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Automorphisms of co-Octahedral Graphs

J. C. E. DEKKER

1 Preliminaries This paper is closely related to [2] which deals with
automorphisms of the co-graph Q^ associated with the co-cube QN and [3]
which deals with the co-graph Oc^ associated with the co-octahedron Oc^. We
use the notations, terminology, and results of [2]. The propositions of [2] are
referred to as A l . l , A1.2, . . ., A2.1, A2.2, . . . etc., those of [3] as Bl . l ,
B1.2, . . ., B2.1,B2.2, . . .etc.

For n > 1 the ^-octahedral graph is defined as the complete rc-partite
graph K(2, . . ., 2) with two vertices in each of its partite sets ([4] , p. 69). Let
Ocn have M = (0 , . . ., 2n - 1) as set of vertices and ((0,1), . . ., (In - 2, 2w - 1))
as class of its partite sets. Define / as the permutation of JJL which for 0 < k <
n - 1 interchanges 2k and 2k + 1. Call the vertices p and q of Ocn opposite, if
they correspond to each other under/ , then p and q are adjacent, iff they are
not opposite. Throughout this paper the symbols v, v0, vx denote nonempty
sets, and JU and JJLV stand for sets of cardinality > 2 . An involution without fixed
points (abbreviated: iwfp) of a set JU is a permutation / of /x such that f2 = /M
and fix) =£ x, for x e /x. The iwfp / of /x is an co-iwfp, if it has a partial recursive
one-to-one extension. With every iwfp / of JU we associate a graph Gf = <JU, 6),
where 6 consists of all numbers can{x,y) e [/x;2] such that /(x) =hy. Note that
the iwfp / is uniquely determined by Gf. The graph G = <M, 8) is octahedral, if
G = Gf, for some iwfp / of/x. The octahedral graph Gf = </x, B) is co-octahedral,
if / is an co-iwfp of /x. The vertices p and q of the octahedral graph Gf are
opposite, if f(p) = q; thus p and q are adjacent iff they are not opposite.
According to B2.2 an co-octahedral graph Gf = (fx, 6) is a uniform co-graph for
which there exists a nonzero RET TV such that Req \x = 2N and Req 6 =
2N(N - 1). Define the functions d0 and dl by: dd0 = 5 ^ = c, do(*) = 2x,
d^x) = 2x + 1. With every set v we associate the sets v0 = do(v), vx = ^(V), and
iJLv~vo^v\' The standard oo-iwfp associated with the set v is the co-iwfp / of \xv

such that f(2x) = 2x + 1 and /(2x + 1) = 2x9 for x e *>. The standard co-
octahedral graph Ocv associated with the set v is the co-graph Gf = {JJLU, 0V),
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where / is the standard co-iwfp of [iv associated with the set v. According to
B2.3 a graph is co-octahedral iff it is co-isomorphic to some standard co-
octahedral graph. When studying the effective automorphisms of co-octahedral
graphs we may therefore restrict our attention to standard co-octahedral graphs.

For nonempty sets o: and 0 we have by B2.4: a ^ 0 iff Oca = w Oc$. For a
nonzero RET TV we define Oc^ as Ocv, for any v e N. Thus Oc^ is uniquely
determined by N up to co-isomorphism.

2 Automorphisms of Ocv An automorphism (co-automorphism) of Ocv is
an isomorphism (co-isomorphism) from Ocv onto itself. We choose the notion
of an co-automorphism of Ocv as the formal equivalent of the intuitive notion
of an effective automorphism of Ocv. We refer to [2] (p. 122) for the defini-
tions of the groups Per{y), Per^(v), Pv of permutations. Let

Aut Ocv = the group of all automorphisms of Ocv,
Aut^ Ocv = the group of all co-automorphisms of Ocv,

and put ox = (2x, 2x + 1), for x e £. An automorphism of Ocv = (iiv,6v) is a
permutation of (Jtv which preserves adjacency or equivalently which preserves
nonadjacency, i.e., which maps each pair of opposite vertices of Ocv onto a pair
of opposite vertices. A permutation g of IJLV is therefore an automorphism of
Ocv = (jiv, dv) iff it permutes \ox\x e v\. In symbols,

(1) g e Aut Ocv <=* (3f)[fePer(p)&g(ox) = ofM,forx e v].

If the automorphism g of Ocv and the permutation / of v are related by (1),
then g is not uniquely determined by / . For given / , the function g can for each
x ev still map ox onto Of(X) in either of two ways, namely:

(i) g(2x) = 2/U) + 1, g(2x + 1) = 2/0c) or
(ii) g(2x) = 2/(JC), g(2x + 1) = 2f(x) + 1.

Consider the case where v is finite, say v = (0, . . . , « - 1), for n > 1, hence
liv = (0, . . ., 2n - 1). Then the function / such that g(ox) = a/(*), for x ev, can
be chosen in n\ different ways. For each choice o f /we can still choose g in 2n

different ways by choosing a subset a of v such that: (i) holds for x e a and
(ii) for x 4 a. Thus if v is a finite set of cardinality n, the automorphism group
of Ocv is a finite group of cardinality 2n -n\ Let us now examine Aut Ocv for an
arbitrary set v, i.e., let us drop the condition that v be finite. We define

(2) H(y) =df{g e Aut Ocv\g(ox) = ox, for x e v\9

(3) K(v)=df{ge Aut Ocv\g(x)= x(mod 2),forx e iiv\.

Note that H(v), K(y) < Aut Ocv. In order to characterize H{v) and K(v) in a
different manner we define for a C v, h e Per{y),

|

0a(2x) = 2x + 1, 0Q(2x + 1) = 2x, /or x e a,

(t>a(2x) = 2x, 0a(2x + 1) = 2x + I, for x 4 a,

(5) S^A =/!„, ifo(2x) = 2A(JC), ^ ( 2 x + 1) = 2A(JC) + 1,/br* e ̂ .

We write S(v) for the class of all subsets of v and a © |3 for the symmetric
difference of a and |3.
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Proposition C2.1 For every set v,

(a) H{v) = [0a e Aut Ocv\a e S(P)\,
(b) K(v) = {\phe Aut Ocv\h ePer(p)\,
(c) H(v) = (S(P), ©) and K(P) = Per(v).

Proof: Denote the right sides of (a) and (b) by H*(y) and K*(v) respectively.
Relations (4) and (5) imply that H*(v) C H(v) and K*(v) C K{v). Now assume
/ e H(P) and g e K(y). Put a = [x e p\f(2x) = 2x + 1}, /z(x) = the number y such
that g(ox) = Oy. Then/= 0a, g=\jjh, hence # 0 ) = #*O) and ^ 0 ) = AT*(î ). This
proves (a) and (b). As far as (c) is concerned, i^h^k = ^hk> for/z, k ePer(y), so
that K{v) = Per{v). The mapping a -> 0a maps 5(^) onto ^(^) by (4) and
C2.1(a). This mapping is one-to-one, since a = {x e ^l0a(2x) = 2x + 1{, for
a e iSĈ ). Now assume a, P e S(v). Then 0^0^(2^) = 2x + 1, for x e a © 0, while
<j)a(l)p(2x) = 2x, for x ^ a © j3. Thus 0^0^(2^) = (j)aep(2x) and similarly we see that
0a0^(2x + 1) = 0a0/3(2x + 1). Hence 0a0^ = 0a9|3 and (S(P), ©> s ^(z^). This
completes the proof of (c).

Let H, K < G, where G is a group with unit element z. We write G =
# X £, if G is the semidirect product ofH by K, i.e., ([5], p. 212), if

(6) HK = G,
(7) HnK = (i),
(8) # < G .

If we also have K G w e call G the dzVecr product of H and AT. For a set P we
define

(9) Hu(p) =\g e H(p)\g has a partial recursive 1-1 extension],
(10) K^iy) = \g e K(p)\g has a partial recursive 1-1 extension],

so that HJy) < H{p), K^{P) < K(p) and H^iy), Ku(i>)<AutLJ Ocv. We also see
that H^(p) = H{P\ K^{P) = K(p\ if v is finite, while HJy) < H(P\ K^P) <
K(P), if P is infinite. For in the latter case, H^p) and K^P) are denumerable,
while H(P) and K(P) have cardinality c.

Proposition C2.2 For every set P,

(a) AutOcv=H(p)XK(p),
(b) Autw Ocv = ffw(i;) X tfw(*0.

Prao/: To prove (a) we shall verify (6), (7), and (8) for H = ̂ (^), ^ = A"(i;), and
G=Aut Ocv.

Re (6). Since H(P), K(P) <^Aut Ocv, it suffices to prove

g e Aut Ocv => (3a)(3A)[a e SO) & A e Periy) &g = (pa\ph].

Assume the hypothesis. By (1) there is d.nfePer(p) such that g(ox) = O/(JC)? f° r

x e ẑ . Then ^y is an automorphism of Ocv by C2.1(b), hence so are \\jjl and
g^f1- However,

gtyf\ox) = ̂ rKffx) = ̂ (cr/"1^)) = OffKx) = ^ ,

so that gi///1 e //(^), say g^/1 = 0a, where a e 5(^). Then g = <t>a^f and
geH(p)K(p).
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Re{l). Immediate by (4) and (5).

Re(S). We only need to prove l// /1 /^)^/ C H(v), for/e Per(y), i.e.,

h e H(y) Scfe Per{v) =• ̂ Jlh $f e H(y).

Assume the hypothesis. Then \\jjlh>pf e H(v), since

This proves (a). To verify (b) we need to show that (6), (7), and (8) hold for
H = HJy\ K = KJy\ and G = ̂ i i^Oc,.

jRe(6). Since H^iy), K^{v) ^Aut^Oc^, it suffices to prove

g e Aut^Ocv -> (3A)(3*)[A e # < » & A: e K»(y) &,g = hk].

Assume the hypothesis. By (a) there exists a unique ordered pair (h, k) of
functions such that h e H(y), k e K{v) and g = hk. Let g be a partial recursive
one-to-one extension of g. Put v = \x\2x e Sg & 2x + 1 e Sgl, then J> C ?, where
v is r.e. Define v0 = {2xlx e v\9"vx = {2x + 1 Ix e ?i, then ?0 U Ul is a r.e. superset
of v0 U J/J. Define the function h by: 6/z = v0 U i7x and

M2x) = 2x & A(2x + 1) = 2x + 1, if g(2x) is even and£(2x + 1) odd,
h{2x) = 2x + 1 & A(2x + 1) = 2JC, if g{2x) is odd and g(2x + 1) even.

Then h is a partial recursive extension of h. Let p, q e 8h,_p =£ g,_say p e ax^
q e oy, for x, y e v. If x = y we have ax = Oy = (p, ̂ ); then h(p) ¥= h(q), since h
is one-to-one on_ ax. If x ̂  y we have /z(p) e a*, h(q) e oy, where_a^ and oy are
disjoint, hence h(p) ^ h(q). Thus the partial recursive function h is one-to-one
and h e H^v). Since g and /* have partial recursive one-to-one extensions, so
has h~xg = k; thus & e K^iy).

Re(l). From #w(i0 < ^ ) , ^w(^) < A:^) and H(y) n J5T(i;) = (i).
^^(8). We only need to prove

h e H^(v) & k e Per^v) *> Ulh^k eH^v).

Assume the hypothesis. Then i//# has a partial recursive one-to-one extension
(since k has one), hence so has i//fcVzt//fc. However, ^^h^k e H(v) by (a), hence
tphtkeHviy).

Remark: If card v > 2 the two semidirect products are not direct. For let
p, q e v, p ̂ q and h be the permutation of v which interchanges p and q, then
\ph e K(P). Put a = (p), then

KM«K?<P) = tathtaVp) = * t t^(2p + D = *a(2? + 1) = 2flf + 1,

so that 0^0^(2/?) ^ 2p(mod 2) and K^hQ*1 i K(v). Hence if(^) <^4wr Oc,,
is false. The functions 0a and ̂  can also be used to show that Kw(y) <
Autu Ocv is false.

3 Representation by o>groups We define the following subclasses of the
class S(y) of all subsets of v\

Sfin(y) ={OLCV\OL is finite], Scof(v) = {a C v\ v - a is finite 1,
Sfcjfty) = Sfin(v) U SCOf(y), S^iy) = {aCp\a is separable from v - a\.
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The classes Sfin(y) and Scof(v) are equal iff v is finite, disjoint iff v is infinite.
Moreover,

(11) Sfin (P) C Sfcf(p) C SJP) C S(P), for all P,
(12) SfinW = Sfcf(v) = SJP) = S(P), ifv is finite,
(13) Sfcfiy) C Sw(^) C+ S(y), if v is infinite.

The proper inclusion in (13) follows from: if v is infinite, then card SJp) = tt0

and card S(v) = c. We need a characterization of the sets v for which Sfcf(y) =
SJv)- This clearly depends only on iV = Req v. Recall that an RETiV is
indecomposable, if A + B - N implies that A or B is finite. Thus every finite
RET is indecomposable and every indecomposable RET is an isol. It is known
that there are c infinite, indecomposable isols. Note that for TV = Req p,

(14) (3a)[a C p & OL\V - a & a i Sfcf(y)] <=> N decomposable,
(15) Sfcf(v) = S^iv) ^^ N indecomposable.

We define

I Dfiniy)* Dfcf(v), D^{v), D(v) are the groups under © formed

by the classes Sfin{v), Sfcf(y), 5W(^), S(v) respectively.

It follows from (11), (12), (13), (15), and (16) that for TV = Req v,

(17) Dfln (v) < Dfcf{y) < DJy) <D(v), for all v9

(18) D^ (v) = Dfcfi?) = DWW = D{v), if v is finite,
(19) Dfcf{v) < DJy) < D{v), if v is infinite,
(20) DfCf{y) = DJv) <=> TV is indecomposable.

In the proof of C2. l(c) we noted that the mapping a -> 0ftJ for a e S(y) is
an isomorphism from D(P) onto H{P).

Proposition C3.1 The mapping a -* 0a, for a e DJv) is an isomorphism
from DJv) onto HJv).

Proof: Let H\p) be the image of DJv) under the mapping a -* 0a, for a e D(î ).
Suppose a eJJJv), say a = p n 5, ^ - a = v n J3, for disjoint r.e. sets 5 and J3.
Put ? = a. U |8 and let 0S be defined in terms of a and ? as 0a is defined by (4) in
terms of ex. and p. Then 05 is a partial recursive one-to-one extension of 0a so
that 0a e HJv); hence //'(*>) C HJv). Now suppose 0a e #w(i0 and ^ is a
partial recursive extension of 0a. Then

a = {x e p\<poi(2x) = 2^+11, ^ - o : = ixe^l0a(2x) = 2x!,
a C \x\2x e dg&g(2x) = 2x+l\9 v - a. C {x\2x e 8g&g(2x) = 2x\,

where the sets on the right sides of the inclusions are r.e. and disjoint. Thus
a e DJP) and 0a e H'(y)\ hence HJv) C # » . We conclude that / / > ) = HJv).

Let iV = i ? ^ v. We know ([2], Sections 4 and 5) that the group Pv of all
finite permutations of v can be represented by (i.e., is isomorphic to) the
uniform co-group PM of order N\ In order to represent the group Dfcf(v) by an
co-group we need an effective enumeration without repetitions of the class
SfCf(t). We choose the enumeration <aw>, where
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( 2 1 ) o2n=pn, o2n+1 = E~ p n , for net.

Henceforth "a*" will only be used as defined in (21). Define for v C c and
x, y e t,

I Yin e t\o2n
 c v\, ifv is finite,

_ Yin e z\o2n C ^ l u Yin + 1 e t\o2n ^ v\f ifv is infinite,

d(x,y) = can(ox © c^), Z)/c/(i>) = idu, dv), where ^ = d\dv X 6^

then it is readily seen that

a = |8 => Dfcf(a) = w Z>/c/03), /or nonempty sets a and |3.
For a nonzero RET TV we define Dfcf(N) = Dfcf(v), for any i^eiV. Thus Dfcf(N)
is uniquely determined by JV up to co-isomorphism.

Proposition C3.2 Le^ A/" = i?eg ^ T/z^^ //ze grow/? Dfcf{y) is isomorphic to
the uniform co-group Dfcf(N). Moreover, DfCf(N) has order 2N, ifN is finite, but
2N+\ ifN is infinite.

Proof: Let TV = i?e# ^ The function d is recursive, hence Dfcf&) is a r.e. group.
Also, Dfcfiy) is a finite group if v is finite, while Dfcf(v) < Dfcf{t) if ^ is infinite.
Thus Dfcf{v) is a uniform co-group for every v. Clearly,

Yin e t \ o 2 n C p \ c ~ Yin + 1 e t \ o 2 n C p \ ~ 2V,

for every set v, so that Req dv equals 2^, if TV is finite, but 2N+1 ifN is infinite.

4 The main result

Theorem Let v e N and N e £20. Then

(a) Aut^ Ocv = Hu{v) X K^(y), i.e., Aut^ Ocv is the semidirect product of
H»(P) by K^v\

(b) if N is an indecomposable isol, the group H^v) can be represented by the
uniform oj-group Dfcf(N) whose order is 2N, ifN is finite, but 2N+1, ifNis
infinite,

(c) / / TV is a multiple-free isol, the group K^(v) can be represented by the
uniform co-group P^ of order TV!,

(d) if N is an indecomposable isol, the group Aut^ Ocv can be represented by
a uniform co-group whose order is 2N-N\, if N is finite, but 2N+l-N\, ifN
is infinite.

Proof: Part (a) holds by C2.2(b), part (b) by (20) and C3.1, and part (c) holds
by [2], section 3. Now consider part (d). The statement is trivial, if TV is finite,
for then Aut^ Ocv is a finite group. Assume that TV is an infinite, indecom-
posable isol. Then H^v) and K^(v) can be represented by the uniform
co-groups DfCf{y) and Pu, respectively, where Dfcf(v) < DfCf(t), Pv < Pt. By
C2.2(b) we have Autu Ocz = HJz) X KJ£), where # J c ) n K^it) = (i). Define

Pt=lKa,f)\a€&t&f€Pt\,
5/*e = fti. hti(a, f) = <t>af where a = oa,
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Let for x, y e |8e, say x = j(aj), y = /(&,£), a = oay(3 = ob,

tz(x>y) ~ the unique number z such that ht(z) = 0a/00#.

Now consider the group Ge = </JE, re>. The set /Je is r.e. We claim that the
function tz is partial recursive. For given the numbers x, y e /?c, we can compute
the numbers a, b, f, g such that x = /(a, /) , y - j(b,g), hence also the finite or
cofinite sets a and |3 such that ht(x) - 0 a / , hz(y) = 0j3g and the number
tz(x,y) = z such that ht(z) = 0a/0j8g. Thus the group Ge is r.e. Define

ft; = I/(a, 7)1* e «„ &fePv\, tv = fjft, X ft,,

and Gy = (ft,, £„>. Then G^ < Gc, hence Gv is a uniform co-group. Put

H^)=iKaj)\ae8v\,KOJ(p)=ij(0J)\fePv\,

where / is the identity permutation on 8, hence / = 1. Then H^(y) and K^iy) are
uniform co-groups and since Â  = Req v is indecomposable, H^(v) = w DfCf(y)
and A^O) = w P^. We conclude that

oG, = oH^v)oK^(v) = oDfcf{vyoPv = 27V+1-N!

5 Concluding remarks (A) Comparison with Qy. Let iV = .Re^ î  be an
indecomposable isol, then Â  is also multiple-free. Comparing the group
Aut^ Qv discussed in [2] with the group Aut^ Ocv discussed in the present
paper, we notice an essential difference:

(1) Aut^ Qv can be represented by a uniform co-group of order 2N-N\,
(2) Aut^ Ocv can be represented by a uniform co-group which has order

2N>N\, ifN is finite, but 2N+1-Nl, ifN is infinite.

This essential difference between the co-graphs Qv and Ocv is related to the
fact that Qv = (2U, 77) has opposite vertices, i.e., vertices p and q such that
Pp = v ~ Pq, iff the set v is finite, while Ocv = Ocf = (iiVi 0v) has opposite
vertices, i.e., vertices p and q such that f(p) = q, for every set v. Thus, if v is
infinite, every permutation of [iv which maps almost all vertices of Ocv onto
their opposites (and the others onto themselves) is an co-automorphism of Ocv

which has no analogue in Qv.
(B) Effective duality. In [2] we used "Qv" for the directed co-cube on the

set v, i.e., for (2V, O , where x < y *=> px C p ^ for x, y e 2V. In [3] we used
"Qu" for the undirected co-cube on the set v, i.e., for (2V, Fv), where Fv is the
class of all faces, i.e., of all subsets a of 2^such that o = {x e 2*1j3 C px C (3 U 7!,
for two disjoint finite subsets j3 and 7 of ^. In both cases the (undirected)
co-graph corresponding to the co-cube Qv is the co-graph Qv. Similarly, Ocv is
the co-graph corresponding to the co-octahedron Ocv discussed in [3]. We
showed in [3] that for an indecomposable N = Req v, the undirected co-cube
Qv is effectively dual to the co-octahedron Ocv iff N is finite. Thus if N is an
infinite, indecomposable isol, Qv and Ocv are not effectively dual and one
should therefore not be surprised that the co-groups we used to represent
Aut^ Qv and Aut^ Ocv have different orders.

(C) The group Dfcf(v). In this remark "Qv" denotes the directed cube on
the set v. Let N = Req V.WQ have
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(22) Autu QU = CVX Aut^ Qv, Aut^ Ocv = H^(v) X K^{v).

Both Autu Qv and K^{v) are isomorphic to the group Per^iy). The difference
between Aut^ Qv and Aut^ Ocv is therefore due to the difference between Cv

and Hu(v). Note that

(23) Cv = Dflniy), H^{v) s D J P ) , /or every N,
(24) D^iv) = DfCf(p), ifN is indecomposable.

From now on we assume that N is indecomposable. According to (22), (23)
and (24) the difference between Aut^ Qv and Aut^ Ocv is due to the difference
between the groups Dfln(y) and Dfcf{y), hence between the co-groups represent-
ing them, namely Dfin{v) [or Z2(y)] and Dfcf(p). We have

Dfcfiv) s w /)^(*0 <=* i; w /mzYe,
oDfcfiy) = 2-oDfin(v) <=> v is infinite.

This is a direct consequence of the trivial observation that Sfm(v) and SCOf(v)
are equal iff v is finite, but disjoint iff v is infinite.
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