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In the past two decades considerable energy and effort have been ex-
pended in the study of quantified modal logic. The first formal semantics and
completeness theorem were published by Kripke in 1959 [2], Since then, many
different systems have been developed including those given by Kripke in [3]
and Hughes and Cresswell in [ 1 ]. In each case the central informal idea under-
lying the formal semantics is the notion of possible world, a total way things
could have been. Formally, a model structure for a first-order language L is a
quadruple (D, W, φ, φ) such that:

a. W and D are nonempty sets (of possible worlds and objects, respec-
tively),

b. φ is a function which assigns to each world w a nonempty subset of
D (φ(w) is the set of objects existing in w),

c. φ is a function which assigns to each pair (F, w), where F is a predicate
symbol and w a world, a set of tuples of objects in D.1

From each model structure models are formed by singling out individual worlds
to play the role of the actual world. Finally, valuation rules are provided under
which models assign truth values to formulas relative to an assignment of the
individual variables of L to objects in/λ Different systems arise from variations
in the valuation rules and from added conditions on the components of a model
structure.

Formally, all of the systems referred to above work equally well and all
are interesting. However, it does not follow from a system's formal success that
it is philosophically significant or useful. To determine whether a formal
semantics is philosophically successful, we must consider the applied semantics
which accompanies it. If we are to understand the formal semantics as being
about possible worlds and we take possible worlds seriously, then not just any
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formal semantics will do. We will want a formal semantics that fits the facts,
one that reflects what really is the case about possible worlds. Formally it may
be interesting to know that there are some semantics in which

(1) VxΠFx D ΠVxFx

is valid and some in which it is not. Philosophically, however, we must ask
whether all propositions whose form is (1) are true, for if the answer is no any
semantics in which (1) is valid will fail to be a good model for the modal notion
of necessity.

Are these systems philosophically successful? Alvin Plantinga has argued
in The Nature of Necessity and Άctualism and Possible Worlds' that the applied
semantics given by Kripke fails because it requires that there be objects that do
not exist and assumes that objects can have properties in worlds in which they
do not exist. For the former, Plantinga presents the following argument. Con-
sider the proposition

(2) Possibly, there is an object distinct from each object which exists in a

where V is a name of the actual world. If (2) is true,

then (on the Canonical Scheme) there is a possible world W in which there
exists an object distinct from each of the things that exists in a. ψ(W), therefore,
contains an object that is not a member of ψ(α); hence the same can be said for
U. Accordingly, U contains an object that does not exist in α; this object, then,
does not exist in the actual world and hence does not exist. We are committed
to the view that there are some things that do not exist, therefore, if we accept
the Canonical Conception and consider that there could have been a thing
distinct from each thing that does in fact exist. ([5], p. 138)

In fact, it seems in most cases that the motivation for the particular formal
semantics is technical, that the semantics is chosen to fit a previously given set
of axioms.2 If the formal system is to be philosophically revealing, it would
seem that the following procedure ought to be followed. First, an applied
semantics must be found which does justice to the modal notions of necessity
and possibility and avoids the infelicities of Kripke's applied semantics. Then,
this applied semantics must be modeled in a formal semantics for first-order
modal logic. Finally, an axiomatic system must be found which has as its
theorems exactly those formulas which are valid in the semantics. It is this
procedure which is followed in this paper.

1 Applied semantics Let us call the position that, necessarily, there are no
objects which do not exist actualism; and the position that, necessarily, what-
ever has a property in a world exists in that world serious actualism. What
would be an acceptable applied semantics for a (serious) actualist? How, for
example, can we understand (2) so that we are not committed to there being
nonexistent possible objects and still keep its modal force? Plantinga suggests
that we interpret (2) to be about special properties called essences.

Let F be a property. We say that F is exemplified in a possible world w if
the proposition

(3) Something has F
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would have been true had w been actual. We say that an object x has the
property of being F in a world w if x has F would have been true had w been
actual. We say that an object x has F essentially if x has F in every world in
which x exists. We can then define individual essence (or essence for short) as
follows:

(4) An essence is a property E which is exemplified in some possible
world and is such that, in every possible world, for every x, if x has E then:
(a) x has E essentially and (b) in no world does anything distinct from x have E.

In a given world w, an essence may or may not be exemplified. For example, an
essence of Socrates—Socrateity we might say—is exemplified only in worlds in
which Socrates exists. Some essences, presumably, will not be exemplified in
the actual world. There is a natural connection between essences which are
actually exemplified and objects, for essences by definition have unique
exemplifications in a world if any at all. Yet, since essences are properties and
properties are necessary beings, all essences exist necessarily. The essence
Socrateity, for example, exists in every possible world even though Socrates
himself fails to exist in some of them. Which essences are exemplified varies
from world to world, but the set of existing essences is the same in each world.
Thus, although ordinary mortals like Socrates have properties in only some
worlds, essences like Socrateity have properties in all worlds.

If F and G are properties, we say that F and G are coexemplified in w if

(5) Something has both F and G

would have been true had w been actual. If F is an essence, then to say that F
and G are coexemplified in w is to say that, had w been actual, what would
have been the unique exemplification of F would have had G. Unlike Kripke
we will interpret quantifiers in modal contexts as ranging over essences rather
than possible objects. In general, we interpret propositions of the form

(6) \/xFx

as being true in a world w if every essence which is exemplified in w is co-
exemplified in w with the property of being F. Propositions of the form

(7) 3xFx

are true in w if some essence is coexemplified in w with the property of being
F. Let us now consider (2). It is true if

(8) {3x) (x is distinct from every object existing in a)

is true in some world w; i.e., if in some world w some essence is coexemplified
with the property of being distinct from every object existing in a. Thus, (2) is
true if for some world w some essence is exemplified in w but not in a. Since,
by definition, every essence is possibly exemplified, the acceptance of (2) only
commits us to the existence of an essence not actually exemplified. Essences,
then, provide a way of understanding quantification in modal contexts without
referring to possible objects.

Singular propositions can be treated in similar fashion. Consider the
propositions:
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(9) Socrates is wise
(10) Socrates is not wise.

(9) is true in a world w if the essence Socrateity is coexemplified with wisdom
in w. (10) is ambiguous and may be understood as meaning either

(10') Socrates is nonwise

or

(10") Socrates is wise is false.

In the actual world (10') and (10") have the same truth value, but this is not
the case in all worlds. Suppose, for example, that w is a world in which Socrates
fails to exist. In w, then, Socrates has no properties, neither wisdom nor non-
wisdom. Thus, in w, both (9) and (10') are false so that (10') and (10") have
opposite truth values. (10') is true in a world w if Socrateity is coexemplified
with the property of being nonwise in w, whereas (10") is true in w if either
Socrateity is not exemplified in w or Socrateity is coexemplified with non-
wisdom. Thus (10') is the stronger claim. Because (10') asserts that Socrates
has a property (being unwise) while (10") asserts that the proposition (9) has a
property (falsehood), we will call (10') the de re interpretation of (10) and
(10") the de dicto interpretation of (10). Finally, let us note that for necessary
beings de dicto and de re denial are equivalent.

How are statements containing 'necessarily' to be understood? Consider

(11) Necessarily, Socrates is a person.

There are two traditional ways of understanding (11). We can interpret it as
meaning

(11') Socrates is a person is a necessary truth.

In this case to assert (11) is to assert that Socrateity is coexemplified with
personhood in every possible world. Since Socrates is not a necessary being,
(11') is false. We could also interpret (11) as meaning

(11") Socrates has personhood essentially;

i.e., Socrates could not have existed without being a person, or Socrates is a
person is true in every world in which Socrates exists. In this case (11) is true in
a world w if Socrateity is exemplified in w and is coexemplified with person-
hood in every world in which Socrateity is exemplified. Like denial, then,
necessity has two senses: a de dicto sense and a de re sense. Again, for necessary
beings these two senses coincide.

Consider the proposition

(12) Possibly, Socrates is wise.

The usual procedure is to equate 'possibly' with 'not necessarily not'. There are
two ways of understanding 'not' and 'necessarily', so it would seem that there
are eight ways of interpreting (12). However, because the two senses of denial
and necessity coincide when applied to necessary beings, only four cases
actually arise. If, for example, we treat the right-hand instance of 'not' as
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de die to denial, (12) becomes

(13) Not necessarily, Socrates is wise is false.

But, presumably propositions like properties are necessary beings, so that
'Socrates is wise is false' asserts that the necessary being Socrates is wise has the
property of falsehood. Thus, however we interpret 'not' and 'necessarily' in
(13) the result is the same. The four distinct renderings of (12) are

(12a) Socrates has the property of not being essentially unwise
(12b) It is false that Socrates is wise is necessarily false
(12c) It is not the case that Socrates is nonwise is necessarily true.
(12d) It is false that Socrates is essentially nonwise.

(12a) and (12b) might be called, respectively, the pure de re and de die to
interpretations of (12). (12a) predicates of Socrates the property of being
possibly wise; it is true in a world w if Socrates exists in w and in some world
Socrates is wise. (12b) predicates of the proposition Socrates is wise the
property of being possibly true; it is true in a world w if Socrates is wise is
true in some world. The hybrid versions (12c) and (12d) provide strange and,
as we will see, unacceptable ways of understanding (12). Consider, for example,
(12c). It is true if Socrates is nonwise is false in some world w. But this will be
the case if either Socrates does not exist in w, or Socrates does exist and is wise
in w.3 That this way of understanding (12) is unacceptable can readily be seen
by noting that

(14) Possibly, Socrates is a round square

similarly understood would be true just because there are worlds in which
Socrates does not exist. Similarly, (12d) is unacceptable as an interpretation of
(12), for if we were to read (14) in similar fashion it would be true in any world
in which Socrates fails to exist.

2 The formal semantics A Let L be a first-order modal language. We now
turn to the problem of formulating a pure semantics for L which models the
applied semantics developed above. A model structure for I is a quadruple
(D, W, φ, φ) such that

a. D and W are nonempty sets
b. φ is a function which assigns to each w e W a nonempty subset Dw of D

such that everything in D belongs to some Dw

c. 0 is a function which assigns to every pair (F, w), where F is an ^-ary
predicate symbol and w e W, a set of ^-tuples of objects from Dw.

The components of the quadruple are to be interpreted as follows: D is a set of
essences, W a set of possible worlds, Dw the set of essences exemplified in w,
and φ(F,w) the set of ^-tuples of essences which are coexemplified with F in w.
That every element of D belongs to some Dw corresponds to the requirement
that every essence be possibly exemplified, and that ψ(F, w) only contain tuples
whose components are in Dw corresponds to the requirement of serious
actualism that only objects existing in a world can have properties or stand in
relations in that world. If M is a model structure for L and w e W, then the pair
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(M, w) is a model for L with domain Dw. The model (M,w) will be represented
by <MW\

Let M = (D, W, ψ, φ) be a model structure for I . A function Θ which assigns
to each individual variable of L an object in D is an essence assignment. We wish
to define for each model Mw, essence assignment 0, and wff a the notion that
Mw satisfies a relative to θ. (This will be the formal counterpart to a proposi-
tion's being true in a world.) For atomic wffs

(a) Mw l=, Fx,... xn iff (θ(Xι), . . ., θ(xn)) e φ(F, w).

In particular, if Mw satisfies ίFx1 . . . xn* relative to 0, 0(xi), . . ., θ(xn) must be
in the domain of Mw. For conjunctions

(b) Mw \=θ a Λ β iff Mw 1=0 a and Λίw \=θ β.

If α is a wff and x an individual variable, we follow our interpretation of (7)
and define

(c)Mw 1=0 VxaifϊMw ^θ' a for every θ' such that θ\x) e Dw and θ' has
the same values as θ for all variables other than x.

Before we define *MW ^θ Dα' we must decide whether to treat 'D ' as a de re or
a de die to operator. If ' D ' is to be a de die to operator, then

Mw 1=0 UFx iff Mw> 1=0 Fx for all w' e W\

whereas, if ' D ' is to be a de re operator, then

Mw ^ ΏFx iff θ(x) e Dw and Mw' £θ Fx for all w9 e W such that θ(x) e Dw>.

The applied semantics seems to favor neither the one nor the other. However,
as Plantinga has pointed out, de dicto necessity is a special case of de re
necessity. Consider

(15) Necessarily, Socrates is wise.

Interpreted asde dicto necessity, (15) means that

(9) Socrates is wise

is true in every world. But, (9) is a proposition and presumably exists in every
possible world. Thus, we can understand (15) as asserting that (9) has truth
essentially. Thus, we take de re necessity as the more basic sense of necessity
and define

(d) My, 1=0 Dβ: iff θ(x) e Dw for all x free in a and Mw

f t=θ a for all w' e W
such that θ(x) e Dw

f for all x free in α.

We note that if a is a closed wff then (d) treats 'D ' as de dicto necessity. Our
applied semantics also allows for two ways of treating 4~\ If'~' is de dicto then

Mw ^Θ ~Fx iff it is not the case that Mw t=θ Fx;

whereas, if'~' is de re then

Mw 1=0 ~Fx iff θ(x) e Dw and it is not the case that Mw \=θ Fx.

But, we have seen the unpleasant consequences of mixing de re and de dicto
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operators, so our choice of de re necessity requires us to choose de re denial.

Thus

(e) Mw 1=0 ~α iff Θ(x) e Dw for every variable x free in a and it is not the
case that Mw l=θ a.

(a)-(e) define uniquely the notion of satisfaction for all Λ/w, 0, and a.
If M is a model structure, then a wff a is M-valid if Mw t=0 a for every

model Mw and essence assignment θ. A wff α is valid if it is M-valid for every
model structure M. Using induction on the formation rules, it is easy to show
that if Mw 1=0 a then θ(x) e Dw for every x free in a. Suppose a has a free
variable x. Let M = (\a,b\, \wί,w2\, φ, φ) where DWί = \a\ and DW2 = \b\. If

θ(x) = b, then it cannot be the case thatM W l l=θ a. Thus, only closed formulas
are valid.

In our definition of model structure, we required each element of D to
belong to some Dw. This was dictated by our applied semantics since each
essence is possibly exemplified. However, because of the formal limitations of
the first-order modal language L, this requirement is irrelevant in the sense that
the same formulas would have been valid had we not required each element of
D to belong to some Dw. Let A' be the semantics which results from deleting
this requirement. We will argue that A' is equivalent to A in the sense given
above. For the sake of clarity, we will let t=P denote satisfaction in A'. If a is a
wff, the closure of a is the wff which results from prefixing α: with the universal
quantifiers of all the variables free in ce.4 The closure of ot will be denoted
by 'Ca\

If M = (A W, φ,φ) is an ,4-model structure and M' = {D\ W, φ',φ') is an
A '-model structure, then we say that M ** M' if W = W\ φ = φ\ φ = φ'. We let
' F ' denote the set of individual variables of L. For each subset U of V and
essence assignment 0, we let Θ(U) = \θ(x): x e U\.

Lemma 2.1 If M is an A-model structure, M' is an A1-model structure, and
M =* Mf, then for any wff a, w e W and θ such that Θ(V) C D,

Mw 1=0 a if and only ifM'w Aθ a.

Proof: The proof is a standard induction argument on the formation rules for
wffs.

Theorem 2.2 If a is any wff then Ca is A-valid if and only if COL is A1-valid.

Proof: Since every A -model structure is an A '-model structure, every A '-valid
wff is A -valid.

Suppose Ca is A -valid. Let M1 = (D\ W, φ,φ) be any A '-model structure.

Let M = ( U φ(w), W, φ, φ\. Then, M is an Λ-model structure and M^M'.

Let w e W and θ be any Λ/'-assignment. θ may not be an ^/-assignment, for Θ(V)
C D' but perhaps not Θ(V) C D. However, since Ca is a closed wff Ca isM'-
valid if and only if

M'w ^0* Ca

for every w e W and 0* such that Θ*(V) C U φ(w). Thus, we may assume
weW
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Θ(V)CD. Hence,

M'w=\θ Cot iff Mw l=βCα.

Since a is ,4-valid, it is A '-valid.
Because of Theorem 2.2, the requirement that D = U Dw is technically

weW

irrelevant. It will be convenient in some of the following sections to dispense
with this requirement.

3 Kripke's system revisited Plantinga has argued that the applied semantics
used by Kripke to interpret his system is unacceptable from the point of view
of a serious actualist. Can we associate with his formal system a different,
acceptable applied semantics? Suppose in formulating a pure semantics we had
chosen de dicto necessity and denial as a basis. The corresponding satisfaction
rules would be

(cΓ) Mw 1=0 π α iff Mw> \=θ a for all w' e W
(e') Mw 1=0 ~ α iff it is not the case that Mw \=θ a.

Let us call the semantics which results Λ* and Kripke's 1963 (S5) semantics K.
A* is an acceptable formal semantics and the satisfaction rules for A* are
equivalent to the valuation rules for K. A* and K still differ, however. In K a
world can assign to a predicate letter tuples whose components are not all from
the domain of that world. In terms of our applied semantics this corresponds
to the possibility of an object's having a property or standing in a relation in a
world in which it does not exist. Clearly, this is anathema to the serious
actualist. But we might hope that this feature of K is somehow nonessential,
that for K and A* the same formulas might be valid. It is easy to show, for
example, that every ϋf-valid formula is also >4*-valid. Also, since quantifiers
range only over the domain of a world, that objects can have properties in
worlds in which they don't exist may not affect the validity of closed formulas.
Unfortunately, this is not the case.

Consider the formula

(16) (Bx)ΠFx DΠfBxFx.

If CD' is taken as de dicto necessity, (16) ought to be valid. If something has F
in every possible world, then it must exist and have F in every possible world so
that in every world something has F. Formally, it can easily be shown that (16)
is valid in A*. In K, however, (16) is invalid. If D = \a,b\, W = \whw2\, DWγ =
\a\, DW2 = \b\, φ(Ffw{) = \a\, and φ(F,w2) = \a\9 then

MWχ t=θ3xΠFx

but not

MWι 1=0 BBxFx.

Thus, not only is Kripke's applied semantics unacceptable for the serious
actualist, the formal semantics K contains an irremovable defect.

4 Axiomatics for A If a is wff of the first-order modal language L, we will
write ' hα' if the closure of a is a theorem.
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We have the following axiom formation rules.

(Ql) If a is a substitution instance of a truth-functional tautology,
then hα.

(Q2) If a. and β are wffs and x is an individual variable, then \~(\/x)(a D β) D
(\fxa D \/χβ).

(Q3) If x is a variable which is not free in α, then hα D Vxα.

(Q4) If OL is like a except for containing free occurrences of x wherever a
contains free occurrences of x, then hVxα D a.

(Ml) If α: is any wff, then \~Doc Dot.

(M2) If a and β are wffs and every variable free in a is free in β, then
\-Π(aDβ)D(ΠaD Πβ).

(M3) If a is any wff, then hθα D DOα.5

In addition, there are two inference rules: modus ponens and necessita-
tion. Formally,

MP If h α D β and hα, then hβ.
N If hα, then h D α . 6

In essence (Q1)-(Q4) and MP is the system for quantification given by
Quine in Mathematical Logic. (M1)-(M3) and N is a variation of the modal
component of the system MPC + S5 of Hughes and Cresswell. There are two
significant differences: the meaning of Ή ' and the weakened formation rule
(M2). Since every MPC + S5 model is an v4-model, it is not surprising that an
axiom system for A is a weakening of MPC + S5. (If it were the case that all
essences were exemplified in all possible worlds, MPC + 55 would have been
the right system of quantified modal logic.)

It is easy to show that every theorem in this system is ^4-valid. The
remainder of this paper is concerned with showing that every A -valid wff is a
theorem.

5 Completeness We present a Henkin-style completeness proof, following
in outline the completeness proofs given by Hughes and Cresswell. We continue
to assume that L is a first-order modal language and V is the set of individual
variables of L. If a is a wff, the set of variables free in a will be denoted
by '/(«)'.

A Henkin system for A is a set Ω of pairs (H, Vfj) such that

(a) H is a set of wffs of L
(b) VH is a set of variables
(c) ifαe//, then/(a)C VH

(d) if f(a) C VH, then exactly one of a and ~α is in H
(e) ifa,aDβeH, thenβei/
(0 if/(α) C VH and hα, then aeH
(g) if ~Dα e //, then for some H\ ~α e //'
(h) if Dα e 77, then α e 77; for each AT' such that f(μ) C F#'
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(i) if ~\/xa e 77, then there is a variable y e VH such that y does not occur
in Vxα and ~α' e H where OL is the result of replacing all free occur-
rences of x in a with y.

Let Ω be a Henkin system for A. Let D be the set of variables of L, W = Ω,
ψ(#, K/r) = K//, and φ(F,(H, VH)) = ί(x l5 . . ., xn)\Fxλ . . . xn e Hi The model
structure Ma = (D, W, ψ,φ) is the A-system associated with Ω.7 Let Θ be the
function which assigns to each variable in V itself as an element of D.

Theorem 5.1 // Ω is a Henkin system for A and Ma the associated A-
system, then for every wff a,

M{H,vH) \=θ <x iff a e H.

Proof: The argument proceeds by induction on the formation rules of L.
A wff a is A-consistent if C~α is not a theorem of A. Equivalently, a is

^4-consistent if and only if not h~α. A finite set of wffs is A -consistent if the
conjunction of all its wffs is ^4-consistent. An arbitrary set of wffs S is A-
consistent if every finite subset of S is ^-consistent. A set of wffs S is maxi-
mally A-consistent with respect to a set of variables V* if

(a) S is^l-consistent,
(b) if a e S, then f(a) C V*, and
(c) if f(ά) C F*, then either a e S or S U \a\ is A -inconsistent.

The following four lemmas can be proved easily:

Lemma 5.2 If S is A-consistent and a is any wff, then it cannot be the case
that oc and ~a are both in S.
Lemma 5.3 // S is maximally consistent with respect to V* and f{ά) C V*,
then either a e S or ~a e S.
Lemma 5.4 If S is maximally A-consistent with respect to V*, f{a) C V*,
and ha, then a e S.
Lemma 5.5 // 5 is maximally A-consistent with respect to V* and a D β,
aeS, then β e S.
Lemma 5.6 If β, ylt . . ., yn9 τl9 . . ., 77 are wffs such that for all i, /(γ,-) C
f(β) andfiji) C f(β), and i~D/3, Dγ l5 . . ., DγΛ, ~τu . . ., -τ/1 is A-consistent,

then j^jS, Dγ l 5 . . ., Dγ^, ~Πτu . . ., ~Dr/j is A-consistent.

Proof: Suppose {~β, Ώyl9 . . ., Ώyn, *Πτl9 . . ., ^Dr/} is A -inconsistent. Then

I—{^β Λ D7! Λ . . . Λ Dγπ Λ ~ D r i Λ . . . Λ ~ D Γ / ) .

By (Ql) and modus ponens,

(5.1) h(Dγi Λ. ..AΠyn)D(βy Πτ1 v . . . v D77)

We next show that

(5.2) hD(j3 vDTjV. .v DΓ/) D (DJ3 V TX V . . . v 77)

By(Ql),

I—OS v DTj v . . . v D77) D [~Πτ1 ^(βy Πτ2 v . . . v DT/)] .
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Thus, by necessitation and (M2),

hD(j3 v Πτx v . . . v DT/) 3 D [~Πτx 3 (β v Dr 2 v . . . v DT/)]
(by M2) 3 [D^DTi 3 D(j3 v Dr 2 v . . . v D77)]
(by M3) 3 [-DTX 3 D(β v Dτ 2 v . . . v DT/)]

(by Ql) 3 [Dτί v D(j3 v Dr 2 v . . . v D77)]

Thus, by (Ql) and modus ponens,

\~Π(β v DTi v . . . v D17) 3 [DTX V Π(β v D r 2 v . . . v D T / ) ] .

By repeated use of this argument, we have

hD(j3 v DTX v . . . v D T / ) 3 [DjS v Urι v . . . v D T / ] .

Using (Ml) together with (Ql) and modus ponens gives (5.2).

Applying necessitation, (M2), and modus ponens, from (5.1) we deduce

(5.3) HD(D7! Λ . . . Λ D 7 Π ) 3 Π(β v Dτx v . . . v D77).

Combining (5.3) and (5.2) gives

(5.4) h D ( D 7 ! Λ . . . Λ Byn) D Πβ v τλ v . . . v 77.

Now,by(Ql),

hDTi D (Π72 ̂  D (Pin => (ΠTi Λ . . . Λ D 7 M ) . . .)).

Applying necessitation and (M2) repeatedly gives

HDD7! D (DDγ2 3 . . . D (DDγrt 3 Π(D7! Λ . . . Λ Uyn) . . .).

By(Ql),

h(DD7! Λ . . . Λ UUΊn) D D ( D 7 J Λ . . . Λ αγ Λ ) .

But, from (M3) it follows in the usual way that

for any 7. Thus

(5.5) h ( D 7 l Λ . . . Λ D 7 r t) 3 Π(D7i Λ . . . Λ Πyn).

Combining (5.5) and (5.4) gives

h(D7! Λ . . . Λ D7Λ) 3 (Πj3 v τt v . . . v r/).

Thus,

I (~Dβ Λ D7i Λ . . . Λ D7rt Λ ̂ Tx Λ . . . Λ ~T/).

Hence, {^D/3, D 7 l 5 . . ., Π7W, ~τu . . ., ^r/} is ^-inconsistent.

Lemma 5.7 // S is A-consistent, y is a variable which has no free occur-
rences in any wff of S and no occurrences at all in Vxft and βf is like β except
for containing occurrences ofy wherever β has free occurrences ofx, then

SU {-χ\/χβD~β'}

is A-consistent.
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Proof: The proof is standard.
Let y be a variable. An E-formula with respect to y is a formula of form

~Vx0 D ~β'

where βf is like β except for containing free occurrences of y wherever β has free
occurrences of x, and y does not occur in β. An E-form is a set consisting of all
^-formulas with a given antecedent. If S is a set of wffs, '/(S1)' will denote the
set of variables free in some wff of S.

The proofs of the following two lemmas are standard.

Lemma 5.8 IfS is any A-consistent set such that f(S) is finite and V* D f(S)
is an infinite set of variables, then there exists an A-consistent set S* such that
S* 3 S, f(S*) C F*, and S* contains at least one E-formula from each E-form
whose antecedent contains as free variables only variables in F*.
Lemma 5.9 If V* is a set of variables and S is an A-consistent set of wffs
such thatf{S) C F*, then there exists a set S* of wffs such that S* D S and S*
is maximally A-consistent with respect to F*.

Let F* be a set of variables and let //* be a set of wffs which is maximally
consistent with respect to F* and includes at least one £"-formula from each
£-form whose antecedent's free variables come from F*. Then (//*, F*) satisfies
conditions (a)-(f), (i) of the definition of Henkin system. That (//*, F*) satisfies
(a)-(f) is immediate from Lemmas 5.2-5.5. Suppose ^Vxa e H*. Then f(\fxa) C
F*. Hence, H* contains an /^-formula ^\/xa D ~ot with respect to variable y in
F* where y does not occur in Vxα. Since H* is closed under modus ponens,
~α ' e H*. Hence, (//*, V*) satisfies (i).

We now show that for every ^4-consistent wff a a Henkin system Ω can be
constructed such that for some (//, F#) in Ω, a e H. The construction will
proceed through a sequence of stages. We note that since the set F of individual
variables of L is countably infinite it can repeatedly yield infinitely many
variables without becoming depleted.

Suppose a is Λ-consistent. The Oth stage of the construction consists of a
single pair. Let F o be an infinite set of variables containing /(α). 8 Since \a\ is
A -consistent and f(ά) is finite, it follows from Lemma 5.8 that there is an
Λ-consistent set S containing a and an E-formula from each inform whose
antecedent's free variables come from F o such that f(S) C Fo. By Lemma 5.9
here is a set Ho of wffs containing S which is maximally A -consistent with
respect to Fo. The Oth stage of the construction consists of the pair (770, Fo).

Let ft, j32, . . . be the list of wffs such that ~Dft e Ho. For each ft, form a
set of variables Fft containing /(ft) and an infinite number of new variables,
different variables for distinct ft. For each ft we form a set //ft. Begin with the
wff ~ft and for each wff Πj e Ho such that/(γ) C /(ft) and each wff ~ r e Ho

such that f(τ) C /(ft) add the wffs Dγ and ~Dτ. By Lemma 5.6 the resulting
set of wffs is ,4-consistent since Ho is. Since only finitely many free variables
are involved, by Lemma 5.8 we can consistently add ^-formulas with respect to
variables in Fft for all £-forms whose antecedent's free variables come from
Fft. Finally, by Lemma 5.9 this set can be expanded to a set //ft which is
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maximally consistent with respect to Fft. The first stage of the construction
consists of the pairs

(Hβ1,Vβι)ΛW2,Vβ2),....

For each ft, let ftl5 ft2, . . . be the wffs such that ΉHfty e //ft. For each βzy
a pair (//ft/, Fft/) is constructed as above, where Fft/ consists of /(ft/) together
with an infinite number of new variables. The second stage of the construction
consists of the pairs

(Hβlu Vβn), (#0i2. Vβ12)9 . . . (Hβ2l9 Vβ21)9 (Hβ22, Vβ22)9 . . ..

The third, fourth, etc., stages are constructed similarly.
It follows from the remarks at the end of the previous section that each

pair constructed satisfies conditions (a)-(f), (i) of the definition of Henkin
system. Also, by construction the system satisfies condition (g). We will argue
that it also satisfies (h). Since whenever /(γ) C K#*, D7 D 7 e //*, it will be
sufficient to show that if D7 belongs to any set Hβjv . . .iγι constructed at the
nth stage and f(y) C Vβjχ . . Ί k, then D7 e Hβjχ . . Ί k. We argue by induction
on n.

Suppose n = 0. Then D γ e / / 0 . Suppose f(y) C Kβ^ . . Ίk. Since all of the
variables in this set are new except for those in f(βjχ . . Ί-k) and f(y) C Fo,
/(7) C /(j3yi . . ,jk). Thus, /(γj C Vβjχ . . ./jk_r By similar argumentation, f(y) C
/tf/i U-2)' " /^/i)- Since/(7) C /(j^) and D7 e //o, D7 e //j3;i by construc-
tion. Since /(7) C /(β7l/2) and D7 e //j3;i, D7 e ///3/l/2 by construction. Continu-
ing, it follows that Dγe Hβj1 . . Ίk.

Suppose the result holds for n = m and D7 e Hβil . . .fm+r If f(y) ί
f(βiι . . ./m + 1), then /(7) contains a variable which is new at the stage at which
Hβiχ . ./m+1 was constructed. In this case only variable sets of the form

*™i * -'w+i *m+k

can contain all the variables in f(y) and the argument proceeds like the case for -
n = 0. Suppose f(y) C /(β^ . . . / m + 1 ) . Then,/(7) C Fft̂  . . .im. Hence, either D 7

or -Dγ is in #j8/l . . . / w. If - D γ e Hβiχ . . ./|ff, then -DDγ e //ftj . . ./m+1 by
construction. But I—DDγ D ^D7, so ~D7 e //ftj . . -im+ί Since D7 e
Hβiι . . . / m + 1, this is impossible. Thus, D7 e Hβiχ . . .iγn. By induction, whenever
f(y)CVβiι...ik,O1eHβh...ίk.

In summary, the system of all pairs constructed is a Henkin system and
αe// 0 .

Theorem 5.10 For every closed wffa, a is A-valid if and only if hα.

Proof: We showed in Section 4 that whenever hα, Cα is ,4-valid. Assume a is
closed and A -valid. Suppose it is not the case that hα. Since \~a if and only if
I—(~α), it follows that ~α is yl-consistent. Then there exists a Henkin system
Ω and a pair (//, F//) e Ω such that ~α e //.

Let Mςi be the ^4-system associated with Ω. By Theorem 5.1, MH ^Θ ^a

iff ~α e //. Thus, Λ/// t=0 ~α. Hence it is not the case that MH \=θ a, so that α: is
not A -valid.
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NOTES

1. We are here considering only S5 systems, systems in which Oa D Dθα is a theorem.
Equivalently, we are assuming that every possible world is accessible from every other
possible world. Our notation differs somewhat from that given by Kripke and Hughes and
Cresswell, but this difference is not significant.

2. A partial exception is Kripke's 1963 semantics. In his 1959 semantics quantifiers ranged
over the set of all possible objects. The later semantics modified this so that, in a given
world, quantifiers range over only those objects existing in the given world. Thus, from a
philosophical point of view, the 1963 semantics is a definite improvement over the 1959
semantics.

3. This truth condition for (12) is the same as that resulting from the weak sense of possi-
bility treated by Plantinga in "De Essentia" [6]. If we take 'possibly' to be 'possibly
nonfalse' as he suggests, then (12) is true if there is a world in which Socrates is wise is
not false. This will be the case for the Priorian if in some world either Socrates is wise is
true or Socrates is wise fails to exist. Since Socrates is wise fails to exist in a world if and
only if Socrates fails to exist in that world, (12) is true if in some world either Socrates
is wise or fails to exist. Plantinga rejects this sense of possibility for the same reason that
we reject (12c) as a way of understanding (12).

4. More precisely, we assume that the individual variables of L are arranged in a list and the
quantifiers are prefixed in the order in which their variables occur in that list.

5. '0' is an abbreviation for 4 ~ D ~ \

6. Thus, not only is the necessitation of every closed theorem a theorem, but whenever the
closure of α is a theorem, the closure of not is a theorem.

7. Strictly speaking, Λf̂  might not be a model structure for A, for it may be the case that
some variable in D is not in any F#. However, in light of Theorem 2.2 we can dispense
with this requirement.

8. We assume here that Vo is chosen so that V- F o is infinite. We make similar assumptions

at each stage of the construction to guarantee that enough variables will be left for the

succeeding stage.
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