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Simplicity

VICTOR PAMBUCCIAN

/ Introduction A fairly common practice in today's mathematics is to intro-
duce a theory by giving' a first-order language (with a denumerable set of indi-
vidual variables) L = L(F,R,r) (where F and R are two finite collections of
symbols, the former called function- or operation-symbols, the latter predicate-
or relation -symbols; r: F U R -> IN is a function assigning to each symbol a nat-
ural number, its 'arity') and a set Σ of sentences in L. This is done with the aim
of introducing special structures for L, called models. A structure 21 for L has
the following components ([55]):

(i) a nonvoid set u(2l)> called the universe of 21
(ii) for a l l / G F an r(/)-ary function f%: u(2I)/'(/) -> u(2ί)

(iii) for all R E R an r(i?)-ary relation R^ on u(2ί), i.e. R% c u(2ί)Γ (* }.

A structure 21 for L is called a model of a set Σ of sentences in L iff all
a G Σ are true in 21 (see [73], [75] for the meaning of 'true').

For example, in Group Theory, 8, F = [μ], R = 0 , r{μ) = 2, Σ = {A,B},
where

A Vxyz μ(Xμ(yz)) = μ(μ(xy)z)
B 3eVx3x' μ(ex) = x Λ /Λ(Λ 'X) = e.

In most cases Σ is required to be either finite or recursive (see [24] for a def-
inition of this term) and is referred to as an axiom system (AS).

The reasons for accepting these sentences as 'axioms' have been an issue
ever since. The conservative view is that of Aristotle, who claims that the axioms
must be known by an infallible intuition (Analytica posteriora II. 29, 100b6).
From this point of view, these days, both mathematicians and philosophers
attack (sometimes, [14], most violently) the formalist point of view, that the
AS —as well as the language, i.e. the collections F and R —may be freely cho-
sen, subject to the modest requirement of consistency, i.e. noncontradiction. If
this sort of criticism comes from an intuitionist, to whom a theory is not con-
structed within a logical system, but by a creative cognitive process (close to what
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is called (e.g. in [12]) the genetic method), we should accept his point of view
just because it corresponds to the facts, and thus is true, according to Tarski's
([73], [75]) definition of truth. Let's get down to facts: mathematics was built
up by the genetic method, so its historical roots have nothing to do with the
'axiomatic method' (see [12], [17], [61]-[64]). At the origin of geometry, we do
not find axioms; understanding space does not mean producing axioms (see
[30]). Moreover, it lies in the very nature of the foundations that they don't come
first, but last. "Denn es liegt im Wesen der Fundamente, daβ sie nur im Rύck-
schauen von dem aus, was auf ihnen beruht, sichtbar werden kόnnen", writes
Hartmann [21].1 We have no example of any interesting mathematical theory
that came into being axiomatically "out of nothing".

To the intuitionist, AS's may have no (or, [25], a very restricted) meaning;
we do not polemize with him, since he doesn't accept classical logic as well.
Moreover, for Brouwer ([6]), Euclidean geometry, as it stands, is contradictory.

Asking for the 'right' axioms, i.e. not for freely chosen axioms but for
axioms 'revealed' by some 'infallible intuition', in order to deduce a theory from
that AS with the aid of classical logic, implies that one does not know the con-
sequences of (at least some of) the axioms, thus maintaining the fiction of
axioms miraculously producing a very interesting theory.

Since there can be no such thing as 'the right AS', one may wonder whether
there is any requirement —besides consistency —imposed on an AS. For Tarski
([74]), "No fundamentally theoretical considerations decide upon the choice of
a system determined by primitive terms and axioms among all equivalent sys-
tems: the reasons are rather of a practical educational and even aesthetical
nature". We shall insist, in the present article, only on those of an aesthetical
nature, being concerned with the simplicity of the AS's and of the languages (the
"primitive terms") in which these are expressed.

Some will think this a bogus problem, because a 'simpler' AS does the same
job as a more 'complicated' one; moreover, for its 'classroom user' it most often
becomes much more difficult to arrive at the 'results' of that theory if one pre-
fers a 'simpler' AS to a more 'complicated' one. However, there are about one
hundred papers and books (over a period of eighty years) which deal with 'sim-
plifications' of Hubert's ([27]) AS for Euclidean geometry, therefore some
mathematicians do look at the problem of simplicity seriously. In all these papers
the concept of 'simplicity' is a relative one, the proposed AS's being simpler than
another AS; in any such case it is easy to establish that one is simpler than the
other (their authors either 'weaken' —by replacing an axiom by a particular
instance of it —one or more axioms or prove that one is superfluous). What is
the aim of these simplifications? That is, where does one stop? When is an AS
most simple, not significantly simplifiable any longer? In order to provide an
answer to these questions, we must have an absolute criterion of simplicity.

For clarity's sake, we shall restrict our attention to the case of first-order
AS's, for which we shall provide several simplicity criteria, tested on Euclidean
Geometry (EG) and Group Theory (GT).

Hubert's ([27]) second-order AS for Euclidean space-geometry intends to
describe a unique model, namely the Cartesian three-dimensional space con-
structed over the field of real numbers, ©3(1R). By a curious property of first-
order logic, called the Lόwenheim-Skolem theorem (a first-order theory having
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an infinite model, has models in all infinite powers), the above 'categoricity' ideal
is unattainable within any first-order language. The first first-order axiomati-
zation of Euclidean geometry was given by Tar ski ([79]) and will be dealt with
in the next paragraph.

2 LBΣΓaxiomatization of Cartesian spaces The n-dimensional Cartesian

space over an ordered field F is the following structure:

6n(F) = (Fn,BF,DF)

where

B F = {(a,b,c) G (Fnγ\lt<ΞF9 0 < t < 1, a - b = t(a - c)}

and

DF = \(a9b9c9d) G (F«)4 Σ (at - bt)
2 = Σ ^ ' dΛ

L ι = l ι = l J

First-order n-dimensional Euclidean geometry (or simply "elementary
geometry" [79]) may be naturally defined as 8£ = ThLBDSn(IR), where L B D =
L(F,R,r), with F = 0, R = {£,£>}, τ(B) = 3, r(D) = 4, and 6B(abc)\ 'D^abcd)9

may be read 'b lies between a and c* and 'a is as distant from b as c is from d'
(or alternatively 'the segment ab is equal in length to the segment cd9) respec-
tively. By ThLβD6n(R) we mean *the theory containing all the LBD-sentences
true in 6n(IR)'. An AS for δ£ is the following (a variant of the AS in [79], to
be found in [69]):

Al Vabc B(abc) -+ B(cba)
A2 Vabcd B(abd) Λ B(bcd) -> B(abc)
A3 VabD(abba)
A4 Vabc D(abcc) -+ (a = b)
A5 vabcdef D (abed) Λ D (abef) -> D (cdef)
A6 Vabca'b'c'pp' ^{a = b) ΛB(abc) ΛB(a'b'c') /\D(aba'b') ΛD(bcb'c') Λ

D{papfa') Λ D{pbp'b') -» D{pcp'c')
A7 Vpacdlb B (pab) Λ D (ύ*α/)
A8 Vαc3fe fi(flr6c) Λ D(abbc)
A9 vabcdelf B(Z?α/) ΛB(cea)-+B(fed) ΛB(bfa)

A10 3α6c ~"(B(abc) v £(£θ7) v B(cab))
All Vabcpq ""(/? = ̂ r) t\D(apaq) /\D(bpbq) AD(cpcq)-^B(abc)y B(bca)v

B(cab)
All Vabclp ~"(B(abc) v £(6cα) v B(cab)) -> D(papb) Λ D(papc)
A13 All sentences of the form

vt w... {3zVxy[φΛ ^-*Λ(zJiζy)] -•
3wvxy[φ Λ ^ £(xwy)]}

where φ stands for any formula in which the variables x, v9 w,... but nei-
ther y nor z nor w, occur free, and similarly for ψ, with x and .y inter-
changed.
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A13 is an axiom schema, containing infinitely many axioms. Tarski ([79]) and
Montague ([43]) proved that δή' (n > 2) is not finitely axiomatizable. An AS for
δn is obtained by a suitable replacement of the dimension axioms A10 and
All. Tarski also states ([79]) and proves ([57]) the following

Representation theorem Wl E Mod(δn) iffWl- £n(F), where F is a real
closed field (see [80] for a definition).

A great deal of traditional Euclidean geometry can already be done in
δ 2 = Cn(Al-A12); however, the sentence 'the circle, drawn with radius greater
than the distance from its center to a given line, intersects that line' does not
belong to δ 2 . A theory in which all elementary (straightedge and compass) con-
structions can be performed is δ 2 = Cn(Al-A8, A9i, A10-A12), with

A9! Vabcdle B(abc) -* B{dbe) Λ D{aeac).

The representation theorems for δ 2 and δ 2 are

(i) m E Mod(δ2) iff3Jl- 62(F), where F is a Pythagorean ordered field
(ii) 3DΪ e Mod(δ2) iffWl^ ©2(F), where F is a Euclidean ordered field.

An ordered field is called Pythagorean if

Vxyaz x2 + y2 = z2

and Euclidean if

Vx3jx> 0-+ x = y2.

There is, of course, no specific reason for accepting 'points' as individual
variables and the two relations 'Betweenness' and Έquidistance' as undefined
notions for EG. One may put forward other collections F and R and the
interpretation of the individual variables may be other than 'points'. How does
one decide that those AS's axiomatize EG?

Suppose that, given two theories, 3i and 32, we want to decide whether
they describe the 'same' phenomena or not, to put it differently, whether they
are 'equivalent'. If the intended interpretation of the individual variables is the
same (e.g. 'points') both in 3X and 32, then their 'equivalence' is called "syn-
onymity"; it was defined by de Bouvere ([9], [10]); if different (e.g., 'points' and
'lines'), then their 'equivalence' is called "mutual interpretability", as defined by
Szczerba ([67]).

Given any AS Σ in a language L, we should, in principle, be able to tell
whether CnL(Σ) is either synonymous or else mutually interpretable with any of
the δ's (or with Q), therefore whether it might be regarded as an AS for EG (or
for GT). There also is, as pointed out by Prazmowski ([51]), a group-theoretical
way to see that a theory is equivalent to one of the δ's.

3 Simplicity criteria A most natural requirement—going back to William of
Ockham's "razor" (uFrustra fit per plura quod potest fieri per pauciora") —is
that each axiom in a finite AS is independent of all the remaining ones.2 Such
an AS will be called completely independent. Completely independent AS's may
often be 'simplified' by replacing an axiom with a special instance of it. We do
not know whether the AS proposed for δ 2 is completely independent or not
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(completely independent AS's for δ 2 , δ 2 , a n ^ £2 m a y be found in [54], [47],
[20]), but A7, although independent of the remaining axioms, may be replaced
(see e.g. [46]) by its Special instance'

A7' Vpad 1b B(pab) Λ D(abad).

50 complete independence is a necessary yet insufficient criterion for simplicity.
Given as AS Σ = {A l 5 A 2 , . . .}, how can we check that Σ is completely

independent, or equivalently, how can we check whether an axiom A[ E Σ is (or
isn't) independent of Σ A i : = Σ\{Ai}? A classical way to do this is to provide an
independence model for A i f i.e. a model for ΣA. and -lAi. Unfortunately, there
is no general method for constructing independence models, therefore their con-
struction relies largely on how lucky we are in our obscure search for them. Even
worse, if Ai happens to depend on ΣA., the search is doomed to futility from
the very beginning. If Σ is infinite, there is no issue. If, however, Σ =
{A!,A2,. . . ,Anj, then Ai is independent of ΣA. iff /\ Aj -> Ai is not a taut-

ology. The algorithmic solution of such problems is dealt with in [4], [7], [13],
[38], [82], but in most cases of practical interest the number of steps to be per-
formed in order to get an answer is discouragingly large.

(a) Syntactical criteria
The first two criteria apply only to finitely axiomatizable (f.a.) theories. The

first, due to Weaver ([81]), is:
An f.a. theory 3 (in L) has (l)-simplicity degree m if m is the least integer

for which there exists an AS for 3, all of whose axioms contain no more than
m individual variables. Such an AS will be called (l)-simple.

δn has (l)-simplicity degree 5 for n = 2 and n + 2 for all n > 3. δ 2 has (1)-
simplicity degree 6. The corresponding (l)-simple AS's were proposed in [46].
Any theory with F = 0 , which is synonymous with δ^ (n > 3), must necessar-
ily have (l)-simplicity degree >n + 2 (see [59], [20]), but there is a theory, syn-
onymous with δ 2 , with (l)-simplicity degree 5 (see [46]). For an f.a. theory 3
in L with F = 0 one can (at least in principle) find its (l)-simplicity degree by
listing all /-variables sentences in 3 (there are finitely many such sentences be-
cause of F = 0 ) for / = 1,2, The first / for which these constitute an AS

for 3 is its (l)-simplicity degree and those sentences constitute (after eliminat-
ing redundant ones) a (l)-simple AS for 3.

The (l)-simplicity degree of S is 3 (a (l)-simple AS being {A,B}), since all
the 2-variables sentences in g are true in 2JΪ = (u(90ΐ),μs^), where \x(W) = N and
μ<w(ab) = I a - b\, and 3D? is not a group. GT may also be axiomatized by a
ternary relation S instead of μ (with S(xγz) «- μ(xy) = z), i.e. R = {S}9 F =
0 and r(S) = 3, with the following AS:

51 vxyizvz' S(xyz) Λ (S(xyz') -* (z' = z))
52 Vxyztuυ S(xyt) Λ S(yzv) Λ S(tzu) -> S(xυu)
53 Ξevxix' S(exx) Λ S(x'xe).

g ' = Cn(Sl-S3), which is synonymous with g, has (l)-simplicity degree 6, since
all the 5-variables sentences in g ' are true in W = (u(W),Sw), where u(aW') =
N, Sm> = I(x9y9z)\x9y9z G N , z = | JC - y\}. An f.a. theory may also be axioma-
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tized by a single sentence (obtained, e.g., by forming the conjunction of all the
axioms of one of its finite AS's); hence the second criterion:

An f .a. theory 3 is said to have (2)-simplicity degree m if m is the least integer
for which there is a sentence σ, containing m variables, such that Cn(σ) = 3.

The (2)-simplicity degree of S2 and δ 2 is 6 and (2)-simple sentences
axiomatizing them can be found in [46]. To prove that there is no single
5-variables sentence to axiomatize δ£ we made use of a model-theoretic char-
acterization of those theories which are axiomatizable by a single ra-variables
sentence (to be found in [71] and [41], p. 325). The (2)-simplicity degree of 8
is 4, the (2)-simple sentence being

7. ValbVcd μ(aμ(ba)) = a A (μ(aμ(ca)) = a ->
(c = b)) Λ μ(aμ(cd)) = μ(μ(ac)d).

For Cn(γ) = 8, see [22]. No single 3-variables sentence can axiomatize 8; for,
if the 3-variables sentence contains at least one 3-quantifier, it is true in 3D?; if
it contains no 3-quantifier, it is true in Tl\ = (11(3^1),/%^), u(2fti) = N,
μςmι (xy) = x + y, both not groups.

These two simplicity criteria apply only to f.a. theories, so they are of no
use to those which are known to be non-f.a., e.g. &2. According to Kleene's
([33]) result (improved in [78] and [8]), however, any axiomatizable theory 3 hav-
ing infinite models is finitely axiomatizable using additional predicates (f.a.+).
A theory 3 in L is called f.a.+ if there is a theory 3' in L' = L'(F,R',r'), R' 3
R> r ' I RUF = r, such that 3' is f.a. and an arbitrary sentence in L is in 3 iff it is
in 3'. It is always possible (see [78], [8]) to take R = R U {P}, r'(P) = 2. Since
the proof of this theorem is 'nonconstructive', we do not know any finite AS
for (82)', nor what the interpretation of the binary predicate P should be in this
case.

We obtain another syntactic 'beauty-criterion' by stipulating that all the
axioms should have —when written in prenex form (which means 'quantifiers
first') —a specific arrangement of the V- and 3-quantifiers. One may, for exam-
ple, be interested in avoiding 6ίontological commitments" (i.e. the 3-quantifier),
therefore demanding that the AS should contain only universal axioms. For the-
ories 3 in L (with F = 0 ) Tarski ([77]) gave the following model-theoretic char-
acterization:

3 is axiomatizable by a universal AS iffMod(3) is closed under substruc-
tures (i.e., iff (81 G Mod(3) Λ 93 c a) -* 33 E Mod(3)). If 3 happens to be f.a.,
then it is axiomatizable by a single universal sentence under the same conditions
as those above.

This result does not apply to 9> which, nevertheless is not axiomatizable
by a universal AS, all the universal sentences in 8 being true in Sftj. None of
8',8n>£n>£n (n > 2) are closed under substructures, so they are not axiomatiz-
able by universal AS's. Nevertheless, EG is axiomatizable by a universal AS, i.e.
there are two theories JCδ2 and 3C&2, synonymous with δ 2 and δ£ respectively,
which are axiomatizable — in languages without predicate symbols — by a finite
number of universal axioms. The news was reported in 1968 by Moler and
Suppes ([42]). Some minor mistakes in [42] were corrected by Seeland ([60]), who
also gave the first universal AS for KE>2- The language for 3Cδ2 has R = 0 ,
F = {ao,aua2,SJ)C}i r(a0) = r(ax) =τ(a2) = 0(i.e., aθ9aua2 are individual
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constants), r(S) = r(/) = r(C) = 4, the one for 3Cδ2 is the same, but without
ίC\ The 'intuitive meaning' of them is:

for I(xyuv) = w, 6w is the point of intersection of the lines xy and uv, pro-
vided that "((« = v) v (L(xyu) Λ L( cyι )) v Par(xyuv)), otherwise arbi-
trary' (here L(abc) stands for B(abc) v B(bca) v B(cab) and Par(xyuv)
means that the lines xy and wu are parallel);

for S(xyuv) = w, 'the point w is as distant from u on the ray uv asy is from
x9 provided that ^(u = v) v (u = v AX = y), otherwise arbitrary';

for C(xyuv) = w, 'w zs the point of intersection of the circle with center x
that passes through y with the segment uv, provided that xφy and u lies
inside and v outside that circle, otherwise arbitrary'.

GT, too, is axiomatizable, in a language with R = 0 , F = {/}, r(/) = 2,
by a universal AS. This news was reported earlier, in 1952 (in [26]; see also [36]
for a like-minded result). The axioms are:

HN1 vxyz(x/z)/(y/z)=x/y
HN2 vxy(x/x)/((y/y)/y)=y,

where x/y stands for /(xy) and 'means' (in the notations below) μ{xf(y)).
Any axiomatizable theory may be axiomatized, using some additional func-

tion symbols —via skolemization —by a universal AS. 3€δ2 and 3Cδ2 have the
advantage — over the skolemized δ 2 and S^ — of being expressed in a language
with R = 0 . The theory obtained by skolemizing g is expressed in a language
with R = 0, F = iej,μ], with τ(e) = 0, r(/) = 1, r(μ) = 2, with A and

Bs Vx μ(ex) = x Λ μ(f(x)x) = e

as axioms.
Another kind of AS we may be interested in is the AS all of whose axioms

are V3-sentences, i.e., all V-quantifiers (if any) precede all 3-quantifiers (if any).
A theory will be called inductive if it is axiomatizable by such an AS. For lan-
guages with F = 0, we have the following model-theoretic characterization of
inductive theories (see [37]):

3 is inductive (#*Mod(3) is closed under monotone countable unions (i.e.,
(vn G IN 2ίn E Mod(3) Λ 2ίn c 2ίn+1) -* (J «n e Mod(3)).

neN

The axioms we stated for δ 2 and 8 2 are all V3-axioms, but A13 is not an
V3-axiom. However, Mod(δ2) is closed under monotone countable unions,
therefore δ 2 is inductive; it would be of interest to find a V3-AS for δ 2 ?

Both 8 and 8' admit V3-AS's, which can be easily obtained by conveniently
expressing the axioms proposed in [22].

Szmielew in [70] (see also [48]) gave an example of a noninductive theory,
which is synonymous with an inductive one.

What if—perhaps influenced to some extent by [19] —we want to have a
positive AS, i.e. an AS all of whose axioms are 'positive' (that is, they contain
the logical symbols Λ,V,V,3, but not ->,->,<-•)? The answer was given by Lyn-
don ([39]):
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3 is axiomatizable by a positive AS iff Mod(3) is closed under homo-
morphic images (i.e., (21 E Mod(3) Λ h: 21 -> 33 onto homomorphism) -•
33EMod(3)).

Unlike 9, none of δn,δn,δn,S' a r e axiomatizable by positive AS's.
A Horn sentence (see [28], [18]) is a conjunction of sentences of the form

θι v0 2 v. .v θn

where all the θ{ (except at most one, which may be an atomic formula) are
negated atomic formulas. Galvin ([18]) proved the following model-theoretic
characterization of theories admitting a finite AS, all of whose axioms are Horn
sentences:

3 is axiomatizable by a Horn sentence (or equiυalently, by finitely many
Horn sentences) ///*Mod(3) is closed under reduced products (i.e., (Vi E
I 2li E Mod(3) Λ D filter over I) -* Π % E Mod(3), in the notation of [15]).

iGD

Since the classes of models of δ n ,δ n are not closed under direct products,
they are not axiomatizable by finitely many Horn sentences, whereas the AS's
proposed for both g and Q' consist of Horn sentences.

(b) Language-simplicity criteria
The problem we are interested in regards the simplicity of primitive notions,

i.e., of the collections F and R. Let 3 be a first-order theory in a language L with
Γ = 0 and let [3] be the class of those theories —in languages with F = 0 —
which are synonymous with 3. A finite collection R consisting of the predicate
symbols of the language L(R,r) for a theory in [3] will be called minimal (ac-
cording to Lindenbaum [35]) if, for any other language L(R',r') for a theory in
[3], we have

maxr(2?) < max x'(R')
/?€R R'GR'

and, in case of equality, also |R| < |R'|.
For 3 = δn (or δ n , or δn, with n > 2), there is no theory in [3], with col-

lection of predicates consisting of binary predicates only, since both 6B' and 6D\
unlike nontrivial binary predicates (see [66], [53]), are invariant to similarities,
therefore 'B9 and iD9 cannot be defined in terms of binary predicates. Robin-
son ([53]) proved the stronger result: "There is no theory, synonymous with
"Uδn (n > 2), written in a language with binary predicates only; the language
for ^ has F = 0, R = {B, A U) and Ίlδ^' = Cn(6£, Ul - U3), where

Ul y/xy U(xy)
U2 Vxyzt U(xy) Λ U(zt) -> D(xyzt)
U3 vxyzt U(xy) Λ D(xyzt) -> U(zt)."

Unlike Euclidean and hyperbolic geometry, elliptic geometry is axiomatiz-
able using a single binary predicate with 'points' as individual variables (see [53]).

Each of {/},{/},{//},{S] are minimal collections of predicate symbols for
both [δn] and [δή], whereas {J} is also a minimal collection for [δn] (with n >
2). 7 ' was introduced by Pieri [49] (see also [53]) with I(xyz) ~ D(xyyz); V
and Ή' by Tarski ([76]) (see also [58]) with 'J(xyz)' iff 'the distance between
x and y is less than the distance between y and z' and H(xyz) <-+ (I(xyz) v
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I(yzx) v I(zxy)) Λ ~"((X = y) v (y = z) v (z = x)); 'S9 by Scott ([58]), with
'S(xyz)' iff %y,z are (in any order) the vertices of a rectangular triangle'. [E]
is a minimal collection for both [δή'] and [δή] (with n > 3), where E(xyz) «->
D(xyyz) ΛD(yzzx) Λ ̂ ((X = y) v (j> = z) v (z = x)); it was introduced in [3].

Although axiomatizable by ternary predicates among joints', first-order
EG is —unlike the elementary theory of real closed fields, which is mutually
interpretable with the δ"'s — not axiomatizable by individual constants and
binary operations on 'points', as shown in [45] (see also [16], pp. 77, 80 and [57],
p. 343).

One recalls that the concept of 'synonymity' is too narrow to express the
fact that two theories axiomatize the 'same' mathematical structure. Hubert's
([27]) EG has three kinds of individual variables (for 'points', 'lines' and 'planes')
and therefore, if expressed in a first-order language (as in [45]), is not synony-
mous with δ£.

Huntington ([29]) proved that second-order EG of dimension >3 is
axiomatizable in a language with a single binary predicate R, the individual vari-
ables and 'R(ab)' having the interpretation 'closed balls' {"solidspheres") and
'a inside ofb\ respectively. The same result, for first-order EG, was proved by
Tarski ([72], [75]), with individuals being interpreted as 'open balls' and by
Jaskowski [31] for 'closed balls'. 'Lines' as individual variables and R = {_L,X},
F = 0, r(J_) = r(x) = 2, with '_L (ab)' and 'x(ab)' meaning 'a and b are per-
pendicular and they intersect' and 'a intersects b' respectively, can axiomatize
n-dimensional EG over Euclidean fields, with n > 3 (cf. [56]), each of 'J_' and
'x ' being undefinable from the other for n = 3 (as shown in [34]; see also [2]),
whereas 'x ' is superfluous (being definable from Ί') for n > 4, so the single
binary predicate '±' suffices for n > 4 (cf. [56]). Plane EG with a universe of
'lines' cannot be axiomatized using only binary relations; a ternary relation on
'lines' is necessary ([56]); it is axiomatizable with R = {JL,x}, F = 0, r(x) =
3, with 'x (abc)' meaning 'α, b, and c intersect at a single point'. Makowiecka
[40] proved that EG (of any dimension >1) over real closed fields may be
axiomatized using a single symmetric binary relation between individuals to be
interpreted as 'segments'. Prazmowski ([50]) proved that plane EG over Euclid-
ean fields can be axiomatized with a single binary predicate 'T' among individ-
uals to be interpreted as 'circles', 'T(ab)' standing for 'a is tangent to b\

One sees that the results obtained for our δ's can be improved by consider-
ing theories where individual variables have other 'intended interpretations';
instead of minimal collections consisting of one ternary predicate symbol, we
get minimal collections containing one binary predicate symbol. This is the best
result one may ever expect to obtain, since there is no nontrivial unary predicate.

'Circles' as individual variables may appear quite an artificial choice, but,
according to Zeuthen ([83], p. 123), to the Greek they were primitive figures.

{S} is a minimal collection for 9'> for, according to Lindenbaum ([35])
even Abelian groups cannot be axiomatized by binary relations.

(c) Semantical criteria
Unlike the syntactical criteria, which were thoroughly studied, no work has

been done on the semantical ones; therefore this paragraph consists of nothing
but open problems.
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One of the first simplicity criteria for AS's (which we shall state in a mod-
ified [45] version) was proposed in 1935 by Helmer ([23]). According to this one,
each axiom should have "as little content as possible". Let Σ be an AS for 5, A
an axiom in Σ, written in prenex form Qi*iQ2*2 Qn ̂ n«> the Qj's being
either V or 3 and a quantifier-free, with free variables xi9x2,...9xn.A will be
called primary iff for all sentences B and C,

(Cn(Σ) = Cn(ΣA, B Λ C) Λ C £ Cn(ΣA,B) Λ B <£ Cn(ΣA,C)) -*
3PP((B ~ A V P ) Λ ( C ~ A V "T)) v ((B ~

Q l * l Q 2 * 2 . . . Q n * n < * V p ) Λ ( C «-> Q j XX Q2X2 •• Q n * n « V " p ) ) ,

where P is a sentence and p is a quantifier-free formula, with free variables
among the Jti's. if A Λ A' is a primary axiom in (Σ\{A,A'}) U ( A Λ A ' J , where
A G Σ , A ' G Σ , then the two will be called conjugate axioms. A finite AS will
be called (3)-simple if all its axioms are primary and there is no couple of con-
jugate axioms among them.

We do not know whether our AS for δ 2 is (3)-simple or not; the one for
S2 is not (3)-simple because A9j is not primary in that AS (see [69]). Nor is the
AS for 9 (or g') (3)-simple, since B has a nontrivial decomposition in (see [80]):

Bl Vablx μ(xa) = b
B2 vablx μ{ax) = b,

i.e., Cn(A,Bl,B2) = Cn(A,B), Bl £ Cn(A,B2), B2 £ Cn(A,Bl). I conjecture that
{A,B1,B2} is (3)-simple. The AS for the betweenness relation on a line, proposed
in [70] is an example of a (3)-simple AS.

The criterion we are going to propose applies only to complete theories,
δn, for example, is complete (see [79], [57]) and Cn(ΣA12), where Σ = (Al-
A13} has just two possible complete extensions (completions): Z2 and 3C2

(complete hyperbolic two-dimensional geometry) (see [68], [79]). To ask the same
phenomenon to happen to all axioms seems quite restrictive, since Cn(ΣA11)
obviously has infinitely many completions, although we may replace A10 and
All with two axioms A10' and A1Γ, stating that the dimension is one or two,
respectively two or three, in order to have both Cn(ΣA 1 0) and Cn(ΣA 1 1) with
only two possible completions; but A10' and A1Γ could hardly be called sim-
pler than A10 and All.

According to a theorem by Lindenbaum (see [11]), every consistent theory
has a completion. A complete theory 3' will be called a finite completion of 3
if 3' = Cn(3 U {σ}), for some sentence σ. Let α(3) be the cardinal number of
the set of all finite completions of 3 and n(3) the cardinal number of all other
completions of 3. There are four distinct categories of consistent theories (see
[11], [44]):

(a) essentially incomplete (α(3) = 0, n(3) = 2*°);
(b) almost essentially incomplete (0 < α(3) < Ko, n(3) = 2*°);
(c) virtually complete (0 < α(3) < Ko, n(3) = 0);
(d) ^-incomplete (α(3) = Ko, 0 < n(3) < Ko).

Our new simplicity criterion is (see [45]):
An AS Σ for a complete theory 3 will be called (4)-simple if Cn(ΣA) is

either virtually complete or K0-incomplete, for all A E Σ (i.e., n(Cn(ΣA)) < Ko).
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Σ = {A1-A13} is not a (4)-simple AS for 82 . For, although α(Cn(ΣA12)) =
2, n(Cn(ΣA12)) = 0, α(Cn(ΣA10)) = 3, n(Cn(ΣA10)) = 0, α(Cn(ΣA11)) = Ko,
n(Cn(ΣA11)) = 1 (see [59]), we have, according to Szczerba [65], n(Cn(ΣA9)) =
2*°.

A last category of semantical simplicity criteria will be dealt with in the fol-
lowing lines.

According to a theorem of Robinson ([52]) 82 is the 'model-completion'
of ε 2, therefore, in a certain (metamathematical) sense, we may say that A13
was not 'freely chosen', but that its choice was 'forced' upon us by the other
axioms and a metamathematical operation on them. Could this happen to all
the axioms of an AS? Although we do not have any example of such an AS, we
propose four (related) simplicity criteria.

An AS Σ for a theory 3 will be called (δj-simple if (Cn(ΣA))αi = 3, for all
A G Σ; here i may be assigned precisely one of the values 1,2,3,4; for all the-
ories 3, 3α i means 'the model-completion of 3' (see [52] for a definition) for
i = 1, 'the model-companion of 3' (see [1] for a definition) for i = 2, 'the forcing-
companion of 3' (see [1]) for i = 3 and 'the inductive hull of 3' (see [32], [1])
for i = 4.

4 Conclusions Out of the eight papers presented in the Section of Logic at
the 1935 International Congress of Scientific Philosophy, three dealt with sim-
plicity problems for AS's. Today the subject is no longer encountered. As
pointed out throughout this paper, these problems are far from being settled.
So what should be the reason for this lack of interest in Άxiomatology' (if we
may give this name to that part of metamathematics which studies the aesthet-
ical problems of AS's)? Is it due to the fact that most mathematicians would still
answer with a quotation from Bolzano:

Diese Λufgabe dάucht mir jedoch so schwer, und die Versuche, die
man bis jetzt zu ihrer Lόsung gemacht, scheinen mir so miβlungen, daβ ich
nicht Lust habe, noch einen zu wagenΊ [5]

NOTES

1. A like-minded statement can be found in Saint Thomas Aquinas' Commentaries on
Λristotles Metaphysica (English translation by J. Rowan, Chicago, 1961), Book X,
II: "Simpliciora autem quae sunt priora et notiora secundum naturam, cadunt in cog-
nitionem nostram per posterius."

2. This requirement cannot be imposed upon an infinite AS, where it loses its economic
significance. To exemplify, take the AS for real-closed fields that contain all the
axioms for ordered fields and the axioms An, stating that any polynomial of degree
2n + 1 has a root. No subsystem of this AS is completely independent, since An ->
Am for all n > m.

3. A13 is the geometric counterpart of the first-order continuity axiom schema for real-
closed fields, which can be replaced by the An, which are V3-statements.
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