and β .

For a nonzero RET N we define $D_{fcf}(N) = D_{fcf}(\nu)$, for any $\nu \in N$. Thus $D_{fcf}(N)$ is uniquely determined by N up to ω -isomorphism.

Proposition C3.2 Let $N = Req \nu$. Then the group $D_{fcf}(\nu)$ is isomorphic to the uniform ω -group $D_{fcf}(N)$. Moreover, $D_{fcf}(N)$ has order 2^N , if N is finite, but 2^{N+1} , if N is infinite.

Proof: Let $N = Req \nu$. The function \overline{d} is recursive, hence $D_{fcf}(\varepsilon)$ is a r.e. group. Also, $D_{fcf}(\nu)$ is a finite group if ν is finite, while $D_{fcf}(\nu) \leq D_{fcf}(\varepsilon)$ if ν is infinite. Thus $D_{fcf}(\nu)$ is a uniform ω -group for every ν . Clearly,

$$\{2n \in \varepsilon | \sigma_{2n} \subset \nu\} \simeq \{2n+1 \in \varepsilon | \sigma_{2n} \subset \nu\} \simeq 2^{\nu},$$

for every set ν , so that $Req \delta_{\nu}$ equals 2^N , if N is finite, but 2^{N+1} if N is infinite.

4 The main result

Theorem Let $v \in N$ and $N \in \Omega_0$. Then

- (a) $Aut_{\omega} Oc_{\nu} = H_{\omega}(\nu) \times K_{\omega}(\nu)$, i.e., $Aut_{\omega} Oc_{\nu}$ is the semidirect product of $H_{\omega}(\nu)$ by $K_{\omega}(\nu)$,
- (b) if N is an indecomposable isol, the group H_ω(ν) can be represented by the uniform ω-group D_{fcf}(N) whose order is 2^N, if N is finite, but 2^{N+1}, if N is infinite,
- (c) if N is a multiple-free isol, the group $K_{\omega}(\nu)$ can be represented by the uniform ω -group P_N of order N!,
- (d) if N is an indecomposable isol, the group Aut_ω Oc_ν can be represented by a uniform ω-group whose order is 2^N. N!, if N is finite, but 2^{N+1}. N!, if N is infinite.

Proof: Part (a) holds by C2.2(b), part (b) by (20) and C3.1, and part (c) holds by [2], section 3. Now consider part (d). The statement is trivial, if N is finite, for then $Aut_{\omega} Oc_{\nu}$ is a finite group. Assume that N is an infinite, indecomposable isol. Then $H_{\omega}(\nu)$ and $K_{\omega}(\nu)$ can be represented by the uniform ω -groups $D_{fcf}(\nu)$ and P_{ν} , respectively, where $D_{fcf}(\nu) \leq D_{fcf}(\varepsilon)$, $P_{\nu} \leq P_{\varepsilon}$. By C2.2(b) we have $Aut_{\omega} Oc_{\varepsilon} = H_{\omega}(\varepsilon) \times K_{\omega}(\varepsilon)$, where $H_{\omega}(\varepsilon) \cap K_{\omega}(\varepsilon) = (i)$. Define

$$\beta_{\varepsilon} = \{ j(a, f) | a \in \delta_{\varepsilon} \& f \in \boldsymbol{P}_{\varepsilon} \}, \\ \delta h_{\varepsilon} = \beta_{\varepsilon}, \quad h_{\varepsilon} j(a, \tilde{f}) = \phi_{\alpha} f, \text{ where } \alpha = \sigma_{a}, \end{cases}$$

432

Let for x, $y \in \beta_{\varepsilon}$, say $x = j(a, \tilde{f}), y = j(b, \tilde{g}), \alpha = \sigma_a, \beta = \sigma_b$,

 $t_{\varepsilon}(x, y)$ = the unique number z such that $h_{\varepsilon}(z) = \phi_{\alpha} f \phi_{\beta} g$.

Now consider the group $G_{\varepsilon} = \langle \beta_{\varepsilon}, t_{\varepsilon} \rangle$. The set β_{ε} is r.e. We claim that the function t_{ε} is partial recursive. For given the numbers $x, y \in \beta_{\varepsilon}$, we can compute the numbers $a, b, \tilde{f}, \tilde{g}$ such that $x = j(a, \tilde{f}), y = j(b, \tilde{g})$, hence also the finite or cofinite sets α and β such that $h_{\varepsilon}(x) = \phi_{\alpha}f, h_{\varepsilon}(y) = \phi_{\beta}g$ and the number $t_{\varepsilon}(x, y) = z$ such that $h_{\varepsilon}(z) = \phi_{\alpha}f\phi_{\beta}g$. Thus the group G_{ε} is r.e. Define

$$\beta_{\nu} = \{ j(a, \tilde{f}) | a \in \delta_{\nu} \& \tilde{f} \in \boldsymbol{P}_{\nu} \}, \ t_{\nu} = t_{\varepsilon} | \beta_{\nu} \times \beta_{\nu},$$

and $G_{\nu} = \langle \beta_{\nu}, t_{\nu} \rangle$. Then $G_{\nu} \leq G_{\varepsilon}$, hence G_{ν} is a uniform ω -group. Put

$$H_{\omega}(\nu) = \{j(a,\tilde{i}) | a \in \delta_{\nu}\}, K_{\omega}(\nu) = \{j(0,\tilde{f}) | \tilde{f} \in P_{\nu}\},$$

where *i* is the identity permutation on ε , hence $\tilde{i} = 1$. Then $H_{\omega}(v)$ and $K_{\omega}(v)$ are uniform ω -groups and since N = Req v is indecomposable, $H_{\omega}(v) \cong_{\omega} D_{fcf}(v)$ and $K_{\omega}(v) \cong_{\omega} P_{v}$. We conclude that

$$oG_{\nu} = oH_{\omega}(\nu) \cdot oK_{\omega}(\nu) = oD_{fcf}(\nu) \cdot oP_{\nu} = 2^{N+1} \cdot N!$$

5 Concluding remarks (A) Comparison with Q_{ν} . Let $N = Req \nu$ be an indecomposable isol, then N is also multiple-free. Comparing the group $Aut_{\omega} Q_{\nu}$ discussed in [2] with the group $Aut_{\omega} Oc_{\nu}$ discussed in the present paper, we notice an essential difference:

(1) $Aut_{\omega} Q_{\nu}$ can be represented by a uniform ω -group of order $2^{N} \cdot N!$,

(2) $Aut_{\omega} Oc_{\nu}$ can be represented by a uniform ω -group which has order $2^{N} \cdot N!$, if N is finite, but $2^{N+1} \cdot N!$, if N is infinite.

This essential difference between the ω -graphs Q_{ν} and Oc_{ν} is related to the fact that $Q_{\nu} = \langle 2^{\nu}, \eta \rangle$ has opposite vertices, i.e., vertices p and q such that $\rho_p = \nu - \rho_q$, iff the set ν is finite, while $Oc_{\nu} = Oc_f = \langle \mu_{\nu}, \theta_{\nu} \rangle$ has opposite vertices, i.e., vertices p and q such that f(p) = q, for every set ν . Thus, if ν is infinite, every permutation of μ_{ν} which maps almost all vertices of Oc_{ν} onto their opposites (and the others onto themselves) is an ω -automorphism of Oc_{ν} which has no analogue in Q_{ν} .

(B) Effective duality. In [2] we used " Q^{ν} " for the directed ω -cube on the set ν , i.e., for $\langle 2^{\nu}, \leq \rangle$, where $x \leq y \iff \rho_x \subset \rho_y$, for $x, y \in 2^{\nu}$. In [3] we used " Q^{ν} " for the undirected ω -cube on the set ν , i.e., for $\langle 2^{\nu}, F_{\nu} \rangle$, where F_{ν} is the class of all faces, i.e., of all subsets σ of 2^{ν} such that $\sigma = \{x \in 2^{\nu} | \beta \subset \rho_x \subset \beta \cup \gamma\}$, for two disjoint finite subsets β and γ of ν . In both cases the (undirected) ω -graph corresponding to the ω -cube Q^{ν} is the ω -graph Q_{ν} . Similarly, Oc_{ν} is the ω -graph corresponding to the ω -octahedron Oc_{ν} discussed in [3]. We showed in [3] that for an indecomposable $N = Req \nu$, the undirected ω -cube Q^{ν} is effectively dual to the ω -octahedron Oc^{ν} iff N is finite. Thus if N is an infinite, indecomposable isol, Q^{ν} and Oc^{ν} are not effectively dual and one should therefore not be surprised that the ω -groups we used to represent $Aut_{\omega} Q_{\nu}$ and $Aut_{\omega} Oc_{\nu}$ have different orders.

(C) The group $D_{fcf}(\nu)$. In this remark " Q^{ν} " denotes the directed cube on the set ν . Let $N = Req \nu$. We have

(22) $Aut_{\omega} Q_{\nu} = C_{\nu} \times Aut_{\omega} Q_{\nu}, Aut_{\omega} Oc_{\nu} = H_{\omega}(\nu) \times K_{\omega}(\nu).$

Both $Aut_{\omega} Q^{\nu}$ and $K_{\omega}(\nu)$ are isomorphic to the group $Per_{\omega}(\nu)$. The difference between $Aut_{\omega} Q_{\nu}$ and $Aut_{\omega} Oc_{\nu}$ is therefore due to the difference between C_{ν} and $H_{\omega}(\nu)$. Note that

(23) $C_{\nu} \cong D_{fin}(\nu), H_{\omega}(\nu) \cong D_{\omega}(\nu), \text{ for every } N,$ (24) $D_{\omega}(\nu) = D_{fcf}(\nu), \text{ if } N \text{ is indecomposable.}$

From now on we assume that N is indecomposable. According to (22), (23) and (24) the difference between $Aut_{\omega} Q_{\nu}$ and $Aut_{\omega} Oc_{\nu}$ is due to the difference between the groups $D_{fin}(\nu)$ and $D_{fcf}(\nu)$, hence between the ω -groups representing them, namely $D_{fin}(\nu)$ [or $Z_2(\nu)$] and $D_{fcf}(\nu)$. We have

$$D_{fcf}(v) \cong_{\omega} D_{fin}(v) \iff v \text{ is finite,} \\ oD_{fcf}(v) = 2 \cdot oD_{fin}(v) \iff v \text{ is infinite}$$

This is a direct consequence of the trivial observation that $S_{fin}(\nu)$ and $S_{cof}(\nu)$ are equal iff ν is finite, but disjoint iff ν is infinite.

REFERENCES

- Dekker, J. C. E., "Twilight graphs," The Journal of Symbolic Logic, vol. 46 (1981), pp. 248-280.
- [2] Dekker, J. C. E., "Automorphisms of ω-cubes," Notre Dame Journal of Formal Logic, vol. 22 (1981), pp. 120-128.
- [3] Dekker, J. C. E., "Recursive equivalence types and octahedra," to appear in the Australian Journal of Mathematics.
- [4] Jungerman, M. and G. Ringel, "The genus of the n-octahedron: regular cases," Journal of Graph Theory, vol. 2 (1978), pp. 69-75.
- [5] Scott, W. R., Group Theory, Prentice-Hall, Englewood Cliffs, New Jersey, 1964.

Institute for Advanced Study Princeton, New Jersey 08540

and

Rutgers University New Brunswick, New Jersey 08903

434