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An 'Almost Classical’ Period-Based Tense Logic

MICHAEL J. WHITE*

Introduction In addition to purely mathematical and logical considerations,
there are diverse motivations for the development of tense logics that have in-
tended models with domains containing periods of time rather than temporal
“points” or “instants”. One such motivation is ontological: a desire to model the
conception of temporal points as logical/mathematical constructs from more
ontologically fundamental “stretches” of time rather than the converse concep-
tion. Another is linguistic: the desire to model certain features of natural lan-
guage the modeling of which presents difficulties for standard point-based tense
logic. One of these features, to quote Burgess, “is aspect, the verbal feature
which indicates whether we are thinking of an occurrence as an event whose tem-
poral stages (if any) do not concern us, or as a protracted process, forming, per-
haps the backdrop for other occurrences ([1], pp. 124-125).

A typical feature of period-based tense logics has been what might be
termed their “intuitionistic flavor.” Most period-based semantic models natu-
rally lend themselves to the definition of a strong, intuitionistic, or choice nega-
tion operation — such that for a “period” or interval x of the model, x E A
just in case for all subintervals y € x, y ¥ A. Within the context of a period-
based tense logic, it is indeed possible to define a weak, classical, or exclusion
negation operation ~, as, for example, was done by Humberstone in the seminal
[7]. But, typically, the price to be paid is that x F ~A must be interpreted as
“it is not the case that A is true throughout x” rather than the nonequivalent “ ‘it
is not the case that A’ is true throughout x”; for the truth of “it is not the case
that A is true throughout x” does not, in such a semantics, preclude the truth
of A throughout some y such that y € x (cf. [1], p. 126).
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The period-based tense logic of the present paper circumvents the intui-
tionistic character typifying most such logics. The motivation for doing so is,
I think, clear. Although there may be nothing inherently unpalatable about a
logic with an “intuitionistic flavor”, it would be agreeable not to have to force
those whose interest in period-based tense logics stems from the ontological or
linguistic considerations just mentioned to develop a taste for this flavor if they
are not otherwise inclined to do so. Any behavior of the present logic that might,
from the classical perspective, seem eccentric is confined to the tense operators.

Further motivation for this paper is a conviction of the author that the con-
siderable resources of point-set topology have not yet been sufficiently utilized
in work on period-based tense logic. Part of my purpose is to take some initial
steps toward filling in this gap in the literature on period-based tense logic.

1 Semantics for a linear ACP-B tense logic The intuitionistic character typi-

cal of period-based tense logic is perhaps not accidental. For the domain of an
intended model of such logics is usually (e.g., see [7] and [12]) some subset of
the set of open sets of a space homeomorphic with Euclidean 1-space. And it
is known that the open sets of any Euclidean space constitute an intuitionistic
Heyting algebra, while the closed sets of any such space constitute a Brouwerian
algebra, the dual of a Heyting algebra ([4], [9]-[11], and [15]).! The semantics
of the present period-based logic circumvents this feature, yielding a tense logic
with a Boolean propositional basis. It does, however, employ the standard topol-
ogy of Euclidean 1-space, i.e., the closure, under arbitrary union and finite inter-
section, of the set of open intervals of real-valued, positive length (under some
metrization). A model M of class R is a 4-tuple (X,<,0, V), where X is a non-
denumerable set, < is a dense and continuous strict linear ordering of the ele-
ments of X, O is the set of open sets of the standard Euclidean linear topology
on X, and Vis a “proto-evaluation function,” to be recursively defined, with
the set of wffs of propositional tense logic as domain and O as range. Let B C
O be the following base of this space: B contains all nondegenerate open inter-
vals of X. ¥V may then be inductively defined:

(i) where A = p” (the n-th propositional variable), V(A) = U Y; where
icr
each Y; € B and I’ is some subset of a set / indexing B (that is, V'
assigns to each propositional variable the union of the open sets that
are elements of some subset of the base B)?

(ii) where A = =B, V(A) = —CIV(B) (that is, V assigns to each negated
wff =B the complement of the topological closure of the open set
assigned by V to B)

(iii)) where A = (B v C), V(A) = V(B) U V(C)

(iv) where A = (B A C), V(A) = V(B) N V(C).

In order to complete the inductive definition, I introduce two operators on the
set O of open sets of a model M:

¢x = (—o0,Supx), where Supx is the least upper bound in X of x (relative,
of course, to <) if there is such a lub and x # J; if there is no such lub
and x # J, then ¢x = (—o0,0) = X; if x = &, then ¢x = &.
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wx = (Infx,), where Infx is the greatest lower bound in X of x if there
is such a glb and x # JJ; if there is no such glb and x # &, then nx =
(—oo,) = X; if x =, then mx = O.

The clauses for the tense operations are then straightforward:

(v) where A = FB, V(A) = ¢(V(B))
(vi) where A = PB, V(A) = 7 (V(B)).

The normal classical definitions for the other propositional connectives are
assumed as well as the definitions of the duals of the simple future operator F
and the simple past operator P; i.e., G is defined as -=F—- and H as = P—. The
following truth definition can then be given (for nonempty x € O):

V*(A,x) = T, where A is tense-logic wff and x € O, iff there is no
nonempty y(€0) € x such that y € —CIV(A)
V*(A,x) = Fiff, for all y(€0) € x, y € —CIV(A).

The truth of a wff A in a model M of class ® is then equated with
V+(A,X) =T, for X of that model. The R-validity of a wff A may then be
defined as the truth of A in all (Euclidean 1-space, period-based) models.

Remark 1.0: The present semantics does not assign a truth value to each wff rel-
ative to every open set (arbitrary union of open intervals) of each model. For
example, if in a given model an open set x includes open sets y and z included
in V(A) and V(—A), respectively, neither A nor = A will be either true or false
at x in that model. There is a sense in which this is an entirely classical facet of
the semantics. In the standard point-based semantics for tense logic, the range
of the valuation function is typically the power set of the set of temporal points
or instants. It is certainly not assumed that each wff will be assigned a truth
value relative to every element of the power set, i.c., relative to every set of in-
stants. A wff that is assigned the value truth relative to some points in a given
set and the value falsity relative to other points of that same set is not consid-
ered to be either true or false “relative to that set”. An analogous situation
obtains in the present case. Here the range of the proto-evaluation function V'
is the set of open sets of the space. And there seems to be no more reason to
require that each wff be assigned a truth value relative to each member of this
set than there is to require that each wff be assigned a truth value relative to each
member of the power set of the set of instants in the standard point-based
semantics for tense logic.

Claim 1.0 Every wff of the form (A v —A) is valid.

Proof: Suppose not. Then there is some model M; in which some wff of this
form is not true. Then V" ((A v =A),X;) # T. So there is some nonempty
Y(€0;) <€ X, such that y € —CIV;(A v = A). The last expression simplifies to
—(ClV;(A) U CI — CIV;(A)), which, in turn, simplifies to —CI/V;(A) N —CI —
ClV;(A), i.e., to —CIV;(A) N (CIV;(A))° (that is, to the intersection of the com-
plement of the closure of V;(A) and the interior of the closure of V;(A)).3
But, since (CIV;(A))° € CIV;(A), and —CIV;(A) N CIV;(A) = O, it follows
that —CIV;(A) N (CIV;(A))° = &. So y must be empty, and the reductio is
complete. As a result, the propositional basis of the present logic loses its intui-
tionistic flavor and becomes entirely classical.
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Remark 1.1: A salient feature of the preceding semantic definitions is that a
given open set and the interior of its closure are semantically indistinguishable
even in cases where they are not identical. This fact will be further exploited in
the metatheoretical considerations of Section 3. As a simple example of this fea-
ture, consider the union of the open intervals (p,q), (q,r), and (r,s), where p <
q < r < s. This union is an open set not including any open sets having as an
element either the point q or the point r. The interior of the closure of this open
set is another open set, namely the interval (p,s), which obviously does include
such open sets. However, the ¥ and V' functions that we have defined allow
us, in effect, to semantically identify such open sets.*

Remark 1.2: The clauses for the tense operators in the inductive definition of
V call for some comment since they yield what must initially appear to be some
very unintuitive consequences. For example, they result in the validity of the
theses A D FA and A D PA (and their duals, GA D A and HA D A). Here the
insightful comment of van Benthem seems apposite: “The ‘point view’ has
become so dominant that it has become internalized to the extent of becoming
an ‘intuition’, whereas the period view has to be reconstructed explicitly from
material infected by its rival ([17], p. 59). I believe that intuitions to be repre-
sented by the present semantic interpretation of the tense operators can be incul-
cated. As an aid to this project, I first give the (derived) clauses for G and H
in the inductive definition of the proto-evaluation function V:

(vii) where A = GB, V(A) = U{(p,>): (p,) € V(B)} if there are any such
(p,») € V(B), = & otherwise

(viii) where A = HB, V(A) = U{(—,p): (—,p) € V(B)} if there are any
such (—oo,p) € V(B), = & otherwise.

One interpretation that can be given to the simple future operator F is the fol-
lowing: FA iff it has not yet ceased to be the case that there is a forthcoming
stretch of “A-ing”. Then GA iff it is or has begun to be the case that there will
always be A-ing going on. Analogous interpretations can, of course, be given
for the past tense operators.

Consider, then, a wff of the form A D FA. Suppose that there is currently
A-ing in progress but that after this “stretch” of A-ing terminates there will never
thereafter be any other stretches of A-ing. According to the preceding informal
interpretation of the F operator, FA will remain true until the current stretch
of A-ing is terminated. But that means that the first “opportunity” for FA not
to be true will be an interval after the current stretch of A-ing has terminated,
i.e. an interval at which — A is the case. So there will not be an interval at which
A is instantiated but FA is not.

The supposition implicit in this interpretation of the temporal operators is
that there are (or that there can be constructed) temporal points or instants that
are the limits of temporal stretches (open intervals). For example, if it becomes
true that there will be no more stretches of A-ing (or “states of A-ness”), there
is a point p that is the limit (least upper bound) of A-stretches/states, and the
limit (greatest lower bound) of the state of its being the case that there will never
thereafter be any A-stretches/states. But tense-logic wffs are not evaluated at
such limit points. So we cannot say that -“FA or G—A is true at p. The pres-
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ent treatment of the tense operators eschews the assumption—made in [7], for
example—that a wff of the form —FA is true with respect to a stretch or interval
which is the “last” interval with respect to which A is true. The preceding infor-
mal semantic characterization of the tense operators provides an argument for
this “nonstandard” facet of the semantics. Since —FA is true if it Aas ceased to
be the case that there is a forthcoming stretch of A-ing or A-ness, it can plau-
sibly be maintained that =FA is true with respect to a temporal interval at which
A-ing is in progress only if that interval contains the limit (least upper bound)
of the “last” interval of A-ing: for it is only “at” this point that it begins to be
true that it sas ceased to be the case that there is a forthcoming stretch of A-
ing. But, since the units of semantic evaluation are opern sets (i.e., arbitrary
unions and finite intersections of open intervals), there are no such right-closed
units of semantic evaluation. So, to repeat the previous claim, the first oppor-
tunity for FA not to be true, and, thus, for =FA to be true, will be an inter-
val after the current (“last”) stretch of A-ing has terminated. One might say that
temporal points play a sort of ghostly role in the present semantics. They are
assumed to be available in the form of limits for the purpose of defining open
intervals and, hence, open sets. But that is their on/y manifestation; they have
no other semantic presence.

As a result of evaluating wffs only at open sets and of the preceding
account of the tense operators, we have the following semantic homogeneity con-
dition satisfied:

Claim 1.1 For any tense-logic wff A, model M, and x€ O, V*(A,x) =T
if x € V(A).

Proof: For every nonempty open set y € x € V(A), y € V(A) and y < CIV(A).
Therefore, there is no nonempty y (€ O) € x such that y € —CI/V(A) and, by
definition, V*(A,x) = T. This claim can be strengthened to the following
biconditional:

Claim 1.2 For any tense-logic wff A, model M, and x € O, Vt(A,x) =T
iff x <€ (CIV(A)).

Proof: L = R: Suppose that ¥ *(A,x) = T. Then there is no nonempty open set
y € x such that y € —CIV(A). So x € CIV(A). (If not, there would be an open
subset y = x N —CIV(A) of x such that y € —CIV(A).) But since, for any sets
Y and Z, if Y € Z, then Y° € Z°, and, for any open set z, z = z°, it follows that
X S (CIV(A)).

R = L: Suppose that x & (CIV(A))". Then, for all nonempty y such that
Yy S x, ¥ < (CIV(A)) € CIV(A). So there is no nonempty y S x such that y &
—CIV(A). Hence, by definition, V*(A,x) = T.%

2 Axiomatization of linear ACP-B tense logic For the axiomatization of a
linear almost classical period-based tense logic, I take Lemmon’s “minimal” tense
logic, sometimes designated K;, as a base. This consists of axioms for classical
propositional logic (with uniform substitution and modus ponens as primitive

inference rules) plus the following axioms:
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(A1) G(p>q) D(Gp D Gp)
(A2) H(p D> q) D (Hp D Hq)
(A3) p>HFp
(A4) p>DGPp

and inference rules:

R3) FA = FGA,
(R4) FA = FHA.

For our linear ACP-B tense logic (call it ‘LinP-B’) adjoin the following axioms:

(AS) pDFp

(A6) FFp D Fp®

(A7) FpaFgqDF(paq VvF(paAFqQ VvFFpaAQ)
(A8) PpAPgDP(pAq VvP(pAPg VvPPpAaQ).

3 Metatheory for a linear ACP-B tense logic (Part 1) The metatheory for
LinP-B utilizes the concept of a temporal algebra, as found, for example, in [16].
A temporal algebra is a structure C = (C;0,1,+,-,’, f,p), where (C;0,1,+,-,")
is a Boolean algebra’ and f and p are 1-place operations satisfying the follow-
ing conditions, for any a,b € C:

®Hf0=p0=0
(i) f(a+ b) =fa + fb
(iii) p(a + b) = pa + pb
@iv) (fa-b) = 0= (a-pb) =0.

For LinP-B we add the following constraints on f and p:

(v) (fa)'-ffa) =0 = ((pa)'-ppa)
(vi) ((fa)'-a) =0 = ((pa)'-a)
(vi)) ((f(a-b)+f(a-fb)+f(fa-b))-(fa-fb))=0=((p(a-b)+p(a-pb)+
p(pa-b)) - (pa-pb)).k

Call the class of temporal algebras satisfying these additional contraints (v)
through (vii) €.

A temporal algebraic model M is then defined as an ordered pair M =
(C,V), where the valuation function V has as domain the set of tense-logic wffs
and as range the set C of elements of C and is inductively defined as follows:

(1) where A = p” (i.e., the n-th propositional variable), V(A) € C
(2) where A = ~B, V(A) = (V(B))’

(3) where A =B v C), V(A) = V(B) + V(O)

(4) where A = (B A C), V(A) = V(B)-V(O)

(5) where A = FB, V(A) = fV(B)

(6) where A = PB, V(A) = pV(B).

A tense-logic wff A is frue in an algebraic model M iff, for that model, V(A) =
1 identically. A tense logic L is determined by a given class € of temporal
algebras just in case: (a) every theorem of L is assigned an element identically
equal to 1 in every model based on each algebra in €, and (b) every tense-logic
wff assigned an element identically equal to 1 in every model based on each
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algebra in € is a theorem of L. In view of the general completeness results of
algebraic semantics for tense logics containing K, (see, e.g., [16]), it is a virtu-
ally trivial matter to establish

Claim 3.0 LinP-B is determined by the class T of temporal algebras. (Proof
omitted)

Claim 3.1 An epimorphism can be defined from the field of open sets of the
“underlying” space of each model M of class R to a temporal algebra C of class
.

Proof: For any x,y € O of such a model M, let x = y iff (Cix)° = (Cly)° and
[x] = {y: x = y}. The result obviously is a partitioning of O since = is an
equivalence relation. Let C = {[x]: x € O}, and define relations on C satisfy-
ing the following conditions:

(A) [x] = [-Clix]

®B) [x] + [¥] =[xUy]
© [x]-lyl = (Ix]" U [»y]")
D) flx) = [¢x]

(B) plx] = [7x].

It is necessary to show that the relations ’, +, -, f, and p are (functional) oper-
ations on C and that they are the “right” ones, i.e., that such a structure —call
it C—is a member of the class ¥ of temporal algebras. The first part of this task
is to establish that (when the f and p operators are ignored) C is a Boolean
algebra. In order to expedite this rather tedious task, I state as a lemma some
useful topological theorems.

Lemma 3.1.0 For open sets x,y,z, (a) (Clx)° = (Cly)" iff Clx = Cly; (b)
—Clx = (Cl - CIx)’; (c) (CI((CIx)° N (Cly)"))’ = (Clx N y)); (d) (Cl(xU (Cly N
Clz))) = (Cl(x U (y N 2))).

Subclaim 3.1.0 The ', +, and - relations on C are functional. That is, for any
open sets x,y,z,w, (@) if y € [x], then [x]' = [y]’; ®) ifz € [x] and w € [ y],
then [x] + [y] = [z] + [w]; (¢) if z € [x] and w € [y], then [x]-[y] =
[z]-[w] =[xNy] =[zNw].

Proofs: For (a): if the antecedent is satisfied, then by (a) of Lemma Cix = Cly,
and hence —Clx = —Cly, and, by (b) of the Lemma, the consequent follows.
For (b): if antecedent is satisfied, by (a) of Lemma Ciz = Clx and Clw = Cliy.
Hence, CixU Cly = Cl(xU y) = ClzU Clw = Cl(z U w), and (Cl(x U y))" =
(Cl(z U w))", yielding the consequent. For (c): Use (a) and (b) of this Sub-
claim to obtain (given the antecedent of (c)) ([x]’ + [»]) = ([z]" + [w]")' =
(CI((CIx) N (Cly))) = (CI((Clz)° N (Clw)’))y. Then use (c) of the Lemma to
obtain (C/(x N y)) = (Cl(z N w))°, yielding the consequent.

Subclaim 3.1.1 The structure C is a lattice with [X] the unit element and [ D]
the zero element.

Proof: Consider the induced relation < such that [x] = [y] iff (3z€ [x])(Aw e
[¥]D)(z € w). It follows that if z € w, then Clz € Clw and (Clz)° = (Cix)° <
(Clw)" = (Cly)°. But (Clx)° € [x] and (Cly) € [y]. So [x] = [y] iff (Clx)° =



PERIOD-BASED TENSE LOGIC 445

(Cly)°. The reflexivity, transitivity, and antisymmetry of = follow. Since, for
any open x, (Cix)’ is the largest element of [x], it follows that [x] + [y] is the
supremum (lub) of [x] and [y] with respect to this relation, while [x] - [y] is
their infimum (glb). So, by definition, C is a lattice. And it is obvious that [X]
will be the maximal or unit element, [J] the minimal or zero element of the
lattice.

Subclaim 3.1.2 The lattice C is distributive and complemented.

Proof: To show that [x] + ([¥]-[z]) = ([x] + [¥]) - ([x] + [z]) use (d) of
Lemma 3.1.0. The dual distributive principle then follows from the fact that
C is a lattice. For complementation: [x] + [x]’ = 1 iff (Cl(x U —CIx))° =
(CIX)° = X. But, by (a) of Lemma 3.1.0, this identity holds iff C/(x U —Cix) =
CIX = X. But Cl(x U —CIx) = Clx U CI-Clx. Since Clx U —CIx = X and
—CIx € CI-CIx, Cix U ClI-CiIx = X. [x]-[x]’ = 0 iff (Cl(x N —=CIx))"
(CID)y = &. By (a) of Lemma 3.1.0, the identity holds iff C/(x N —Clix)
Clo = . Since —Clx = (—x)° and (—x)° € —x, it follows that (x N —Clix)
. But, then, Cl(x N —Clx) = CID = O&.

From Subclaims 3.1.0, 3.1.1, and 3.1.2 it follows that a structure C is a
Boolean algebra (with respect to the ’, +, and-operations). In order to complete
the proof of Claim 3.1 it suffices to show that the relations f and p are (func-
tional) operations and that they satisfy constraints (i) through (vii) on the f and
p operations of the class § of temporal algebras.

Subclaim 3.1.3 Forallx,y € O, ify € [x], then f(x] =fly] (plx] =p[¥]).

Proof: Suppose that the antecedent is satisfied. Then (Clx)° = (Cly)° and, by
(a) of Lemma 3.1.0, it follows that Clx = Cly. Then either (1) both x and y are
neither left- nor right-bounded, (2) x =y = &, or (3) x and y must be either both
left-bounded or both right-bounded. In case (1) ¢x = 7x = ¢y = wy = X. In case
2) ox = mx = ¢y = wy = . In case (3), first suppose both are left-bounded and
right-unbounded. Then Infx = Infy. For suppose not. Then, either Infx < Infy
or Infy < Infx. So, either Infx € Clx, & Cly or Infy € Cly, & Cix, either of
which yields a contradiction. So, my = 7x = (Infx,o0) and ¢x = ¢y = (—o0,) =
X. Similarly, mutatis mutandis, when both x and y are both right-bounded and
left-unbounded, and when both are both right- and left-bounded.

Subclaim 3.1.4 The f and p operations of a structure C satisfy contraints (i)
through (vii) on the f and p operations of the class ¥ of temporal algebras.

Proof: 1 leave this proof, which is straightforward, to the reader.

From these two additional Subclaims it then follows that beginning with
a (Euclidean 1-space) model M of class ®, we have constructed a structure
C that is an element of the class € of temporal algebras such that the map
m(x) = [x] is an epimorphism from the underlying field of open sets of M onto
C. This completes the proof of Claim 3.1.

If, beginning with a model M of class , We take the temporal algebra
C of class § thus defined by it and, for each propositional variable p”, let
V(p") = [x] (€ C) if V(p") = x(€ 0), it follows that
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Claim 3.2 For all tense-logic wffs, A, V(A) = [x] iff (3y € [x])(V(A) =y).
Proof: By induction of the usual sort, e.g., on wff length.

As a corollary of Claims 3.0, 3.1, and 3.2, we have

Claim 3.3 LinP-B is sound with respect to the class R of models.

Proof: From 3.0 we have the soundness of LinP-B with respect to the class of
models based on the class § of temporal algebras. I.e., every LinP-B theorem
is assigned by the V function of a model M the unit element 1 of the algebra
C of that model. But, by Claims 3.1 and 3.2, for each such model M, there is
a model M of class R equivalent to it. That is, for every such model M, for every
LinP-B theorem A, there will be an x € [X] = 1, such that V(A) = x. But it then
follows by Claim 1.2 that ¥ *(A,X) =T, i.e., that A is true in model M. Since
this is true for all LinP-B theorems and all models M of class R, the claim
follows.

Remark 3.0: There certainly are less circuitous and cumbersome ways of ob-
taining the preceding soundness result. The main interest of this approach is,
I think, technical. It or the essentially equivalent use of the operators mentioned
in Note 4 on regular open sets provides methods for “Booleanizing” a model,
the underlying structure (“general frame”) of which is a Heyting algebra.

3 Metatheory for a linear ACP-B tense logic (Part 2) Fortunately, there is
a relatively simple procedure for obtaining the completeness of LinP-B with
respect to the class i of Euclidean 1-space models. I first outline this procedure
and then sketch in some of the details. Standard results yield the completeness
of LinP-B with respect to the class of standard or Kripke frames characterized
by ‘alternative’ or ‘accessibility’ (or temporal ordering) relations that are: (i) tran-
sitive, (ii) reflexive, and (iii) comparable or connected. Therefore, any non-
theorem of LinP-B will be falsified, with respect to standard point-based
semantics, in a model based on a standard frame possessing a transitive, reflex-
ive, and comparable alternative relation. However, it can additionally be shown
that, with respect to standard point-based semantics, LinP-B possesses the finite
model property: any nontheorem is falsified in some finite model the underly-
ing frame of which is transitive, reflexive, and comparable. A corollary of Seger-
berg’s “bulldozing” theorem can then be invoked to show that any nontheorem
of LinP-B is falsified in a denumerably infinite /inear standard model, that is,
a standard model the underlying frame of which possesses a denumerable num-
ber of points and a transitive, reflexive, comparable, and antisymmetric tem-
poral ordering or accessibility relation. Finally, it is shown that for any such
standard model, there is an equivalent Euclidean 1-space model of class ®. The
consequence is that every nontheorem of LinP-B is not true in some model M
of class R (relative to the period-based semantics of Section 1 of the present
paper), a consequence that establishes the completeness of LinP-B with respect
to the class R of Euclidean 1-space models.

Claim 3.4 LinP-B is complete with respect to the class R of Euclidean
1-space models.



PERIOD-BASED TENSE LOGIC 447

In order to fill in some of the details of the proof, as outlined above, for
this Claim, I employ the concepts of standard (Kripke) frames and models for
tense logics containing Lemmon’s K,. A standard frame & = (W,R) is an
ordered pair, where W is a nonempty set (intuitively the set of temporal instants
or points) and R is a dyadic relation on W. A standard model T = <($,V)is an
ordered pair of standard frame and evaluation function V, with the set of wffs
of propositional tense logic as domain and ®W as range. V is defined in the
standard way: that is, where wff A is a sentence letter V(A) is an “arbitrary”
member of ®W; where A is a truth-functional compound of other wffs B (or
B and C), V(A) is defined by the appropriate Boolean operations on V(B) (or
V(B) and V(C)); where A is FB, V(A) = {w € W: (3u € W)(Rwu A u € V(B))};
and where A is PB, V(A) = {w € W: (Qu € W)(Ruw A u € V(B))}. WIf A is
then said to be frue at a temporal point/instant w in a standard model 7, iff
w € V;(A); valid in a model T; iff it is true at all points w € W, of that model;
valid in a frame ®; iff it is valid in each model that can be constructed on that
frame; valid over a class € of frames iff it is valid in each frame in that class.
A tense logic L containing K, is determined by a class € of frames just in case
(a) L is sound with respect to € (every theorem of L is valid over €) and (b) L
is complete with respect to € (every wff that is valid in every frame in € is a the-
orem of L).

Subclaim 3.4.0 LinP-B is complete with respect to the class of frames charac-
terized by an accessibility relation that is transitive, reflexive, and comparable
(or connected: i.e., for every w,u € W of each such frame, Ruw or Rwu).

Proof Sketch: It is known that Axiom (5) implies a reflexivity condition, (6) a
transitivity condition, and (7) and (8) a comparability condition on the acces-
sibility relation of the frame of the Henkin (canonical) standard model of a
tense-logic extension of K; having these wffs as additional axioms. It then fol-
lows by an appropriate “fundamental theorem” for such Henkin standard mod-
els for tense logic that any tense-logic wff valid over this class of frames is a
theorem of LinP-B.°

Subclaim 3.4.1 LinP-B possesses the finite model property; more particu-
larly, any nontheorem of LinP-B is false in a model the domain of which is finite
and the accessibility relation of which is transitive, reflexive, and comparable.

Proof Sketch: A tense (or modal) logic L has the finite model property (fmp)
just in case every nontheorem of L is false in some finite standard model, i.e.,
is false is some model constructed on a standard frame the domain W of which
contains a finite number of elements. It follows from Subclaim 3.4.0 that each
nontheorem of LinP-B will be false (and, hence, that its negation will be true)
in some model constructed on a transitive, reflexive, and comparable frame. The
filtration method can be used to show that the negation — A of any such non-
theorem will be true in a finite model T the frame ® of which is a frame for
LinP-B, that is, a frame characterized by a transitive, reflexive, and compara-
ble accessibility relation. Let ' be the smallest (and, hence, finite) set of wffs
that contains —A and is closed under subformulas. Define as follows a finite
standard model T* that is a filtration through I' of the model T in which = A
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is true. Define the equivalence class [w] to be the set of all u € W that agree with
w with respect to assignment of truth values to wffs in the set I', and let W* =
{[w]: w € W}. Let R*[w][u] iff both, for every wff FB € T, if either u € V(B)
or u € V(FB), then w € V(FB), and, for every PB € T, if either w € V(B) or
w € V(PB), then u € V(PB). If, for each propositional variable p”, we let
V*(p") = {[w]: w € V(p")}, the result can be shown to be a filtration of T
through I', and a “fundamental theorem” for filtrations entails that for each wff
BeTl, V¥B) = {[w]: w € V(B)}.

In order to complete the proof of the Subclaim, it is necessary to show that
this filtration frame ®* is a frame validating each LinP-B theorem; i.e., it is
necessary to show that R* is a transitive, reflexive, and comparable relation on
W*. A simple tense-logic modification of known results for modal logics (cf.
[2], Theorems 3.19 and 3.20, pp. 105-106) entails that the accessibility relation
R* for the filtration frame, as defined above, is both reflexive and transitive. It
is also comparable. For suppose that for any [w], [u] € W*, it is not the case
that R*[w][u]. But, then, by the definition of R*, either (a) there is some FB €
I' such that (u € V(B) v u € V(FB)) and w & V(FB) or (b) there isa PB €T
such that (w € V(B) vw € V(PB)) and u & V(PB). However, due to the tran-
sitivity of the R-relation on W in &, it follows that in any of these cases, it is
not the case that Rwu. But, by the comparability of the R-relation, it follows
that Ruw. It can then easily be shown (and is, in fact, a necessary condition on
the R*-relation of a filtration) that R*[u][w]. So the R*-relation on the frame of
the filtration model T* is comparable (connected). This completes the proof
sketch of the Subclaim. The consequence is that any nontheorem A of LinP-B
is false at some point in a finite model the frame of which validates all theorems
of LinP-B, i.e., the frame of which possesses a transitive, reflexive, and com-
parable temporal accessibility relation (cf. [13], p. 314).

Subclaim 3.4.2 Any nontheorem A of LinP-B is false in some denumerable,
linear (standard) model.

Proof Sketch: Proof of this subclaim depends on showing that, for any stan-
dard model the underlying frame of which is transitive, reflexive, and compa-
rable, there is an equivalent model (that is, a model that validates exactly the
same wffs) the underlying frame of which is linear, i.e. possesses an accessibility
relation that is transitive, reflexive, comparable, and antisymmetric (Vw,Yu €
W)(Rwu A Ruw = w = u)). This latter result is a corollary of the “Bulldozer”
theorem of Segerberg ([14], Theorem 1.2, p. 81; [13], pp. 304-305). The colorful
terminology derives from the fact that the domain W of a transitive and reflexive
(but not necessarily antisymmetric) frame can be partitioned into equivalence
classes, which Segerberg calls clusters, such that for elements w and u of such
a cluster either (both Rwu and Ruw) or w = u. The Bulldozer theorem guaran-
tees that an equivalent model can be produced by “bulldozing” or flattening out
these clusters. In the particular case of a “bimodal logic” (a modal logic such
as tense logic with two primitive modal operators the accessibility relations for
which are the converse of each other) this can be done by, in effect, replacing
each point in each cluster with a linearly ordered set of points without first or
last members and, then, linearly ordering these linearly ordered sets (see [13],
pp. 304-305). In the present case, by Subclaim 3.4.1, we have each nontheorem
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of LinP-B falsified in some model the underlying frame of which is transitive,
reflexive, and comparable and which can be partitioned into a finite number of
clusters each containing a finite number of points. Using the Bulldozer theorem
we can construct an equivalent linear model by replacing each point in this model
by a linearly ordered set of points having the order type of the signed integers
(0* + w) and linearly ordering these resulting sets. Since there will be a finite
number of “copies” of the signed integers in the result, the cardinality of this
model will be denumerable. Consequently, each nontheorem of LinP-B will not
be valid in (i.e., will be false in) a denumerable model the underlying frame of
which is linear (transitive, reflexive, antisymmetric, and comparable).

Subclaim 3.4.3 For each denumerable linear (standard) model of Subclaim
3.4.2, there is an equivalent model of class R; that is, for any such denumera-
ble, linear standard model T = {{W,R),V) there is a (Euclidean I-space) model
M = (X,<,0,V) of class R such that, for any tense-logic wif A, V(A) = W (wff
A is true at all w € W of T) iff (with respect to model M) V*(A,X) =T.

Proof Sketch: We begin with a denumerable, linear, and reflexive standard
model T of the sort constructed in Subclaim 3.4.2 and define, for each point
w; € W, an open interval x;, where x; can be identified with a nondenumerable
set of points characterized by a dense and continuous strict (irreflexive) linear
order, without any maximum or minimum elements. We further stipulate that
the order type of each such x; is that of Euclidean 1-space or of the (signed) real
numbers, customarily designated ‘A’. Extend this ordering < to the union of the
x;’s: for any w;, w; € W, if Rw;w; and w; # w;, then (vp, vp’ € Ux;)(p € x; A
p’ € x; = p < p’). Because of the ordering of w;’s in the standard model T, each
w; has a unique successor and a unique predecessor with respect to the reflex-
ive linear ordering R of that model. Consequently, each interval x; will have a
unique successor (predecessor) x;. Continuity can be restored to the union of
the x;’s in two stages: (a) Add, for each x; that has as its immediate successor
interval x;, a point p such that for allq € x;,, g <p, and forallr € x;, p <r.
For suchap, p & (x; Ux;), p € Cl(x;Ux;), and p is the supremum of x; and
the infimum of x;. (b) There will now be a finite number of linearly ordered
collections of x;’s, each such collection being of order type (w* + w) with
respect to the x;’s that it contains. These collections will themselves be linearly
ordered and, if such a collection has a successor (predecessor), that successor
(predecessor) will be unique. So, add a further point between any “adjacent”
pairs of such collections. (i) The resulting set of x;’s together with added limit
points is obviously dense and continuous with respect to strict linear order < as
we have defined it. (ii) It also obviously has neither a first nor a last point. (iii)
Finally, it contains a denumerable subset dense in it. For each x;, by stipulation
of order type A, contains such a set; and since there are but a denumerable num-
ber of x;’s, the union of the denumerable subsets contained in these will be a
denumerable subset contained in the union of the x;’s together with the added
limit points. Since conditions (i) through (iii) are individually necessary and
jointly sufficient for a totally ordered set’s having order type A\, we have the strict
linearly and continuously ordered domain X (the union of all the x;’s with the
added limit points) of order type A characterizing a (Euclidean 1-space) model
M of class R.
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In order to complete the definition of M, let O be the standard Euclidean
topology, formed by arbitrary union and finite intersection from the base of a//
open intervals on X. Each x; will be a (nonempty) member of O. Finally, define
a function m the domain of which the power set ®W of the domain of the stan-
dard model T and the range of which is O such that, for any U € ®W, m(U) =
U{x;: w; € U}. Then, define the proto-evaluation function V of M for each
propositional variable p” be letting ¥V (p”) = m(V(p”")) (where, of course, V is
the valuation function of the standard model T with which we began). The def-
inition of ¥V is then recursively extended to other tense-logic wffs in the man-
ner described in Section 1.

It can then be proved inductively, although the details of the proof are a
bit tedious, that for any tense-logic wff A, (CIV(A))" = (Clm(V(A))).!° Sup-
pose, then, that some wff A is valid in the standard model T. It follows that
V(A) = W, that m(A) is the union of all the open intervals x; with which we
began the construction, that (Cim(V(A)))° = X, that (CIV(A))’ = X, that
V+(A,X) =T (by Claim 1.2 of Section 1), and that A is true in model M. Con-
versely, if A is true in model M (V*(A,X) = T), it follows (by Claim 1.2 again)
that (C/V(A))° = X and that (CIm(V(A)))° = X. But, unless m(V(A)) is the
union of all the x;’s, this will not be the case. But, then, for every w; € W,
w; € V(A), and A is valid in the standard model T. This completes the proof
sketch of Subclaim 3.4.3.

The proof of Subclaim 3.4 can now be easily completed. By Subclaim
3.4.2, any nontheorem A of LinP-B is false in some denumerable, linear stan-
dard model consisting of a finite number of collections of points each collec-
tion being of order type (w* + w); so A is not valid in such a model. Then, by
Subclaim 3.4.3, A is not true in some (Euclidean 1-space) model of class R, and
A is not R-valid. Claim 3.4, the completeness of LinP-B with respect to the class
R of Euclidean 1-space models immediately follows.

Claim 3.5 LinP-B is determined by the class R of Euclidean 1-space models.
Proof: This Claim follows directly from Claims 3.3 and 3.4.

4 Conclusion In this concluding section, I reiterate two points, which per-
tain directly to the present period-based tense logic, and make a programmatic
remark. The first point pertains to the behavior of the tense operators in LinP-B,
which, as I earlier indicated, must initially seem eccentric. In particular, the
validity of the “reflexive” theses A D FA and A D PA might suggest a nonstan-
dard view of time. However, as I hope I successfully argued in Section 1, the
validity of these theses does not derive from any “funny” view of time. Rather,
it is a corollary of a fanatically faithful interpretation of a salient feature of this
paper’s period-based models: the units of semantic evaluation of these models
are exclusively (arbitrary unions and finite intersections of) open intervals. In
fact, I should maintain that a period-based semantics not validating these theses
must either explicitly or tacitly assume that periods are right-closed in its treat-
ment of the future operator F and left-closed in its treatment of the past oper-
ator P.

Second, I would emphasize the earlier claim that the fact that the period-
based models of this paper do not assign a truth value to each wff relative to
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every open interval in no way mitigates the classical character of LinP-B, so
interpreted. The metatheory of Section 3 confirms, I believe, my claim that the
presence of these truth-value gaps is no more “nonclassical” than is the presence
of subsets of points in standard, point-based models for tense and modal logics
relative to which some wffs are not assigned a single truth value. In his excel-
lent survey article ([1]) on tense-logic Burgess poses a central problem of
interpretation for period-based tense logic, which can be paraphrased as follows:
“how to make intuitive sense of the notion x S V(A) of a sentence A being true
with respect to a time-period x” (p. 126). The treatment of the tense operators
in the present period-based logic along with the fact that not all wffs are assigned
a truth value relative to every time-period allow us to adopt what is perhaps the
most “intuitive” answer to this problem of interpretation: for every tense-logic
wif A, ‘x € V(A)’ means that A is true throughout x. In the alternative semantics
based on regular open sets alluded to in Note 4, there would be no need for the
further valuation function ¥'*. However, in the semantics of this paper, which
utilizes all open sets, it follows from Claim 1.2 that V*(A,x) = T o x C
(CIV(A))° even though it may be the case that x € V(A). Either way, the
upshot is that any isolated points of V(A) or of —V/(A) are semantically ignored.
This feature seems entirely appropriate for a period-based semantics.

Finally, the programmatic remark. Period-based models are now typically
presented as sets of “primitive” objects with two dyadic relations defined on the
set, intuitively, an “inclusion” relation and a temporal precedence relation.
Although this approach has been generally fruitful, it can leave one aspect of
the “nature” of the periods or intervals ambiguous — whether they are to be con-
ceived as open, closed, semi-open, etc. This feature of intervals, it seems, can
be quite tense-logically significant. It is perhaps particularly important in rela-
tion to the development of period-based tense logics intended as alternatives to
those now “standard” logics whose point-based models capture various struc-
tural properties of time. The topological embedding of intervals in point sets
should be particularly useful in this enterprise.

NOTES

1. Of course, more directly relevant to this intuitionistic character is the common
assumption — nonclassical, I shall argue—that each wff should be assigned a truth
value relative to every period.

2. I could here have substituted “countable subset” for “subset” in view of the fact
that every open set on the real line can be represented as the union of a finite or
denumerable number of disjoint open intervals. See, e.g., [5], pp. 14f.

3. For basic topological concepts see [8], the more compendious [3], or the yet more
compendious [19].

4. An anonymous reader of this paper suggests that the semantic models of this paper
and the soundness result could be simplified by limiting the range of the proto-
evaluation functions in models of class # to a proper subset of the opens sets of
the standard Euclidean topology, viz., the set of regular open sets (the set of open
sets x such that x = (Clix)°). This is quite correct, for it is known that the set of
regular open sets of a space becomes a complete Boolean algebra when the meet
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10.

(1]

(2]

3]
[4]

operation is defined as set-theoretic intersection, the complementation operation on
r.o. set x is defined as —Clx, and the join operation on r.o. sets x and y is defined
as (Cl(x U y)) (see [18], pp. 506-507). Had these operations been assigned to the
appropriate propositional connectives, the proto-evaluation and evaluation func-
tions could have been conflated and the soundness proof could have utilized this
established result. Perhaps somewhat perversely, then, I have retained the set of a//
open sets as range of the vaulation function and the concomitantly more compli-
cated definition of truth/validity and soundness proof. On either alternative — which
are, for practical purposes, equivalent —isolated points of a valuation set and its
set-theoretic complement get semantically ignored. The choice offered by the two
variants is whether this gets done “lower” in the semantics (at the level of the as-
signment of operations to the propositional connectives, as in the semantics that
would utilize only regular open sets) or “higher” (at the level of the definition of
truth and validity by means of separate proto-evaluation and evaluation functions
as is done in the present paper).

. It should perhaps be emphasized that it does not follow from Claim 1.2 that

V*(A,x) = Fiff x € (CIV(A)). It does, of course, follow that V*(A,x) = F iff
x € —ClV(A).

. I am reminded by an anonymous reader that the past-tense analogues of Axioms

5 and 6, i.e., p D Pp and PPp D Pp, are derivable as theorems. Thus, of course,
they need not be added as axioms to LinP-B.

. 0,1, +, -, and ’ designate the zero and unit elements and the join, meet, and com-

plementation operations, respectively.

. This condition is equivalent to the conjunction of the following, considerably simpler

conditions: (vii)’ fa- (fb)’ # 0= fb-(fa)’ =0; (vii)” pa-(pb)’ # 0= pb-(pa)’ =0.

. There are consistent tense logics that are not determined, in the sense of this term

defined in the text, by any class of standard frames. See, e.g., [16], Section 4. In
such a case the underlying (standard) frame of the logic’s Henkin model is not a
member of the class of standard frames over which all theorems of the logic are
valid. Fortunately, LinP-B is not such a logic.

The core of the proof is the verification of the following identities: For any U,
Ve ®W, (a) (Cim(W —U)) = (—m(U))’ = (CI-Cim(U))’; (b) (CIm(U U V)) =
(Cl(m(U) U m(V)))*; (¢) (Clm(U N V)y = (CI(mU) N m(V)))’; (d) (Clm({w;:
@aw, € URw;w;})° = ¢m(U) = (Clpm(U))’; (e) (Cim({w;: @w; € U)Rw;w,})° =
mm(U) = (Clrm(U))".
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