A Unified Approach to Relative Interpolation

DENNIS DUCHHART*

1 Introduction In general, languages $\mathrm{L}_{\kappa \lambda}$ do not have the interpolation property that, for $\mathrm{L}_{\omega \omega}$, was proven by Craig ([3]). At this moment interpolation is known to hold for $\mathrm{L}_{\omega \omega}, \mathrm{L}_{\omega_{1} \omega}$ ([10]; see [12] for a combinatoric proof) and for countable admissible fragments of $\mathrm{L}_{\infty \omega}$ (see [1]). Other infinitary languages just do not seem to have the property, as was partly shown by Malitz ([13]), who gave counterexamples for languages $\mathrm{L}_{\kappa \omega}$ with $\kappa>\omega_{1}$, and $\mathrm{L}_{\kappa \lambda}$ with $\kappa \geqq \lambda>\omega$.

As a result of this situation attention has been paid to more restrictive forms of interpolation. For strong limits κ with $\operatorname{cf}(\kappa)=\omega$, for instance, Karp ([11]) proved an extension of Craig's theorem to $\mathrm{L}_{\kappa \kappa}$ using the notions of consistency property with respect to ω-chains of structures and ω-satisfiability (introduced in [10]). That is, for $\mathrm{L}_{\kappa \kappa}$-sentences ϕ and ψ with $\vDash^{\omega} \phi \rightarrow \psi$ there exists an interpolating $\mathrm{L}_{\kappa \kappa}$-sentence θ such that $\vDash \phi \rightarrow \theta$ and $\vDash \theta \rightarrow \psi$. Cunningham improved this to $\vDash^{\omega} \phi \rightarrow \theta$ and $\vDash^{\omega} \theta \rightarrow \psi$, using the notion of chain consistency property (see [4]). Ferro introduced the seq-consistency property (see [7]) to prove Cunningham's result and extend it to second-order logic.

This paper concentrates on another approach: that of 'relative' interpolation (i.e., there exists an interpolating sentence, but in a stronger language). Dickmann ([5]) uses Interp $\left(\mathrm{L}_{\kappa \lambda}, \mathrm{L}_{\kappa^{\prime} \lambda^{\prime}}\right)$ to denote the property that for every pair of $\mathrm{L}_{\kappa \lambda}$-sentences there is an interpolating sentence in $\mathrm{L}_{\kappa^{\prime} \lambda^{\prime}}$.

Malitz ([13]) outlines a combinatoric proof of $\operatorname{Interp}\left(\mathrm{L}_{\kappa \omega}, \mathrm{L}_{\left(2^{<\kappa}\right)+}{ }^{+}\right)$for regular κ. For $\operatorname{cf}(\kappa)=\omega$, Friedman ([8]) proves Interp $\left(\mathrm{L}_{\kappa}{ }^{+}{ }_{\omega}, \mathrm{L}_{\left(2^{<\kappa}\right)^{+} \kappa}\right)$. Chang ([2]), using special and ω_{1}-saturated models, proves $\operatorname{Interp}\left(\mathrm{L}_{\kappa}{ }^{+}{ }_{\omega}, \mathrm{L}_{\kappa}{ }^{+}{ }_{\kappa}\right)$ for strong limits κ with $\operatorname{cf}(\kappa)=\omega$, which - although proven independently-is a direct consequence of Friedman's result.

This paper contains a straightforward proof, using only basic modeltheoretic notions, of a somewhat stronger version of $\operatorname{Interp}\left(\mathrm{L}_{\kappa \omega}, \mathrm{L}_{\left(2^{<\kappa}\right)+}{ }^{\alpha}\right)$ for regular κ. It will be shown that this proof can be easily modified to obtain the

[^0]theorems of Friedman and Chang, thus providing a unified method to yield all known relative interpolation results.

Moreover, the reason for the bound $\left(2^{<\kappa}\right)^{+}$is explained in a natural way by this method (a model-construction in the vein of [9]).

2 Relative interpolation Every nonlogical symbol in an $L_{k \lambda}$-formula is in the range of only a finite number of negations. This justifies the definition of positive (negative) occurrence of a nonlogical symbol, i.e. being within the range of an even (odd) number of negations. (A nonlogical symbol can occur positively, negatively, both, or not at all in an $L_{\kappa \lambda}$-formula.)

Atomic formulas and negations thereof are called basis-formulas. $B(\Gamma)$ is the set of all basis-formulas in a set Γ of formulas. A basis-sentence is a basisformula containing no free variables.

A formula is in negation normal form (is an nnf) if it is composed of basisformulas by means of \vee, \exists, \wedge, and \forall. An $n n s$ is an nnf containing no free variables. It is easy to show the following

Lemma 2.1 For every $\mathrm{L}_{\kappa \lambda}$-formula ϕ there exists an $\mathrm{L}_{\kappa \lambda}-n n f \phi^{\prime}$ with the same positive (negative) occurrences of relation-symbols and with the same occurrences of constants as ϕ, such that $\vDash \phi \leftrightarrow \phi^{\prime}$.

For convenience we will make no use of function-symbols, nor of the identity.

Before proving the relative interpolation result for $\mathrm{L}_{\kappa \omega}$ we state a model existence lemma with only 'break-down clauses' (like the 'mixed lemma' in [6]) that exactly meets our requirements:

Lemma 2.2 Let Γ and Δ be sets of nns's of a fragment of $\mathrm{L}_{\kappa \omega}$ for a language $\mathrm{L}(C)$ with C a nonempty set of constants. Suppose the following conditions hold:
(Г1) $\exists x \phi(x) \in \Gamma \Rightarrow \phi(c) \in \Gamma$ for some $c \in C$
(Г2) $\vee \Phi \in \Gamma \quad \Rightarrow \phi \in \Gamma$ for some $\phi \in \Phi$
(Г3) $\forall x \phi(x) \in \Gamma \Rightarrow \phi(c) \in \Gamma$ for all $c \in C$
(Г4) $\wedge \Phi \in \Gamma \quad \Rightarrow \phi \in \Gamma$ for all $\phi \in \Phi$
($\Delta 1$) $\exists x \phi(x) \in \Delta \Rightarrow \phi(c) \in \Delta$ for all $c \in C$
($\Delta 2$) $\vee \Phi \in \Delta \quad \Rightarrow \phi \in \Delta$ for all $\phi \in \Phi$
($\Delta 3$) $\forall x \phi(x) \in \Delta \Rightarrow \phi(c) \in \Delta$ for some $c \in C$
($\Delta 4$) $\wedge \Phi \in \Delta \quad \Rightarrow \phi \in \Delta$ for some $\phi \in \Phi$
(5) $\mathfrak{A}_{0} \vDash \wedge B(\Gamma) \wedge \neg \vee B(\Delta)$ for some model \mathfrak{A}_{0}.

Then $\mathfrak{H} \vDash \wedge \Gamma \wedge \neg \vee \Delta$ for some model \mathfrak{A}.
Proof: Let $\mathfrak{A}_{0}=\left\langle A_{0}, \ldots\right\rangle, A=\left\{c^{\mathfrak{I}_{0}} \mid c \in C\right\}$ and $\mathfrak{A}=\langle A, \ldots\rangle$. Then we have $\mathfrak{A} \vDash \wedge B(\Gamma) \wedge \neg \vee B(\Delta)$. For convenience, we identify constants with their interpretation in \mathfrak{A} (i.e., in \mathfrak{A}_{0}).

By induction on the complexity of the nns ϕ we prove

$$
\begin{equation*}
(\phi \in \Gamma \Rightarrow \mathfrak{H} \vDash \phi) \&(\phi \in \Delta \Rightarrow \mathfrak{H} \vDash \neg \phi) \tag{1}
\end{equation*}
$$

(a) If ϕ is a basis-sentence then (1) holds by $\mathfrak{H} \vDash \wedge B(\Gamma) \wedge \neg \vee B(\Delta)$. Suppose ϕ is not a basis-sentence, and the induction hypothesis is

$$
\begin{equation*}
\text { (1) holds for } \psi \text { with } c(\psi)<c(\phi) \tag{2}
\end{equation*}
$$

where $c(\phi)$ is the complexity of ϕ. We distinguish the following cases:
(b) $\phi=\exists x \psi(x): \exists x \psi(x) \in \Gamma \Rightarrow \psi(c) \in \Gamma$ for some $c \in C \Rightarrow \mathfrak{A} \vDash \psi(c)$ for some $c \in C$ (by (2)) $\Rightarrow \mathfrak{A} \vDash \exists x \psi(x) ; \exists x \psi(x) \in \Delta \Rightarrow \psi(c) \in \Delta$ for all $c \in C \Rightarrow \mathfrak{A} \vDash \neg \psi(c)$ for all $c \in C$ (by (2)) $\Rightarrow \mathfrak{A} \vDash \neg \exists x \psi(x)$ (for $A \subset C$).
(c) $\phi=\vee \Phi: \vee \Phi \in \Gamma \Rightarrow \phi \in \Gamma$ for some $\phi \in \Phi \Rightarrow \mathfrak{H} \vDash \phi$ for some $\phi \in \Phi$ (by (2)) $\Rightarrow \mathfrak{Y} \vDash \vee \Phi ; \phi \in \Delta \Rightarrow \phi \in \Delta$ for all $\phi \in \Phi \Rightarrow \mathfrak{A} \vDash \neg \phi$ for all $\phi \in \Phi \Rightarrow \mathfrak{A} \vDash \neg \mathrm{V} \Phi$ (by (2)).
(d) $\phi=\forall x \psi(x):$ similar to (b).
(e) $\phi=\wedge \Phi$: similar to (c).

Hence $\mathfrak{A} \vDash \wedge \Gamma \wedge \neg \vee \Delta$.
Let $\Gamma \vDash \phi$ (respectively $\phi \vDash \Gamma$) abbreviate $\wedge \Gamma \vDash \phi($ respectively $\phi \vDash \vee \Gamma$) for formulas ϕ and sets of formulas Γ.
Theorem 2.3 Let κ be regular. For $\mathrm{L}_{\kappa \omega}$-sentences ϕ and ψ with $\vDash \phi \rightarrow \psi$, there exists an $\mathrm{L}_{\left(2^{<\kappa)}{ }^{+} \kappa^{-} \text {-sentence } \theta \text { such that }\right.}$
(i) $\vDash \phi \rightarrow \theta$ and $\vDash \theta \rightarrow \psi$
(ii) every relation-symbol occurring positively (negatively) in θ occurs positively (negatively) in both ϕ and ψ
(iii) every constant occurring in θ occurs in both ϕ and ψ.

Proof: From Lemma 2.1 we can assume that ϕ and ψ are nns's. Supposing there is no $\mathrm{L}_{\left(2^{<\kappa}\right)^{+}{ }_{\kappa}-\text { nns } \theta \text { satisfying (i)-(iii) above permits us to construct a model of }}$ $\phi \wedge \neg \psi$.

For this purpose we form two countable chains of sets of nns's

$$
\{\phi\}=\Gamma_{0} \subset \Gamma_{1} \subset \ldots
$$

and

$$
\{\psi\}=\Delta_{0} \subset \Delta_{1} \subset \ldots
$$

and a countable chain of sets of constants

$$
C_{\mathrm{L}}=C_{0} \subset C_{1} \subset \ldots
$$

where C_{L} is the set of all constants in L (the basic set of nonlogical symbols from which we form the languages $L_{\kappa \lambda}$). We can assume that L contains only symbols occurring in either ϕ or ψ, so that $\left|C_{\mathrm{L}}\right|<\kappa$.

It is our intention that $\Gamma=\bigcup_{n \in \omega} \Gamma_{n}, \Delta=\bigcup_{n \in \omega} \Delta_{n}$ and $C=\bigcup_{n \in \omega} C_{n}$ satisfy the conditions of Lemma 2.2, assuring us of the existence of a model of $\wedge \Gamma \wedge \neg \vee \Delta$, and hence of $\phi \wedge \neg \psi$.

First a definition: An $\mathrm{L}_{\left(2^{<\kappa}\right)^{+}}\left(C_{p}\right)$-nns θ separates Γ_{n} and Δ_{m} relative to C_{p} if $\Gamma_{n} \vDash \theta \vDash \Delta_{m}$ and every relation-symbol occurring positively (negatively) in θ occurs positively (negatively) in both Γ_{n} and $\Delta_{m}(n, m, p \in \omega)$; if such a θ does not exist, Γ_{n} and Δ_{m} are inseparable relative to $C_{p} ; \Gamma_{n}$ and Δ_{n} are inseparable if they are inseparable relative to C_{n}.

The construction of the chains is such that for all $n \in \omega$ the following are satisfied:
(1 $\left.1_{n}\right)\left|\Gamma_{n}\right|,\left|\Delta_{n}\right|,\left|C_{n}\right|<\kappa$ and $\Gamma_{n}, \Delta_{n} \subset L_{\kappa \omega}\left(C_{n}\right)$
$\left(2_{n}\right) \Gamma_{n}$ and Δ_{n} are inseparable
$\left(\Gamma 1_{n}\right) \exists x \eta(x) \in \Gamma_{n} \Rightarrow \eta(c) \in \Gamma_{n+1}$ for some $c \in C_{n+1}$ if $n=0(\bmod 8)$
$\left(\Gamma 2_{n}\right) \vee \Phi \in \Gamma_{n} \Rightarrow \eta \in \Gamma_{n+1}$ for some $\eta \in \Phi$ if $n=1(\bmod 8)$
$\left(\Gamma 3_{n}\right) \forall x \eta(x) \in \Gamma_{n} \Rightarrow \eta(c) \in \Gamma_{n+1}$ for all $c \in C_{n+1}$ if $n=2(\bmod 8)$
$\left(\Gamma 4_{n}\right) \Lambda \Phi \in \Gamma_{n} \Rightarrow \eta \in \Gamma_{n+1}$ for all $\eta \in \Phi$ if $n=3(\bmod 8)$
$\left(\Delta 1_{n}\right) \exists x \eta(x) \in \Delta_{n} \Rightarrow \eta(c) \in \Delta_{n+1}$ for all $c \in C_{n+1}$ if $n=4(\bmod 8)$
$\left(\Delta 2_{n}\right) \vee \Phi \in \Delta_{n} \Rightarrow \eta \in \Delta_{n+1}$ for all $\eta \in \Phi$ if $n=5(\bmod 8)$
$\left(\Delta 3_{n}\right) \forall x \eta(x) \in \Delta_{n} \Rightarrow \eta(c) \in \Delta_{n+1}$ for some $c \in C_{n+1}$ if $n=6(\bmod 8)$
$\left(\Delta 4_{n}\right) \wedge \Phi \in \Delta_{n} \Rightarrow \eta \in \Delta_{n+1}$ for some $\eta \in \Phi$ if $n=7(\bmod 8)$.
$\Gamma_{0}=\{\phi\}, \Delta_{0}=\{\psi\}$, and $C_{0}=C_{\mathrm{L}}$ satisfy $\left(1_{0}\right)$ and $\left(2_{0}\right)$: suppose θ separates $\{\phi\}$ and $\{\psi\}$ relative to C_{L}, then $\vDash \phi \rightarrow \theta$ and $\vDash \theta \rightarrow \psi$.

Say $\theta=\theta\left(D_{1}, D_{2}\right)$ where D_{1} (respectively $\left.D_{2}\right)$ is the set of all (less than κ) constants in θ not occurring in ϕ (respectively ψ). Then $\forall E \exists Y \theta(X, Y)$ is an

Suppose Γ_{n}, Δ_{n}, and C_{n} are formed and satisfy (1_{n}) and $\left(2_{n}\right)$.
$\left(\Gamma 1_{n}\right)$: If $n=0(\bmod 8)$, choose a set $C^{\prime}=\left\{c_{\eta} \mid \exists x \eta(x) \in \Gamma_{n}\right\}$ of constants, all different, such that C^{\prime} and C_{n} are disjoint. Take $\Gamma_{n+1}=\Gamma_{n} \cup\left\{\eta\left(c_{\eta}\right) \mid \exists x\right.$ $\left.\eta(x) \in \Gamma_{n}\right\}, \Delta_{n+1}=\Delta_{n}$, and $C_{n+1}=C_{n} \cup C^{\prime}$; then $\left(1_{n+1}\right)$ is satisfied, as well as $\left(2_{n+1}\right)$: Suppose θ separates Γ_{n+1} and Δ_{n+1} relative to C_{n+1}, so that $\Gamma_{n} \cup$ $\left\{\eta\left(c_{\eta}\right) \mid \exists x_{\eta}(x) \in \Gamma_{n}\right\} \vDash \theta \vDash \Delta_{n}$. Say $\theta=\theta(D)$, where D is the set of all constants from C^{\prime} occurring in θ. Then, from the choice of $C^{\prime}, \Gamma_{n} \vDash \exists X \theta(X) \vDash \Delta_{n}$. But
 every relation-symbol occurring positively (negatively) in $\exists X \theta(X)$ occurs positively (negatively) in both Γ_{n} and Δ_{n} on account of the corresponding property of θ, Γ_{n+1}, and Δ_{n+1}, contradicting $\left(2_{n}\right)$.
$\left(\Gamma 2_{n}\right)$: If $n=1(\bmod 8)$, choose $C_{n+1}=C_{n}$. Assertion: there exists a choice-function f for $\left\{\Phi \mid \vee \Phi \in \Gamma_{n}\right\}$ such that $\Gamma_{n, f}=\Gamma_{n} \cup\left\{f \Phi \mid \vee \Phi \in \Gamma_{n}\right\}$ and Δ_{n} are inseparable relative to C_{n}. Suppose the assertion does not hold; i.e., for all such f there exists a θ_{f} separating $\Gamma_{n, f}$ and Δ_{n} relative to C_{n}. Thus, for all such f,

$$
\Gamma_{n} \cup\left\{f \Phi \mid \vee \Phi \in \Gamma_{n}\right\} \vDash \theta_{f} \vDash \Delta_{n}
$$

i.e.,

$$
\Gamma_{n} \cup\left\{\bigwedge_{\vee \Phi \in \Gamma_{n}} f \Phi\right\} \vDash \theta_{f} \vDash \Delta_{n}
$$

Consequently,

$$
\Gamma_{n} \cup\left\{\bigvee_{f} \bigwedge_{\vee \Phi \in \Gamma_{n}} f \Phi\right\} \vDash \bigvee_{f} \theta_{f} \vDash \Delta_{n}
$$

Because of

$$
\bigwedge_{V \Phi \in \Gamma_{n}} \vee \Phi \vDash \bigvee_{f} \bigwedge_{V \Phi \in \Gamma_{n}} f \Phi \quad \text { and } \quad \Gamma_{n} \vDash \bigwedge_{V \Phi \in \Gamma_{n}} V \Phi,
$$

we already have

$$
\Gamma_{n} \vDash \bigvee_{f} \theta_{f} \vDash \Delta_{n}
$$

The cardinality of the disjunction \vee_{f}, i.e. that of the set of possible choicefunctions, is

$$
\left|\prod_{V \Phi \in \Gamma_{n}} \Phi\right| ;
$$

and

$$
\begin{equation*}
\left|\prod_{V \Phi \in \Gamma_{n}} \Phi\right| \leqq \prod_{\Gamma_{n}} \kappa=\kappa^{\left|\Gamma_{n}\right|}=\sum_{\lambda<\kappa} \lambda^{\left|\Gamma_{n}\right|} \leqq \sum_{\lambda<\kappa} 2^{\lambda}=2^{<\kappa}<\left(2^{<\kappa}\right)^{+} \tag{*}
\end{equation*}
$$

by $\left(1_{n}\right)$ and the regularity of κ.
Therefore, $\mathrm{V}_{f} \theta_{f}$ is an $\mathrm{L}_{\left(2^{<\kappa}\right)^{+}{ }_{\kappa}}\left(C_{n}\right)$-nns. If a relation-symbol R occurs positively (negatively) in $\mathrm{V}_{f} \theta_{f}$, say in θ_{f}, then R occurs positively (negatively) in both $\Gamma_{n} \cup\left\{f \Phi \mid \vee \Phi \in \Gamma_{n}\right\}$ and Δ_{n}, and consequently in both Γ_{n} and Δ_{n} (for $f \Phi \in \Phi)$. Therefore, $\mathrm{V}_{f} \theta_{f}$ separates Γ_{n} and Δ_{n} relative to C_{n}, contradicting $\left(2_{n}\right)$.

Take $\Gamma_{n+1}=\Gamma_{n, f}$ and $\Delta_{n+1}=\Delta_{n}$, then $\left(1_{n+1}\right)$ and $\left(2_{n+1}\right)$ are satisfied.
$\left(\Gamma 3_{n}\right)$: If $n=2(\bmod 8)$, choose $\Gamma_{n+1}=\Gamma_{n} \cup\left\{\eta(c) \mid \forall x \eta(x) \in \Gamma_{n} \& c \in\right.$ $\left.C_{n}\right\}, \Delta_{n+1}=\Delta_{n}$, and $C_{n+1}=C_{n}$, then $\left(1_{n+1}\right)$ and $\left(2_{n+1}\right)$ are satisfied: Suppose θ separates Γ_{n+1} and Δ_{n+1} relative to C_{n+1}, so that

$$
\Gamma_{n} \cup\left\{\eta(c) \mid \forall x \eta(x) \in \Gamma_{n} \& c \in C_{n}\right\} \vDash \theta \vDash \Delta_{n} ;
$$

then we already have

$$
\Gamma_{n} \vDash \theta \vDash \Delta_{n} ;
$$

more: θ separates Γ_{n} and Δ_{n} relative to C_{n}, contradicting (2_{n}).
$\left(\Gamma 4_{n}\right)$: If $n=3(\bmod 8)$, choose $\Gamma_{n+1}=\Gamma_{n} \cup \bigcup\left\{\Phi \mid \wedge \Phi \in \Gamma_{n}\right\}, \Delta_{n+1}=\Delta_{n}$ and $C_{n+1}=C_{n}$, then (1_{n+1}) is satisfied on account of

$$
\left|\Gamma_{n+1}\right| \leqq\left|\Gamma_{n}\right|+\sum_{\wedge \Phi \in \Gamma_{n}}|\Phi|<\kappa
$$

(from the regularity of κ); and so is $\left(2_{n+1}\right)$: Suppose θ separates Γ_{n+1} and Δ_{n+1} relative to C_{n+1}; so that

$$
\Gamma_{n} \cup \bigcup\left\{\Phi \mid \wedge \Phi \in \Gamma_{n}\right\} \vDash \theta \vDash \Delta_{n},
$$

then we already have

$$
\Gamma_{n} \vDash \theta \vDash \Delta_{n} ;
$$

more: θ separates Γ_{n} and Δ_{n} relative to C_{n}, contradicting $\left(2_{n}\right)$.
Similarly - but dually, according to the conditions of Lemma 2.2-we enrich Δ_{n} if $n=4(\bmod 8), 5(\bmod 8), 6(\bmod 8), 7(\bmod 8)$. The construction is such that, for all $n \in \omega,\left(1_{n}\right),\left(2_{n}\right),\left(\Gamma 1_{n}\right)-\left(\Gamma 4_{n}\right)$, and $\left(\Delta 1_{n}\right)-\left(\Delta 4_{n}\right)$ hold. We check up on the conditions of Lemma 2.2 for Γ, Δ, and C :
(Г1) $\exists x \eta(x) \in \Gamma$, say $\exists x \eta(x) \in \Gamma_{n}$ for some $n=0(\bmod 8)$. Then $\eta(c) \in \Gamma_{n+1}$ for some $c \in C_{n+1}$, hence $\eta(c) \in \Gamma$ for some $c \in C$.
(Г2) $\vee \Phi \in \Gamma$, say $\vee \Phi \in \Gamma_{n}$ for some $n=1(\bmod 8)$. Then $\eta \in \Gamma_{n+1}$ for some $\eta \in \Phi$, hence $\eta \in \Gamma$ for some $\eta \in \Phi$.
(Г3) $\forall x \eta(x) \in \Gamma$, say $\forall x \eta(x) \in \Gamma_{n}$ for some $n=2(\bmod 8)$. Then $\forall x \eta(x) \in$ Γ_{m} for all $m \geqq n$ with $m=2(\bmod 8)$. Let $c \in C$ be arbitrary, say $c \in C_{p}$. Choose an $m=2(\bmod 8)$ such that $m+1 \geqq p$; then $\eta(c) \in \Gamma_{m+1} \subset \Gamma$.
(Г4) $\wedge \Phi \in \Gamma$, say $\wedge \Phi \in \Gamma_{n}$ for some $n=3(\bmod 8)$. Then $\eta \in \Gamma_{n+1} \subset \Gamma$ for all $\eta \in \Phi$.
($\Delta 1$) $\exists x \eta(x) \in \Delta$, say $\exists x \eta(x) \in \Delta_{n}$ for some $n=4(\bmod 8)$. Then $\exists x \eta(x) \in \Delta_{m}$ for all $m \geqq n$ with $m=4(\bmod 8)$. Let $c \in C$ be arbitrary, say $c \in C_{p}$. Choose an $m=4(\bmod 8)$ such that $m+1 \geqq p$; then $\eta(c) \in \Gamma_{m+1} \subset \Gamma$. ($\Delta 2$) $-(\Delta 4)$ similarly.
(5) Suppose $\wedge B(\Gamma) \wedge \neg \vee B(\Delta)$ has no model, i.e. $\vDash \wedge B(\Gamma) \rightarrow \vee B(\Delta)$. Then the Lyndon interpolation theorem for finitary predicate logic (proposition logic is even sufficient!) provides an interpolating sentence θ for $\wedge B(\Gamma)$ and $\vee B(\Delta)$. So $B(\Gamma) \vDash \theta \vDash B(\Delta)$. From the compactness theorem for finitary predicate logic there are already finite $\Gamma^{\prime} \subset \Gamma$ and $\Delta^{\prime} \subset \Delta$ such that $B\left(\Gamma^{\prime}\right) \vDash \theta \vDash B\left(\Delta^{\prime}\right)$. Then we can choose an $n \in \omega$ such that $B\left(\Gamma^{\prime}\right) \subset \Gamma_{n}$ and $B\left(\Delta^{\prime}\right) \subset \Delta_{n}$, and therefore $\Gamma_{n} \vDash \theta \vDash \Delta_{n}$. But then θ separates Γ_{n} and Δ_{n} relative to C_{n}, contradicting (2_{n}). Consequently, there exists a model $\mathfrak{A}_{0} \vDash \wedge B(\Gamma) \wedge \neg \vee B(\Delta)$.

So Lemma 2.2 provides a model $\mathfrak{H} \vDash \Gamma \wedge \neg \vee \Delta$. In particular, $\mathfrak{H} \vDash \phi \wedge \neg \psi$, contradicting $\vDash \phi \rightarrow \psi$.

Remark: The explanation $\left(^{*}\right)$ for the bound $\left(2^{<\kappa}\right)^{+}$is connected in a natural way to the use of choice-functions for the construction of Γ_{n+1} in $\left(\Gamma 2_{n}\right)$.

Corollary 2.4 Theorem 2.3 remains valid for formulas ϕ, ψ, and θ, and with (iii) extended to free variables.

Proof: Let $A=\{a \mid a$ occurs as free variable in ϕ or ψ; and consider $\mathrm{L}(C)$ where $C=\left\{c_{a} \mid a \in A\right\}$ is a set of constants, all different. If ϕ^{\prime} (respectively ψ^{\prime}) is the sentence that originates from ϕ (respectively ψ) by replacing all free variables a by constants c_{a}, then $\phi^{\prime} \rightarrow \psi^{\prime}$ and Theorem 2.3 provides an interpolating
 θ and $\theta \rightarrow \psi$ if θ originates from θ^{\prime} by replacing all constants c_{a} by variables a.

Lemma 2.5 For κ singular and $\phi \in L_{\kappa^{+} \lambda}$, there exists a $\phi^{\prime} \in \mathrm{L}_{\kappa \lambda}$ such that $\neq \phi \leftrightarrow \phi^{\prime}$.

Proof: By induction on the complexity of ϕ. The only interesting case is $\phi=$ $\bigvee_{\mu<\kappa} \phi_{\mu}$. Let $\operatorname{cf}(\kappa)=\nu<\kappa$, say $\lim _{\gamma \rightarrow \nu} \kappa_{\gamma}=\kappa\left(\kappa_{\gamma}<\kappa\right)$. Then take

$$
\phi^{\prime}=\bigvee_{\gamma<\nu}\left(\bigvee_{\mu<\kappa_{\gamma}} \phi_{\mu}^{\prime}\right),
$$

then $\phi^{\prime} \in \mathrm{L}_{\kappa \lambda}$ and $\vDash \phi \leftrightarrow \phi^{\prime}$.

This result tells us that languages $\mathrm{L}_{\kappa}+{ }_{\lambda}$ and $\mathrm{L}_{\kappa \lambda}$ have the same expressive power if κ is singular. (Hence the demand that κ in $\mathrm{L}_{\kappa \lambda}$ is regular does not restrict us if the axiom of choice is at our disposal, for in that case κ^{+}is regular.)

Next, we show how the proof of Theorem 2.3 can be modified to obtain results by Friedman ([8]) and Chang ([2]), respectively (A) and (B) in the next theorem:

Theorem 2.6 For $\mathrm{L}_{\kappa^{+}}$-sentences ϕ and ψ with $\vDash \phi \rightarrow \psi$, there exists a sentence θ satisfying (i)-(iii) in Theorem 2.3 and
(A) $\operatorname{cf}(\kappa)=\omega \Rightarrow \theta \in \mathrm{L}_{\left(2^{<\kappa)}{ }^{+} \kappa\right.}$
(B) $\operatorname{cf}(\kappa)=\omega \& \kappa$ is a strong limit (i.e., $\left.\lambda<\kappa \Rightarrow 2^{\lambda}<\kappa\right) \Rightarrow \theta \in \mathrm{L}_{\kappa}{ }^{+}{ }_{\kappa}$.

Proof: Let $\operatorname{cf}(\kappa)=\omega$. If $\kappa=\omega$, then $\left(2^{<\kappa}\right)^{+}=\omega_{1}$ and the assertion is the interpolation theorem for $\mathrm{L}_{\omega_{1} \omega}$. If $\kappa>\omega$, then κ is singular. Let ϕ^{\prime} and ψ^{\prime} be $\mathrm{L}_{\kappa \omega}{ }^{-}$ sentences originated from ϕ and ψ as indicated in the proof of Lemma 2.5, so that $\vDash \phi \leftrightarrow \phi^{\prime}$ and $\vDash \psi \leftrightarrow \psi^{\prime}$. Then for (A) it suffices to know that there exists an interpolating $\mathrm{L}_{\kappa}{ }^{+}{ }_{\kappa}$-sentence for ϕ^{\prime} and ψ^{\prime}, for the operation ' does not change the positive (negative) occurrence of relation-symbols or the occurrence of constants. Theorem 2.3 unfortunately does not provide such an interpolating sentence, for κ is singular. However, we can modify the proof of Theorem 2.3 as follows:

Write $\kappa=\bigcup_{n \in \omega} \kappa_{n}\left(\kappa_{n}<\kappa\right)$ and replace $\left(\Gamma 2_{n}\right)$ and $\left(\Gamma 4_{n}\right)$ by the weaker $\left(\Gamma 2_{n}\right)^{\prime} \quad V \Phi \in \Gamma_{n} \&|\Phi|<\kappa_{n} \Rightarrow \eta \in \Gamma_{n+1}$ for some $\eta \in \Phi$ if $n=1(\bmod 8)$ and
$\left(\Gamma 4_{n}\right)^{\prime} \quad \wedge \Phi \in \Gamma \&|\Phi|<\kappa_{n} \Rightarrow \eta \in \Gamma_{n+1}$ for all $\eta \in \Phi$ if $n=3(\bmod 8)$.
Then ($\Gamma 2$) and ($\Gamma 4$) in 2.2 are warranted: in the end, all $\vee \Phi \in \Gamma$ and $\wedge \Phi \in \Gamma$ come in for their turn because of $\kappa=\bigcup_{n \in \omega} \kappa_{n}$.

The construction of $\left(\Gamma 2_{n}\right)^{\prime}$ is like that of $\left(\Gamma 2_{n}\right)$; however, we can restrict the set of choice-functions to

$$
\prod_{\substack{\backslash \Phi \in \Gamma_{n} \\|\Phi|<\kappa_{n}}} \Phi
$$

and

$$
\left|\prod_{\substack{\vee \Phi \in \Gamma_{n} \\|\Phi|<\kappa_{n}}} \Phi\right| \leqq \prod_{\Gamma_{n}} \kappa_{n}=\kappa_{n}^{\left|\Gamma_{n}\right|} \leqq 2^{<\kappa}<\left(2^{<\kappa}\right)^{+},
$$

which is the desired inequality.
In the case of $\left(\Gamma 4_{n}\right)^{\prime}$ we observe that

$$
\left|\Gamma_{n+1}\right| \leqq\left|\Gamma_{n}\right|+\sum_{\substack{\hat{\Phi} \in \Gamma_{n} \\|\Phi|<\kappa_{n}}}|\Phi| \leqq \kappa
$$

is still guaranteed.

Similar arguments hold for $\left(\Delta 2_{n}\right)^{\prime}$ and $\left(\Delta 4_{n}\right)^{\prime}$.
(B) is implied by (A): $2^{<\kappa}=\kappa$ for strong limits κ.

Notice that (A) and (B) in Theorem 2.6 are both generalizations of the interpolation theorem for $\mathrm{L}_{\omega_{1} \omega}$-with which they coincide for $\kappa=\omega$ (although, in that case, the proof of Theorem 2.6 does not work) - unlike Theorem 2.3, which for $\kappa=\omega$ provides an interpolating sentence in $\mathrm{L}_{\left(2^{\omega}\right)}{ }^{+} \omega_{1}$.

REFERENCES

[1] Barwise, J., Admissible Sets and Structures, Springer-Verlag, Berlin, 1975.
[2] Chang, C. C., "Two interpolation theorems," Symposia Mathematica INDAM, vol. 5 (1971), pp. 5-19.
[3] Craig, W., "Three uses of the Herbrand-Gentzen theorem in relating model theory and proof theory," The Journal of Symbolic Logic, vol. 22 (1957), pp. 269-285.
[4] Cunningham, E., "Chain models: applications of consistency properties and back-and-forth techniques in infinite-quantifier languages," pp. 125-142 in Infinitary Logic, in memoriam Carol Karp, Springer-Verlag, Berlin, 1975.
[5] Dickmann, M. A., Large Infinitary Languages, North-Holland, Amsterdam, 1975.
[6] Doets, H. C., "Notes on admissible model theory," Report, University of Amsterdam, 1983.
[7] Ferro, R., "Seq-consistency property and interpolation theorems," Rendiconti del Seminario Matematico dell' Università di Padova, vol. 70 (1983), pp. 133-145.
[8] Friedman, H., "The Beth and Craig theorems in infinitary languages," unpublished, 1970.
[9] Henkin, L., "An extension of the Craig-Lyndon interpolation theorem," The Journal of Symbolic Logic, vol. 28 (1962), pp. 201-216.
[10] Karp, C., Languages with Expressions of Infinite Length, North-Holland, Amsterdam, 1964.
[11] Karp, C., "Infinite quantifier languages and ω-chains of models," pp. 225-232 in Proceedings of the Tarski Symposium, American Mathematical Society, Providence, 1974.
[12] Lopez-Escobar, E. G. K., "An interpolation theorem for denumerably long sentences," Fudamenta Mathematicae, vol. 57 (1965), pp. 253-272.
[13] Malitz, J. I., "Infinitary analogs of theorems from first order model theory," The Journal of Symbolic Logic, vol. 36 (1971), pp. 216-228.

Mathematical Institute
University of Amsterdam
Amsterdam, The Netherlands
presently at:
Elsevier Science Publishers
Amsterdam, The Netherlands

[^0]: *I am indebted to H. C. Doets for helpful suggestions and to the referee for drawing my attention to the work of Ferro and Cunningham.

