# Automorphisms of $\omega$-Octahedral Graphs 

J. C. E. DEKKER

1 Preliminaries This paper is closely related to [2] which deals with automorphisms of the $\omega$-graph $Q_{N}$ associated with the $\omega$-cube $Q^{N}$ and [3] which deals with the $\omega$-graph $O c_{N}$ associated with the $\omega$-octahedron $O c^{N}$. We use the notations, terminology, and results of [2]. The propositions of [2] are referred to as A1.1, A1.2, . ., A2.1, A2.2, . . etc., those of [3] as B1.1, B1.2, ..., B2.1, B2.2, . . etc.

For $n \geqslant 1$ the $n$-octahedral graph is defined as the complete $n$-partite graph $K(2, \ldots, 2)$ with two vertices in each of its partite sets ([4], p. 69). Let $O c_{n}$ have $\mu=(0, \ldots, 2 n-1)$ as set of vertices and $((0,1), \ldots,(2 n-2,2 n-1))$ as class of its partite sets. Define $f$ as the permutation of $\mu$ which for $0 \leqslant k \leqslant$ $n-1$ interchanges $2 k$ and $2 k+1$. Call the vertices $p$ and $q$ of $O c_{n}$ opposite, if they correspond to each other under $f$, then $p$ and $q$ are adjacent, iff they are not opposite. Throughout this paper the symbols $\nu, \nu_{0}, \nu_{1}$ denote nonempty sets, and $\mu$ and $\mu_{\nu}$ stand for sets of cardinality $\geqslant 2$. An involution without fixed points (abbreviated: iwfp) of a set $\mu$ is a permutation $f$ of $\mu$ such that $f^{2}=i_{\mu}$ and $f(x) \neq x$, for $x \in \mu$. The iwfp $f$ of $\mu$ is an $\omega$-iwfp, if it has a partial recursive one-to-one extension. With every iwfp $f$ of $\mu$ we associate a graph $G_{f}=\langle\mu, \theta\rangle$, where $\theta$ consists of all numbers $\operatorname{can}(x, y) \in[\mu ; 2]$ such that $f(x) \neq y$. Note that the iwfp $f$ is uniquely determined by $G_{f}$. The graph $G=\langle\mu, \theta\rangle$ is octahedral, if $G=G_{f}$, for some iwfp $f$ of $\mu$. The octahedral graph $G_{f}=\langle\mu, \theta\rangle$ is $\omega$-octahedral, if $f$ is an $\omega$-iwfp of $\mu$. The vertices $p$ and $q$ of the octahedral graph $G_{f}$ are opposite, if $f(p)=q$; thus $p$ and $q$ are adjacent iff they are not opposite. According to B2.2 an $\omega$-octahedral graph $G_{f}=\langle\mu, \theta\rangle$ is a uniform $\omega$-graph for which there exists a nonzero RET $N$ such that $\operatorname{Req} \mu=2 N$ and $\operatorname{Req} \theta=$ $2 N(N-1)$. Define the functions $d_{0}$ and $d_{1}$ by: $\delta d_{0}=\delta d_{1}=\varepsilon, d_{0}(x)=2 x$, $d_{1}(x)=2 x+1$. With every set $\nu$ we associate the sets $\nu_{0}=d_{0}(\nu), \nu_{1}=d_{1}(\nu)$, and $\mu_{\nu}=\nu_{0} \cup \nu_{1}$. The standard $\omega$-iwfp associated with the set $\nu$ is the $\omega$-iwfp $f$ of $\mu_{\nu}$ such that $f(2 x)=2 x+1$ and $f(2 x+1)=2 x$, for $x \in \nu$. The standard $\omega$ octahedral graph $O c_{\nu}$ associated with the set $\nu$ is the $\omega$-graph $G_{f}=\left\langle\mu_{\nu}, \theta_{\nu}\right\rangle$,
where $f$ is the standard $\omega$-iwfp of $\mu_{\nu}$ associated with the set $\nu$. According to B2.3 a graph is $\omega$-octahedral iff it is $\omega$-isomorphic to some standard $\omega$ octahedral graph. When studying the effective automorphisms of $\omega$-octahedral graphs we may therefore restrict our attention to standard $\omega$-octahedral graphs.

For nonempty sets $\alpha$ and $\beta$ we have by B2.4: $\alpha \simeq \beta$ iff $O c_{\alpha} \cong{ }_{\omega} O c_{\beta}$. For a nonzero RET $N$ we define $O c_{N}$ as $O c_{\nu}$, for any $\nu \in N$. Thus $O c_{N}$ is uniquely determined by $N$ up to $\omega$-isomorphism.

2 Automorphisms of $\boldsymbol{O c}_{\nu}$ An automorphism ( $\omega$-automorphism) of $O c_{\nu}$ is an isomorphism ( $\omega$-isomorphism) from $O c_{\nu}$ onto itself. We choose the notion of an $\omega$-automorphism of $O c_{\nu}$ as the formal equivalent of the intuitive notion of an effective automorphism of $O c_{\nu}$. We refer to [2] (p. 122) for the definitions of the groups $\operatorname{Per}(\nu), \operatorname{Per}_{\omega}(\nu), P_{\nu}$ of permutations. Let

> Aut $O c_{\nu}=$ the group of all automorphisms of $O c_{\nu}$
> $A u t_{\omega} O c_{\nu}=$ the group of all $\omega$-automorphisms of $O c_{\nu}$
and put $\sigma_{x}=(2 x, 2 x+1)$, for $x \in \varepsilon$. An automorphism of $O c_{\nu}=\left\langle\mu_{\nu}, \theta_{\nu}\right\rangle$ is a permutation of $\mu_{\nu}$ which preserves adjacency or equivalently which preserves nonadjacency, i.e., which maps each pair of opposite vertices of $O c_{\nu}$ onto a pair of opposite vertices. A permutation $g$ of $\mu_{\nu}$ is therefore an automorphism of $O c_{\nu}=\left\langle\mu_{\nu}, \theta_{\nu}\right\rangle$ iff it permutes $\left\{\sigma_{x} \mid x \in \nu\right\}$. In symbols,
(1) $g \in$ Aut $O c_{\nu} \Longleftrightarrow(\exists f)\left[f \in \operatorname{Per}(\nu) \& g\left(\sigma_{x}\right)=\sigma_{f(x)}\right.$, for $\left.x \in \nu\right]$.

If the automorphism $g$ of $O c_{\nu}$ and the permutation $f$ of $\nu$ are related by (1), then $g$ is not uniquely determined by $f$. For given $f$, the function $g$ can for each $x \in \nu$ still map $\sigma_{x}$ onto $\sigma_{f(x)}$ in either of two ways, namely:
(i) $g(2 x)=2 f(x)+1, g(2 x+1)=2 f(x)$ or
(ii) $g(2 x)=2 f(x), g(2 x+1)=2 f(x)+1$.

Consider the case where $\nu$ is finite, say $\nu=(0, \ldots, n-1)$, for $n \geqslant 1$, hence $\mu_{\nu}=(0, \ldots, 2 n-1)$. Then the function $f$ such that $g\left(\sigma_{x}\right)=\sigma_{f(x)}$, for $x \in \nu$, can be chosen in $n$ ! different ways. For each choice of $f$ we can still choose $g$ in $2^{n}$ different ways by choosing a subset $\alpha$ of $\nu$ such that: (i) holds for $x \in \alpha$ and (ii) for $x \notin \alpha$. Thus if $\nu$ is a finite set of cardinality $n$, the automorphism group of $O c_{\nu}$ is a finite group of cardinality $2^{n} \cdot n$ ! Let us now examine $A u t O c_{\nu}$ for an arbitrary set $\nu$, i.e., let us drop the condition that $\nu$ be finite. We define
(2) $H(\nu)={ }_{d f}\left\{g \in A u t O c_{\nu} \mid g\left(\sigma_{x}\right)=\sigma_{x}\right.$, for $\left.x \in \nu\right\}$,
(3) $K(\nu)={ }_{d f}\left\{g \in\right.$ Aut $O c_{\nu} \mid g(x) \equiv x(\bmod 2)$, for $\left.x \in \mu_{\nu}\right\}$.

Note that $H(\nu), K(\nu) \leqslant A u t O c_{\nu}$. In order to characterize $H(\nu)$ and $K(\nu)$ in a different manner we define for $\alpha \subset \nu, h \in \operatorname{Per}(\nu)$,
(4) $\delta \phi_{\alpha}=\mu_{\nu},\left\{\begin{array}{l}\phi_{\alpha}(2 x)=2 x+1, \phi_{\alpha}(2 x+1)=2 x, \text { for } x \in \alpha, \\ \phi_{\alpha}(2 x)=2 x, \phi_{\alpha}(2 x+1)=2 x+1, \text { for } x \notin \alpha,\end{array}\right.$

$$
\begin{equation*}
\delta \psi_{h}=\mu_{\nu}, \psi_{h}(2 x)=2 h(x), \psi_{h}(2 x+1)=2 h(x)+1, \text { for } x \in \nu . \tag{5}
\end{equation*}
$$

We write $S(\nu)$ for the class of all subsets of $\nu$ and $\alpha \oplus \beta$ for the symmetric difference of $\alpha$ and $\beta$.

## Proposition C2.1 For every set $\nu$,

(a) $H(\nu)=\left\{\phi_{\alpha} \in\right.$ Aut $\left.O c_{\nu} \mid \alpha \in S(\nu)\right\}$,
(b) $K(\nu)=\left\{\psi_{h} \in A\right.$ ut $\left.O c_{\nu} \mid h \in \operatorname{Per}(\nu)\right\}$,
(c) $H(\nu) \cong\langle S(\nu), \oplus\rangle$ and $K(\nu) \cong \operatorname{Per}(\nu)$.

Proof: Denote the right sides of (a) and (b) by $H^{*}(\nu)$ and $K^{*}(\nu)$ respectively. Relations (4) and (5) imply that $H^{*}(\nu) \subset H(\nu)$ and $K^{*}(\nu) \subset K(\nu)$. Now assume $f \in H(\nu)$ and $g \in K(\nu)$. Put $\alpha=\{x \in \nu \mid f(2 x)=2 x+1\}, h(x)=$ the number $y$ such that $g\left(\sigma_{x}\right)=\sigma_{y}$. Then $f=\phi_{\alpha}, g=\psi_{h}$, hence $H(\nu)=H^{*}(\nu)$ and $K(\nu)=K^{*}(\nu)$. This proves (a) and (b). As far as (c) is concerned, $\psi_{h} \psi_{k}=\psi_{h k}$, for $h, k \in \operatorname{Per}(\nu)$, so that $K(\nu) \cong \operatorname{Per}(\nu)$. The mapping $\alpha \rightarrow \phi_{\alpha}$ maps $S(\nu)$ onto $H(\nu)$ by (4) and C2.1(a). This mapping is one-to-one, since $\alpha=\left\{x \in \nu \mid \phi_{\alpha}(2 x)=2 x+1\right\}$, for $\alpha \in S(\nu)$. Now assume $\alpha, \beta \in S(\nu)$. Then $\phi_{\alpha} \phi_{\beta}(2 x)=2 x+1$, for $x \in \alpha \oplus \beta$, while $\phi_{\alpha} \phi_{\beta}(2 x)=2 x$, for $x \notin \alpha \oplus \beta$. Thus $\phi_{\alpha} \phi_{\beta}(2 x)=\phi_{\alpha \oplus \beta}(2 x)$ and similarly we see that $\phi_{\alpha} \phi_{\beta}(2 x+1)=\phi_{\alpha \oplus \beta}(2 x+1)$. Hence $\phi_{\alpha} \phi_{\beta}=\phi_{\alpha \oplus \beta}$ and $\langle S(\nu), \oplus\rangle \cong H(\nu)$. This completes the proof of (c).

Let $H, K \leqslant G$, where $G$ is a group with unit element $i$. We write $G=$ $H \times K$, if $G$ is the semidirect product of $H$ by $K$, i.e., ([5], p. 212), if
(6) $H K=G$,
(7) $H \cap K=(i)$,
(8) $H \triangleleft G$.

If we also have $K \triangleleft G$ we call $G$ the direct product of $H$ and $K$. For a set $\nu$ we define
(9) $H_{\omega}(\nu)=\{g \in H(\nu) \mid g$ has a partial recursive 1-1 extension $\}$,
(10) $K_{\omega}(\nu)=\{g \in K(\nu) \mid g$ has a partial recursive 1-1 extension $\}$,
so that $H_{\omega}(\nu) \leqslant H(\nu), K_{\omega}(\nu) \leqslant K(\nu)$ and $H_{\omega}(\nu), K_{\omega}(\nu) \leqslant A u t_{\omega} O c_{\nu}$. We also see that $H_{\omega}(\nu)=H(\nu), K_{\omega}(\nu)=K(\nu)$, if $\nu$ is finite, while $H_{\omega}(\nu)<H(\nu), K_{\omega}(\nu)<$ $K(\nu)$, if $\nu$ is infinite. For in the latter case, $H_{\omega}(\nu)$ and $K_{\omega}(\nu)$ are denumerable, while $H(\nu)$ and $K(\nu)$ have cardinality $c$.

Proposition C2.2 For every set $\nu$,
(a) Aut $O c_{\nu}=H(\nu) \times K(\nu)$,
(b) $A u t_{\omega} O c_{\nu}=H_{\omega}(\nu) \times K_{\omega}(\nu)$.

Proof: To prove (a) we shall verify (6), (7), and (8) for $H=H(\nu), K=K(\nu)$, and $G=A u t O c_{\nu}$.
$R e(6)$. Since $H(\nu), K(\nu) \leqslant A u t O c_{\nu}$, it suffices to prove

$$
g \in \text { Aut } O c_{\nu} \Rightarrow(\exists \alpha)(\exists h)\left[\alpha \in S(\nu) \& h \in \operatorname{Per}(\nu) \& g=\phi_{\alpha} \psi_{h}\right] .
$$

Assume the hypothesis. By (1) there is an $f \in \operatorname{Per}(\nu)$ such that $g\left(\sigma_{x}\right)=\sigma_{f(x)}$, for $x \in \nu$. Then $\psi_{f}$ is an automorphism of $O c_{\nu}$ by C2.1(b), hence so are $\psi_{f}^{-1}$ and $g \psi_{f}^{-1}$. However,

$$
g \psi_{f}^{-1}\left(\sigma_{x}\right)=g \psi_{f}^{-1}\left(\sigma_{x}\right)=g\left(\sigma_{f}^{-1}(x)\right)=\sigma_{f f^{-1}}(x)=\sigma_{x}
$$

so that $g \psi{ }^{-1} \in H(\nu)$, say $g \psi_{f}^{-1}=\phi_{\alpha}$, where $\alpha \in S(\nu)$. Then $g=\phi_{\alpha} \psi_{f}$ and $g \in H(\nu) K(\nu)$.
$R e$ (7). Immediate by (4) and (5).
$\operatorname{Re}(8)$. We only need to prove $\psi_{f}^{-1} H(\nu) \psi_{f} \subset H(\nu)$, for $f \in \operatorname{Per}(\nu)$, i.e.,

$$
h \in H(\nu) \& f \in \operatorname{Per}(\nu) \Rightarrow \psi_{f}^{-1} h \psi_{f} \in H(\nu)
$$

Assume the hypothesis. Then $\psi_{f}^{-1} h \psi_{f} \in H(\nu)$, since

$$
\psi_{f}^{-1} h \psi_{f}\left(\sigma_{x}\right)=\psi_{f}^{-1} h \psi_{f}\left(\sigma_{x}\right)=\psi_{f}^{-1} h\left(\sigma_{f(x)}\right)=\psi_{f}^{-1}\left(\sigma_{f(x)}\right)=\sigma_{x}
$$

This proves (a). To verify (b) we need to show that (6), (7), and (8) hold for $H=H_{\omega}(\nu), K=K_{\omega}(\nu)$, and $G=A u t_{\omega} O c_{\nu}$.
$\operatorname{Re}(6)$. Since $H_{\omega}(\nu), K_{\omega}(\nu) \leqslant A u t_{\omega} O c_{\nu}$, it suffices to prove

$$
g \in A u t_{\omega} O c_{\nu} \Rightarrow(\exists h)(\exists k)\left[h \in H_{\omega}(\nu) \& k \in K_{\omega}(\nu) \& g=h k\right]
$$

Assume the hypothesis. By (a) there exists a unique ordered pair $\langle h, k\rangle$ of functions such that $h \in H(\nu), k \in K(\nu)$ and $g=h k$. Let $\bar{g}$ be a partial recursive one-to-one extension of $g$. Put $\bar{\nu}=\{x \mid 2 x \in \delta \bar{g} \& 2 x+1 \in \delta \bar{g}\}$, then $\nu \subset \bar{\nu}$, where $\bar{\nu}$ is r.e. Define $\bar{\nu}_{0}=\{2 x \mid x \in \bar{\nu}\}, \bar{\nu}_{1}=\{2 x+1 \mid x \in \bar{\nu}\}$, then $\bar{\nu}_{0} \cup \bar{\nu}_{1}$ is a r.e. superset of $\nu_{0} \cup \nu_{1}$. Define the function $\bar{h}$ by: $\delta \bar{h}=\bar{\nu}_{0} \cup \bar{\nu}_{1}$ and

$$
\begin{aligned}
& \bar{h}(2 x)=2 x \& \bar{h}(2 x+1)=2 x+1, \text { if } \bar{g}(2 x) \text { is even and } \bar{g}(2 x+1) \text { odd, } \\
& \bar{h}(2 x)=2 x+1 \& \bar{h}(2 x+1)=2 x \text {, if } \bar{g}(2 x) \text { is odd and } \bar{g}(2 x+1) \text { even. }
\end{aligned}
$$

Then $\bar{h}$ is a partial recursive extension of $h$. Let $p, q \in \delta \bar{h}, p \neq q$, say $p \in \sigma_{x}$, $q \in \sigma_{y}$, for $x, y \in \bar{\nu}$. If $x=y$ we have $\sigma_{x}=\sigma_{y}=(p, q)$; then $\bar{h}(p) \neq \bar{h}(q)$, since $\bar{h}$ is one-to-one on $\sigma_{x}$. If $\underline{x} \neq y$ we have $\bar{h}(p) \in \sigma_{x}, \bar{h}(q) \in \sigma_{y}$, where $\sigma_{x}$ and $\sigma_{y}$ are disjoint, hence $\bar{h}(p) \neq \bar{h}(q)$. Thus the partial recursive function $\bar{h}$ is one-to-one and $h \in H_{\omega}(\nu)$. Since $g$ and $h$ have partial recursive one-to-one extensions, so has $h^{-1} g=k$; thus $k \in K_{\omega}(\nu)$.
$R e(7)$. From $H_{\omega}(\nu) \leqslant H(\nu), K_{\omega}(\nu) \leqslant K(\nu)$ and $H(\nu) \cap K(\nu)=(\mathrm{i})$.
$R e(8)$. We only need to prove

$$
h \in H_{\omega}(\nu) \& k \in \operatorname{Per}_{\omega}(\nu) \Rightarrow \psi_{h}^{-1} h \psi_{k} \in H_{\omega}(\nu) .
$$

Assume the hypothesis. Then $\psi_{k}$ has a partial recursive one-to-one extension (since $k$ has one), hence so has $\psi_{k}{ }^{-1} h \psi_{k}$. However, $\psi_{k}^{-1} h \psi_{k} \in H(\nu)$ by (a), hence $\psi_{k}^{-1} h \psi_{k} \in H_{\omega}(\nu)$.
Remark: If card $\nu \geqslant 2$ the two semidirect products are not direct. For let $p, q \in \nu, p \neq q$ and $h$ be the permutation of $\nu$ which interchanges $p$ and $q$, then $\psi_{h} \in K(\nu)$. Put $\alpha=(p)$, then

$$
\phi_{\alpha} \psi_{h} \phi_{\alpha}^{-1}(2 p)=\phi_{\alpha} \psi_{h} \phi_{\alpha}(2 p)=\phi_{\alpha} \psi_{h}(2 p+1)=\phi_{\alpha}(2 q+1)=2 q+1
$$

so that $\phi_{\alpha} \psi_{h} \phi_{\alpha}^{-1}(2 p) \not \equiv 2 p(\bmod 2)$ and $\phi_{\alpha} \psi_{h} \phi_{\alpha}^{-1} \notin K(\nu)$. Hence $K(\nu) \triangleleft A u t O c_{\nu}$ is false. The functions $\phi_{\alpha}$ and $\psi_{h}$ can also be used to show that $K_{\omega}(\nu) \triangleleft$ $A u t_{\omega} O c_{\nu}$ is false.
3 Representation by $\omega$-groups We define the following subclasses of the class $S(\nu)$ of all subsets of $\nu$ :
$S_{\text {fin }}(\nu)=\{\alpha \subset \nu \mid \alpha$ is finite $\}, S_{c o f}(\nu)=\{\alpha \subset \nu \mid \nu-\alpha$ is finite $\}$,
$S_{f c f}(\nu)=S_{f i n}(\nu) \cup S_{c o f}(\nu), S_{\omega}(\nu)=\{\alpha \subset \nu \mid \alpha$ is separable from $\nu-\alpha\}$.

The classes $S_{f i n}(\nu)$ and $S_{c o f}(\nu)$ are equal iff $\nu$ is finite, disjoint iff $\nu$ is infinite. Moreover,
(11) $S_{f i n}(\nu) \subset S_{f c f}(\nu) \subset S_{\omega}(\nu) \subset S(\nu)$, for all $\nu$,
(12) $S_{\text {fin }}(\nu)=S_{f c f}(\nu)=S_{\omega}(\nu)=S(\nu)$, if $\nu$ is finite,
(13) $S_{f c f}(\nu) \subset S_{\omega}(\nu) \subset_{+} S(\nu)$, if $\nu$ is infinite.

The proper inclusion in (13) follows from: if $\nu$ is infinite, then $\operatorname{card} S_{\omega}(\nu)=\aleph_{0}$ and card $S(\nu)=c$. We need a characterization of the sets $\nu$ for which $S_{f c f}(\nu)=$ $S_{\omega}(\nu)$. This clearly depends only on $N=\operatorname{Req} \nu$. Recall that an RET $N$ is indecomposable, if $A+B=N$ implies that $A$ or $B$ is finite. Thus every finite RET is indecomposable and every indecomposable RET is an isol. It is known that there are $c$ infinite, indecomposable isols. Note that for $N=\operatorname{Req} \nu$,
(14) $\quad(\exists \alpha)\left[\alpha \subset \nu \& \alpha \mid \nu-\alpha \& \alpha \notin S_{f c f}(\nu)\right] \Longleftrightarrow N$ decomposable,
(15) $S_{f c f}(\nu)=S_{\omega}(\nu) \Longleftrightarrow N$ indecomposable.

We define

$$
\left\{\begin{array}{l}
D_{f i n}(\nu), D_{f c f}(\nu), D_{\omega}(\nu), D(\nu) \text { are the groups under } \oplus \text { formed }  \tag{16}\\
\text { by the classes } S_{f i n}(\nu), S_{f c f}(\nu), S_{\omega}(\nu), S(\nu) \text { respectively. }
\end{array}\right.
$$

It follows from (11), (12), (13), (15), and (16) that for $N=\operatorname{Req} \nu$,

$$
\begin{align*}
& D_{f i n}(\nu) \leqslant D_{f c f}(\nu) \leqslant D_{\omega}(\nu) \leqslant D(\nu), \text { for all } \nu  \tag{17}\\
& D_{f i n}(\nu)=D_{f c f}(\nu)=D_{\omega}(\nu)=D(\nu), \text { if } \nu \text { is finite, } \\
& D_{f c f}(\nu) \leqslant D_{\omega}(\nu)<D(\nu), \text { if } \nu \text { is infinite, } \\
& D_{f c f}(\nu)=D_{\omega}(\nu) \Longleftrightarrow N \text { is indecomposable. }
\end{align*}
$$

In the proof of C2.1(c) we noted that the mapping $\alpha \rightarrow \phi_{\alpha}$, for $\alpha \in S(\nu)$ is an isomorphism from $D(\nu)$ onto $H(\nu)$.

Proposition C3.1 The mapping $\alpha \rightarrow \phi_{\alpha}$, for $\alpha \in D_{\omega}(\nu)$ is an isomorphism from $D_{\omega}(\nu)$ onto $H_{\omega}(\nu)$.
Proof: Let $H^{\prime}(\nu)$ be the image of $D_{\omega}(\nu)$ under the mapping $\alpha \rightarrow \phi_{\alpha}$, for $\alpha \in D(\nu)$. Suppose $\alpha \in D_{\omega}(\nu)$, say $\alpha=\nu \cap \bar{\alpha}, \nu-\alpha=\nu \cap \bar{\beta}$, for disjoint r.e. sets $\bar{\alpha}$ and $\bar{\beta}$. Put $\bar{\nu}=\bar{\alpha} \cup \bar{\beta}$ and let $\phi_{\bar{\alpha}}$ be defined in terms of $\bar{\alpha}$ and $\bar{\nu}$ as $\phi_{\alpha}$ is defined by (4) in terms of $\alpha$ and $\nu$. Then $\phi_{\bar{\alpha}}$ is a partial recursive one-to-one extension of $\phi_{\alpha}$ so that $\phi_{\alpha} \in H_{\omega}(\nu)$; hence $H^{\prime}(\nu) \subset H_{\omega}(\nu)$. Now suppose $\phi_{\alpha} \in H_{\omega}(\nu)$ and $\bar{g}$ is a partial recursive extension of $\phi_{\alpha}$. Then

$$
\begin{array}{cl}
\alpha=\left\{x \in \nu \mid \phi_{\alpha}(2 x)=2 x+1\right\}, & \nu-\alpha=\left\{x \in \nu \mid \phi_{\alpha}(2 x)=2 x\right\}, \\
\alpha \subset\{x \mid 2 x \in \delta \bar{g} \& \bar{g}(2 x)=2 x+1\}, & \nu-\alpha \subset\{x \mid 2 x \in \delta \bar{g} \& \bar{g}(2 x)=2 x\}
\end{array}
$$

where the sets on the right sides of the inclusions are r.e. and disjoint. Thus $\alpha \in D_{\omega}(\nu)$ and $\phi_{\alpha} \in H^{\prime}(\nu)$; hence $H_{\omega}(\nu) \subset H^{\prime}(\nu)$. We conclude that $H^{\prime}(\nu)=H_{\omega}(\nu)$.

Let $N=\operatorname{Req} \nu$. We know ([2], Sections 4 and 5) that the group $P_{\nu}$ of all finite permutations of $\nu$ can be represented by (i.e., is isomorphic to) the uniform $\omega$-group $P_{N}$ of order $N$ ! In order to represent the group $D_{f c f}(\nu)$ by an $\omega$-group we need an effective enumeration without repetitions of the class $S_{f c f}(\varepsilon)$. We choose the enumeration $\left\langle\sigma_{n}\right\rangle$, where

$$
\begin{equation*}
\sigma_{2 n}=\rho_{n}, \quad \sigma_{2 n+1}=\varepsilon-\rho_{n}, \text { for } n \in \varepsilon \tag{21}
\end{equation*}
$$

Henceforth " $\sigma_{x}$ " will only be used as defined in (21). Define for $\nu \subset \varepsilon$ and $x, y \in \varepsilon$,

$$
\begin{aligned}
& \delta_{\nu}=\left\{\begin{array}{l}
\left\{2 n \epsilon \varepsilon \mid \sigma_{2 n} \subset \nu\right\}, \text { if } \nu \text { is finite, } \\
\left\{2 n \epsilon \varepsilon \mid \sigma_{2 n} \subset \nu\right\} \cup\left\{2 n+1 \epsilon \varepsilon \mid \sigma_{2 n} \subset \nu\right\}, \text { if } \nu \text { is infinite, }
\end{array}\right. \\
& \bar{d}(x, y)=\operatorname{can}\left(\sigma_{x} \oplus \sigma_{y}\right), D_{f c f}(\nu)=\left\langle\delta_{\nu}, d_{\nu}\right\rangle, \text { where } d_{\nu}=\bar{d} \mid \delta_{\nu} \times \delta_{\nu}
\end{aligned}
$$

then it is readily seen that

$$
\alpha \cong \beta \Rightarrow D_{f c f}(\alpha) \cong{ }_{\omega} D_{f c f}(\beta), \text { for nonempty sets } \alpha \text { and } \beta .
$$

For a nonzero RET $N$ we define $D_{f c f}(N)=D_{f c f}(\nu)$, for any $\nu \in N$. Thus $D_{f c f}(N)$ is uniquely determined by $N$ up to $\omega$-isomorphism.

Proposition C3.2 Let $N=$ Req $\nu$. Then the group $D_{f c f}(\nu)$ is isomorphic to the uniform $\omega$-group $D_{f c f}(N)$. Moreover, $D_{f c f}(N)$ has order $2^{N}$, if $N$ is finite, but $2^{N+1}$, if $N$ is infinite.
Proof: Let $N=$ Req $\nu$. The function $\bar{d}$ is recursive, hence $D_{f c f}(\varepsilon)$ is a r.e. group. Also, $D_{f c f}(\nu)$ is a finite group if $\nu$ is finite, while $D_{f c f}(\nu) \leqslant D_{f c f}(\varepsilon)$ if $\nu$ is infinite. Thus $D_{f c f}(\nu)$ is a uniform $\omega$-group for every $\nu$. Clearly,

$$
\left\{2 n \epsilon \varepsilon \mid \sigma_{2 n} \subset \nu\right\} \simeq\left\{2 n+1 \epsilon \varepsilon \mid \sigma_{2 n} \subset \nu\right\} \simeq 2^{\nu}
$$

for every set $\nu$, so that $\operatorname{Req} \delta_{\nu}$ equals $2^{N}$, if $N$ is finite, but $2^{N+1}$ if $N$ is infinite.

## 4 The main result

Theorem Let $\nu \in N$ and $N \in \Omega_{0}$. Then
(a) $A u t_{\omega} O c_{\nu}=H_{\omega}(\nu) \times K_{\omega}(\nu)$, i.e., $A u t_{\omega} O c_{\nu}$ is the semidirect product of $H_{\omega}(\nu)$ by $K_{\omega}(\nu)$,
(b) if $N$ is an indecomposable isol, the group $H_{\omega}(\nu)$ can be represented by the uniform $\omega$-group $D_{f c f}(N)$ whose order is $2^{N}$, if $N$ is finite, but $2^{N+1}$, if $N$ is infinite,
(c) if $N$ is a multiple-free isol, the group $K_{\omega}(\nu)$ can be represented by the uniform $\omega$-group $P_{N}$ of order $N!$,
(d) if $N$ is an indecomposable isol, the group $A u t_{\omega} O c_{\nu}$ can be represented by a uniform $\omega$-group whose order is $2^{N}$. $N$ !, if $N$ is finite, but $2^{N+1} \cdot N$ !, if $N$ is infinite.

Proof: Part (a) holds by C2.2(b), part (b) by (20) and C3.1, and part (c) holds by [2], section 3 . Now consider part (d). The statement is trivial, if $N$ is finite, for then $A u t_{\omega} O c_{\nu}$ is a finite group. Assume that $N$ is an infinite, indecomposable isol. Then $H_{\omega}(\nu)$ and $K_{\omega}(\nu)$ can be represented by the uniform $\omega$-groups $D_{f c f}(\nu)$ and $\boldsymbol{P}_{\nu}$, respectively, where $D_{f c f}(\nu) \leqslant D_{f c f}(\varepsilon), \boldsymbol{P}_{\nu} \leqslant \boldsymbol{P}_{\varepsilon}$. By C2.2(b) we have $A u t_{\omega} O c_{\varepsilon}=H_{\omega}(\varepsilon) \times K_{\omega}(\varepsilon)$, where $H_{\omega}(\varepsilon) \cap K_{\omega}(\varepsilon)=$ (i). Define

$$
\begin{aligned}
\beta_{\varepsilon} & =\left\{j(a, \tilde{f}) \mid a \epsilon \delta_{\varepsilon} \& \tilde{f} \in P_{\varepsilon}\right\}, \\
\delta h_{\varepsilon} & =\beta_{\varepsilon}, h_{\varepsilon} j(a, \tilde{f})=\phi_{\alpha} f, \text { where } \alpha=\sigma_{a},
\end{aligned}
$$

Let for $x, y \in \beta_{\varepsilon}$, say $x=j(a, \tilde{f}), y=j(b, \tilde{g}), \alpha=\sigma_{a}, \beta=\sigma_{b}$,

$$
t_{\varepsilon}(x, y)=\text { the unique number } z \text { such that } h_{\varepsilon}(z)=\phi_{\alpha} f \phi_{\beta} g .
$$

Now consider the group $\boldsymbol{G}_{\varepsilon}=\left\langle\beta_{\varepsilon}, t_{\varepsilon}\right\rangle$. The set $\beta_{\varepsilon}$ is r.e. We claim that the function $t_{\varepsilon}$ is partial recursive. For given the numbers $x, y \in \beta_{\varepsilon}$, we can compute the numbers $a, b, \tilde{f}, \tilde{g}$ such that $x=j(a, \tilde{f}), y=j(b, \tilde{g})$, hence also the finite or cofinite sets $\alpha$ and $\beta$ such that $h_{\varepsilon}(x)=\phi_{\alpha} f, h_{\varepsilon}(y)=\phi_{\beta} g$ and the number $t_{\varepsilon}(x, y)=z$ such that $h_{\varepsilon}(z)=\phi_{\alpha} f \phi_{\beta} g$. Thus the group $G_{\varepsilon}$ is r.e. Define

$$
\beta_{\nu}=\left\{j(a, \tilde{f}) \mid a \in \delta_{\nu} \& \tilde{f} \in P_{\nu}\right\}, t_{\nu}=t_{\varepsilon} \mid \beta_{\nu} \times \beta_{\nu}
$$

and $\boldsymbol{G}_{\nu}=\left\langle\beta_{\nu}, t_{\nu}\right\rangle$. Then $\boldsymbol{G}_{\nu} \leqslant \boldsymbol{G}_{\varepsilon}$, hence $\boldsymbol{G}_{\nu}$ is a uniform $\omega$-group. Put

$$
\boldsymbol{H}_{\omega}(\nu)=\left\{j(a, \tilde{i}) \mid a \in \delta_{\nu}\right\}, \boldsymbol{K}_{\omega}(\nu)=\left\{j(0, \tilde{f}) \mid \tilde{f} \in \boldsymbol{P}_{\nu}\right\}
$$

where $i$ is the identity permutation on $\varepsilon$, hence $\tilde{i}=1$. Then $\boldsymbol{H}_{\omega}(\nu)$ and $\boldsymbol{K}_{\omega}(\nu)$ are uniform $\omega$-groups and since $N=\operatorname{Req} \nu$ is indecomposable, $\boldsymbol{H}_{\omega}(\nu) \cong{ }_{\omega} D_{f c f}(\nu)$ and $\boldsymbol{K}_{\omega}(\nu) \cong{ }_{\omega} \boldsymbol{P}_{\nu}$. We conclude that

$$
o \boldsymbol{G}_{\nu}=o \boldsymbol{H}_{\omega}(\nu) \cdot o \boldsymbol{K}_{\omega}(\nu)=o \boldsymbol{D}_{f c f}(\nu) \cdot o \boldsymbol{P}_{\nu}=2^{N+1} \cdot N!
$$

5 Concluding remarks (A) Comparison with $Q_{\nu}$. Let $N=\operatorname{Req} \nu$ be an indecomposable isol, then $N$ is also multiple-free. Comparing the group $A u t_{\omega} Q_{\nu}$ discussed in [2] with the group $A u t_{\omega} O c_{\nu}$ discussed in the present paper, we notice an essential difference:
(1) $A u t_{\omega} Q_{\nu}$ can be represented by a uniform $\omega$-group of order $2^{N} \cdot N$ !,
(2) $A u t_{\omega} O c_{\nu}$ can be represented by a uniform $\omega$-group which has order $2^{N} \cdot N!$, if $N$ is finite, but $2^{N+1} \cdot N!$, if $N$ is infinite.

This essential difference between the $\omega$-graphs $Q_{\nu}$ and $O c_{\nu}$ is related to the fact that $Q_{\nu}=\left\langle 2^{\nu}, \eta\right\rangle$ has opposite vertices, i.e., vertices $p$ and $q$ such that $\rho_{p}=\nu-\rho_{q}$, iff the set $\nu$ is finite, while $O c_{\nu}=O c_{f}=\left\langle\mu_{\nu}, \theta_{\nu}\right\rangle$ has opposite vertices, i.e., vertices $p$ and $q$ such that $f(p)=q$, for every set $\nu$. Thus, if $\nu$ is infinite, every permutation of $\mu_{\nu}$ which maps almost all vertices of $O c_{\nu}$ onto their opposites (and the others onto themselves) is an $\omega$-automorphism of $O c_{\nu}$ which has no analogue in $Q_{v}$.
(B) Effective duality. In [2] we used " $Q$ "" for the directed $\omega$-cube on the set $\nu$, i.e., for $\left\langle 2^{\nu}, \leqslant\right\rangle$, where $x \leqslant y \Longleftrightarrow \rho_{x} \subset \rho_{y}$, for $x, y \in 2^{\nu}$. In [3] we used " $Q$ " for the undirected $\omega$-cube on the set $\nu$, i.e., for $\left\langle 2^{\nu}, F_{\nu}\right\rangle$, where $F_{\nu}$ is the class of all faces, i.e., of all subsets $\sigma$ of $2^{\nu}$ such that $\sigma=\left\{x \in 2^{\nu} \mid \beta \subset \rho_{x} \subset \beta \cup \gamma\right\}$, for two disjoint finite subsets $\beta$ and $\gamma$ of $\nu$. In both cases the (undirected) $\omega$-graph corresponding to the $\omega$-cube $Q^{\nu}$ is the $\omega$-graph $Q_{\nu}$. Similarly, $O c_{\nu}$ is the $\omega$-graph corresponding to the $\omega$-octahedron $O c_{\nu}$ discussed in [3]. We showed in [3] that for an indecomposable $N=\operatorname{Req} \nu$, the undirected $\omega$-cube $Q^{\nu}$ is effectively dual to the $\omega$-octahedron $O c^{\nu}$ iff $N$ is finite. Thus if $N$ is an infinite, indecomposable isol, $Q^{\nu}$ and $O c^{\nu}$ are not effectively dual and one should therefore not be surprised that the $\omega$-groups we used to represent $A u t_{\omega} Q_{\nu}$ and $A u t_{\omega} O c_{\nu}$ have different orders.
(C) The group $D_{f c f}(\nu)$. In this remark " $Q^{\nu}$ " denotes the directed cube on the set $\nu$. Let $N=\operatorname{Req} \nu$. We have

$$
\begin{equation*}
A u t_{\omega} Q_{\nu}=C_{\nu} \times A u t_{\omega} Q_{\nu}, \quad A u t_{\omega} O c_{\nu}=H_{\omega}(\nu) \times K_{\omega}(\nu) \tag{22}
\end{equation*}
$$

Both $A u t_{\omega} Q^{\nu}$ and $K_{\omega}(\nu)$ are isomorphic to the group $\operatorname{Per}_{\omega}(\nu)$. The difference between $A u t_{\omega} Q_{\nu}$ and $A u t_{\omega} O c_{\nu}$ is therefore due to the difference between $C_{\nu}$ and $H_{\omega}(\nu)$. Note that
(23) $\quad C_{\nu} \cong D_{\text {fin }}(\nu), H_{\omega}(\nu) \cong D_{\omega}(\nu)$, for every $N$, (24) $D_{\omega}(\nu)=D_{f c f}(\nu)$, if $N$ is indecomposable.

From now on we assume that $N$ is indecomposable. According to (22), (23) and (24) the difference between $A u t_{\omega} Q_{\nu}$ and $A u t_{\omega} O c_{\nu}$ is due to the difference between the groups $D_{f i n}(\nu)$ and $D_{f c f}(\nu)$, hence between the $\omega$-groups representing them, namely $D_{f i n}(\nu)$ [or $\left.Z_{2}(\nu)\right]$ and $D_{f c f}(\nu)$. We have

$$
\begin{aligned}
\boldsymbol{D}_{f c f}(\nu) \cong{ }_{\omega} \boldsymbol{D}_{f i n}(\nu) & \Longleftrightarrow \nu \text { is finite }, \\
o \boldsymbol{D}_{f c f}(\nu)=2 \cdot o \boldsymbol{D}_{f i n}(\nu) & \Longleftrightarrow \nu \text { is infinite } .
\end{aligned}
$$

This is a direct consequence of the trivial observation that $S_{\text {fin }}(\nu)$ and $S_{c o f}(\nu)$ are equal iff $\nu$ is finite, but disjoint iff $\nu$ is infinite.

## REFERENCES

[1] Dekker, J. C. E., "Twilight graphs," The Journal of Symbolic Logic, vol. 46 (1981), pp. 248-280.
[2] Dekker, J. C. E., "Automorphisms of $\omega$-cubes," Notre Dame Journal of Formal Logic, vol. 22 (1981), pp. 120-128.
[3] Dekker, J. C. E., "Recursive equivalence types and octahedra," to appear in the Australian Journal of Mathematics.
[4] Jungerman, M. and G. Ringel, "The genus of the $n$-octahedron: regular cases," Journal of Graph Theory, vol. 2 (1978), pp. 69-75.
[5] Scott, W. R., Group Theory, Prentice-Hall, Englewood Cliffs, New Jersey, 1964.

Institute for Advanced Study
Princeton, New Jersey 08540
and
Rutgers University
New Brunswick, New Jersey 08903

