Notre Dame Journal of Formal Logic Volume 29, Number 2, Spring 1988

Alphabetical Order

GEORGE BOOLOS*

We define an *alphabet* ξ to be a finite or countably infinite (von Neumann) ordinal greater than 1. ξ^* is the set of all finite sequences of members of ξ . We use 'a', 'b', 'c', ... as variables over members of $\xi, 'x', 'y', 'z', ...$ as variables over members of ξ^* , and use juxtaposition to denote concatenation in the obvious way: e.g., if $x:m \to \xi$ and $y:n \to \xi$, then xay is the finite sequence $z:(m + 1 + n) \to \xi$ such that z(i) = x(i) if i < m, z(m) = a, and z(i) = y(j) if i = m + 1 + j < m + 1 + n. \emptyset is the empty finite sequence, which has domain 0.

Alphabetical order on ξ^* is the relation that holds between x and y iff either for some $z \neq \emptyset$, y = xz or for some a, b, z, z', z'', with a < b, x = zaz' and y = zbz''. Alphabetical order on ξ^* is clearly a countable linear order in which every element x has the immediate successor x0. But it is not a well ordering: consider {...,001,01,1}. Some further peculiarities of this order are stated in the last paragraph of this note.

We shall characterize the order type α of alphabetical order on ξ^* , which turns out not to depend on ξ . In fact, we have the following theorem.

Theorem Let η be the order type of less-than on the rationals. Then $\alpha = \omega(1 + \eta)$.

Proof: Let ξ^{*-} be the set of all nonempty sequences in ξ^* whose last element is some member of ξ other than 0. First note that R, the restriction to ξ^{*-} of alphabetical order on ξ^* , is dense (if y R yzc, then $c \neq 0$ and y R yz0c R yzc; if zaz' R zbz'', then zaz' R zaz' 1 R zbz'') and lacks endpoints (if $c \neq 0$, then z0c R zc R zcc). By a famous theorem of Cantor's, since R is also a countable linear order, R is isomorphic to less-than on the rationals. Now observe that \emptyset is the alphabetically earliest member of ξ^* , x0 is the immediate alphabetical successor of x, and every element of ξ^* is either 0^m for some $m \ge 0$ or $x0^m$ for

214

^{*}I am grateful to John Corcoran, Gregory Moore, and Stewart Shapiro for mentioning to me the problems of characterizing alphabetical order on a two- and a threeelement alphabet.

some x in ξ^{*-} and some $m \ge 0$. Alphabetical order on ξ^{*} may therefore be characterized as follows: first come all sequences 0^{m} , $m \ge 0$. Then come all sequences $x0^{m}$, with x in ξ^{*-} and $m \ge 0$: if $x0^{m}$ and $y0^{n}$ are two sequences with x and y in ξ^{*-} , then $x0^{m}$ precedes $y0^{n}$ iff either x R-precedes y or both x = y and m < n. These later sequences thus have the order-type $\omega \eta$. So alphabetical order on ξ^{*} is isomorphic to the ordering obtained from less-than on the rationals by first replacing each rational by an ω -sequence and then prefixing another ω -sequence to the result. That is to say, $\alpha = \omega + \omega \eta = \omega(1 + \eta)$.

Thus alphabetical ordering on $\{0,1\}^*$ is isomorphic to that on $\{0,1,2\}^*$; an isomorphism f is given by: $f0^n = 0^n$, $n \ge 0$; f00x = 0fx, x a sequence containing at least one 1; and f01x = 1fx and f1x = 2fx, x an arbitrary sequence.

Since $\eta = \eta + 1 + \eta$, $\alpha = \omega + \omega\eta = 1 + \omega + \omega\eta = 1 + \omega(1 + \eta) = 1 + \omega(1 + \eta + 1 + \eta) = 1 + \omega(1 + \eta)2 = 1 + \alpha 2$. Similarly, $\alpha = 1 + \alpha n$, for all finite *n*. And since $\eta = (\eta + 1)\omega$, $\alpha = \omega(1 + \eta) = \omega(1 + (\eta + 1)\omega) = \omega + \omega(\eta + 1)\omega = 1 + \omega + (\omega\eta + \omega)\omega = 1 + (\omega + \omega\eta)\omega = 1 + \alpha\omega$.

Department of Linguistics and Philosophy Massachusetts Institute of Technology Cambridge, Massachusetts 02139