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Kurt Gόdel. Collected Works, Volume I, Publications 1929-1936. Edited by
Solomon Feferman, et al. Oxford University Press, New York; Clarendon Press,
Oxford, 1986. Pp. xvi, 474, $35.00.

This volume contains GδdeΓs publications that appeared by 1936. They
raise two principal questions, which could not have been answered at the time,
and are not prominent in the generally uninspired editorial additions either. They
arise as follows.

Especially GόdePs best known (early) work was presented by reference to
a sensational thesis about all mathematics being like doing sums, in a sense
explained in more detail below. As with other extravagant theses, programs,
ideals, or what have you, the first question is: Why not simply ignore such
things? Next, since work on extravagances rarely suggests convincing improve-
ments, there is a second question: What might be done with the (here mathe-
matical) tools used?

At this point one might agonize about ignoring these two questions in turn.
Instead we'll ask them first about another thesis, a thesis usually attributed to
Pythagoras more than 2500 years ago: (natural) number is the measure of all
things.

It isn't, because no natural number or ratio between such numbers mea-
sures the diagonal of the unit square, which has length V2. The tools used in
this refutation are the geometric theorem of Pythagoras about right-angled tri-
angles, and an arithmetic theorem about the (so-called diophantine) equation
n2 = 2m2, which has no solution in natural numbers n and m.

This refutation has not suggested any improvements, say, in the form of
another measure for all things. On the contrary, being mundane enough to
remove any sense of awe inspired by the Pythagorean thesis, the refutation raises
questions about assumptions behind the thesis, for example:

What would be so wonderful if the thesis were true?

After all, even where only rational numbers are "needed", as in limits for exper-
imental errors, others are used. The interval for a measured length of some
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diagonal of a unit square is often given in the form V2 ± e, with rational e and
thus irrational endpoints. More generally,

Is it sensible to demand one measure for all things?

rather than relatively few measures for relatively many things? So to speak in
the opposite direction:

Are there phenomena, possibly far-removed from everyday experience, of
Pythagoras or even of ourselves, that do lend themselves to one, as it were,
fundamental measure?

and so forth.
Similar questions come up about the thesis refuted by GόdePs work, but

also analogues to the sociological fact that a few bands of the faithful continue
to pursue the Pythagorean thesis, in numerology or in reductions of mathematics
to arithmetic.

As to the tools mentioned earlier, it would be unrealistic to try to be pre-
cise about cause and effect in the last 2500 years. (Did the yodeler or the echo
trigger the avalanche?) As somebody said, such matters tend to be difficult just
because they have so few consequences. Be that as it may, the tools used remain
memorable samples.

Readers of GδdePs papers should not expect similarly colloquial language.
Partly this is a matter of temperament. But also, those of us who know the
detailed analyses made in the meantime can now judge which familiar ideas are
typical enough to illustrate a particular general issue reliably. Occasional uses
below of erudite language will serve as reminders of those analyses; for exam-
ple, instead of 'doing sums', there will be 'formal procedures', that is, compu-
tations according to the logical idea(lization) of the perfect computer.

/ Background on formal or, equivalent!)?, mechanical aspects of mathematics
What are they and what are they supposed to do? "(These words, but not the spe-
cific answers below, come from Dedekind's Was sind und was sollen die Zah-
len?) Computations with 0, 1, + , X, as done in elementary school, are quite
typical of formal procedures. Appendix l(a) sketches both the drill involved and
shortcuts resulting from —humanly inevitable —reflection on it.

Today, computations on an electronic computer are familiar, and are even
better examples, with one proviso: not too much attention to details either of
the hardware or of the wetware (computer jargon for 'intellect') since the logi-
cal idea of the computing machine corresponds only to Simple Simon's image
of computing Man.

Both kinds of examples convey very well what formal procedures are, but
they do not provide an effective background for GόdePs (best known) result.
This states some odd things that even an ideal computer cannot do, which are
wholly overshadowed by the many things that even actual computers can do;
realistically speaking, far beyond Leibniz's dream.1

The extravagant thesis about doing sums provides, of course, a much more
glamorous background. The first of the details about that thesis, promised at
the outset, is a distinction, between thought processes in mathematics and
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thoughts (as in "it's a thought"), or, more simply, mathematical results. The
pioneers, especially Frege, concentrated on the logical relations between results;
without any claims on the full range of the mathematical imagination, or even
dismissing questions about the latter as irrelevant (to mathematics).2 Brief indi-
cations of this distinction, applied to addition and multiplication, are in Appen-
dix 1, particularly (a) (ii)-(iii), and (c). The remainder of this section is more
relaxed.

What is at issue is an understanding or theory of reasoning, at least, in
mathematics. And the claim of the thesis is that the formal elements reflect all
that is significant. Thus a theory takes the form of & formalization, which con-
sists of a formal language with a basic alphabet, a formal grammar, and for-
mal rules of derivation. Appendix 1 provides a sample, but the formalization
of elementary (predicate) logic, which appeared more than one hundred years
ago, remains more impressive; above all because of the expressive power of its
simple notation (vocabulary and grammar). This became relatively soon part of
mathematical, and even general, culture; much more so than its rules of infer-
ence, inevitably reminiscent of processes.

Let there be no mistake: even the formalization for doing sums is amaz-
ingly simple compared to the phenomena that present themselves naturally;
specifically, in the many nuances of natural — written, and especially spoken —
mathematical language(s). The price to pay for this simplicity is a malaise: the
formal elements constitute a very pale picture of even the two elementary parts
of mathematics in the last paragraph, let alone of broad mathematical expe-
rience.

One consolation, albeit overlooked by Goethe himself, is implicit in 1.2037
of Faust I: all theory is grey. So paleness by itself is not a defect of any theory,
logical or not. More substantial encouragement comes from the mechanical pic-
ture of the physical world around us in terms of point masses and their motion
in space-time, which leaves out colors and shapes, not to speak of chemical com-
position. This picture, hardly less pale than the formal picture above, has not
only been most successful in its domain, but remained for centuries a model for
theoretical understanding. Readers of Appendix 2 may pursue the parallel with
the formal picture(s) of the world of mathematics a step further: not only are
the objects of mechanics here represented, but also spatio-temporal relations
between them; cf. Appendix 2(a)(ii) on GόdeFs twist representing properties of
Cantor's numerical representations of words.

Memorable formalizations were proposed in the last decade of the last and
the first decade of the present century; by Whitehead and Russell for all of math-
ematics in the three volumes of Principia Mathematica, by Hubert for various
branches of mathematics beginning with elementary geometry; with respect for
both the venerable ideal of purity of method and for the mathematical tradition
of concise exposition. But for the sequel, and probably sub specie aeternitatis,
the following difference between the two styles is much more consequential.

In his so-called metamathematics Hubert paid attention to global mathe-
matical properties of the formal pictures such as completeness, taken up in the
next paragraph. Principia did not; in the tradition of natural history, which is
content with a compact description of data that happen to catch our attention;
by mathematical formulas when it uses mathematics at all. Admittedly, this side
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of metamathematics got lost in Hubert's later rhetoric, for example, about real
and ideal elements in the tradition of Ockham's razor, already mentioned in
Note 2.

A specific principal requirement on formal pictures is this. For propositions
P represented by, say, p in the formalization considered, p should be a formal
theorem iff P is true. When P is about some particular notion or Structure' then
either P is true or its negation (is true). The corresponding mathematical prop-
erty of the formalization is that either p is a formal theorem or the formal nega-
tion of p (is a formal theorem). This is called formal completeness: cf. Appendix
Kb)(i).

In general, the restriction to particular notions is needed, as seen in the case
of pure logic where, as Leibniz put it, truth in all possible worlds is meant. So
P is not logically true if it is false in some such world. But the negation of P is
logically true only if P holds in no possible world. Thus neither P nor its nega-
tion need be logically true, and so formal completeness is not required here.
Nor is it required when P is about, say, sets, before we have made up our minds
on the particular kind of set to be considered; for some P, neither P need be true
for all kinds of sets contemplated, nor its negation. Perhaps it is worth adding
that, even when P is about some specific structure, formal completeness would
not be generally even plausible, if thought processes were the main object of
study. There is simply not a shred of evidence that every problem of, say, Higher
Arithmetic is solvable in any even remotely realistic sense, let alone that we
should want to look at every problem (in current formalizations).

2 A refutation and a Pyrrhic victory GόdeΓs — most famous- incomplete-
ness theorem was originally stated for Principia and related systems; in fact, for
the parts that serve to represent arithmetic properties. For each such system S

some true proposition of arithmetic is not a formal theorem

(of 5), where the proposition depends upon S. Thus, doing higher arithmetic
is not like doing sums (cf. Appendix l(b) and (c)). Readers who have any taste
for doing mathematics at all can probably get a good idea of the proof from
Appendix 2.

The particular true proposition obtained there has the following simple
interpretation. It is (the so-called arithmetization of) an instance of the princi-
ple each formal theorem is true (cf. Appendix 2(c)(i)).

For our ordinary view of—the logical relations between results in —
mathematics, the principle above is a minimal consequence of understanding the
rules of S at all (and, it may be added, rules actually used are understood, at
least, enough for this consequence). Viewed this way, S would simply be said
not to prove the particular property of itself expressed in the principle, though
S proves many things, also about itself. Thus the thesis is refuted according to
the letter since one of its explicitly formulated (cl)aims, completeness for arith-
metic, is not realized.

But for grand theses, and especially for ideals —here of theoretical
understanding — a broader sense of 'refutation' is philosophically appropriate:
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When the ideal is realized the realization is found to be unsatisfactory. To spell
it out: The realization is found to lack or have certain properties that, as can
now be seen, had been tacitly assumed to go with, respectively against, the ideal.
In this way inspection of a realization can identify tacit assumptions behind the
ideal, which constitutes a refutation in the broader, second sense, by a Pyrrhic
victory, as it were.

An example of such a refutation of the thesis is GόdeΓs other very well-
known result in this volume: the completeness of Frege's formalization for ele-
mentary predicate logic, but now in the sense that for each formula F, either F
is a formal theorem or F is not true in all possible worlds.

Viewed dispassionately this result does not at all give a privileged place to
Frege's rules. It just shows that they are sufficient-in-principle, as Kant liked to
say, or, more soberly, sufficient to generate the logically true formulas in the
formalization. On the contrary, by using the concept of logical truth the result
draws attention to quite different possibilities of proving logical theorems; spe-
cifically, the possibility of drawing on knowledge —if not of all possible worlds,
at least—of many corners of our world; in other words, the possibility of prov-
ing logical theorems by so-called logically impure methods. Specialists will think
here of theorems that are or can be formulated in Frege's logical language, for
example, about ordered or real closed fields, but are proved by topological
methods.

In point of fact such impure methods have been used increasingly since the
formalization of pure logic more than one hundred years ago, and especially
since GόdeΓs result more than fifty years ago; incidentally, this is often done
by people totally ignorant of the formal rules (so that it is wide open in which
way the conviction carried by their proofs can be realistically related to the for-
malization).

Before turning to more positive aspects of the two refutations above by the
incompleteness and completeness theorems, a couple of comments seem in order.
The first is general. The proofs of both theorems are pearls of logic. But not
both results can be sensational! If the completeness of a formalization for mere
elementary logic is a sensation, then incompleteness of Higher Arithmetic is
not.3 Historical counterfactuals aside, one hundred years ago it would have
been fitting to give pride of place to the lesser known result, bolstering up the
then-tentative project of formalization, with the incompleteness theorem ratify-
ing, formally as it were, the then general distrust of that project.

The second comment concerns the open secret that, outside mathemati-
cal logic, neither of those two very well-known results turns up in the ordinary
mathematical literature. There is no conspiracy against them. As stated, they just
have not found a use; fittingly, in view of the fact that they are tailor-made
for —refuting or supporting, no matter —a refuted thesis. This is the situation
considered at the outset, with all its problems, in particular the problem of find-
ing some sober use for the tools employed.

Especially when, as in the present case, the tools are of obvious "raw"
interest, the principal obstacle to solving those problems is blindness to them;
in particular, the illusion that pretty mathematics must "somehow" have already
solved those problems. Tractatus 6.21, about mathematics not expressing any
thought, is surely literally false. But equally surely mathematics very often leaves
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questions open that require more (demanding) thought than the mathematical
solution.

3 Shifts of emphasis What more do we know from formalization? Obvi-
ously this question does not even arise if the thesis is elevated, as indeed has been
done, to the doctrine that there is nothing (precise) besides formalization.

The question is less innocent than it may look. For effective contribu-
tions to some particular area the additional knowledge —in answer to: What
more . . . ? —must be expressed in terms used in that area, and is thus liable
to require familiarity with it. The following two general points have a larger
market.

First, there is the matter of choosing a formal system rationally. By GόdeFs
incompleteness theorem the only general idea for reducing the arbitrariness of
such a choice, completeness, is not even 'in principle' available for systems of
arithmetic. One of the current favorites for answering the question above pro-
vides a better, and sometimes even practical, idea for a choice, based on the rate
of growth of those functions that can be shown in S to solve suitable problems,
say, P provided one wants to know about such things. Here, P comes first, and
S is a tool, not a 'foundation'. For specialists: 'Suitable' means in practice that
P has the form V3, and that incompleteness applies even if all true, purely uni-
versal propositions are added to S as axioms. The bounds are established by so-
called consistency proofs for those —necessarily incomplete —5.

The second point concerns complete formalizations such as (Frege's) log-
ical rules. Unless —to repeat what cannot be repeated too often —formalization
is required as a matter of doctrine, the question What more . . . ? is just as hot
here as for incomplete systems. The answer is simply: a new description of the
object involved; in the case above, of the logically true propositions (in Frege's
language). For effective knowledge this description competes then with others
such as the "impure" kinds in the last section. Logicians think here of the com-
petition between descriptions in model-theoretic and diverse proof-theoretic
terms. There is an obvious parallel here with the Pythagorean thesis, specifically
with the use of irrationals even when they could be avoided-in-principle.

But a more significant element of the parallel is this: the proofs of com-
pleteness and incompleteness are "mundane enough to remove any sense of awe
inspired by" the refuted formal(ist) thesis, and leave us free to examine some
assumptions behind the latter.

4 What is so wonderful about formalization? People have been thrashing
about for an answer. Only one will be considered here. It is the tacit assump-
tion of some ethereal need —here satisfied by formalization —for an ultimate
norm of precision; a tacit assumption popular not only in the foundations of
mathematics but almost throughout all Western culture.

Presumably according to the books they read in their teens, particular
authors writing on such norms refer to the finiteness of formal objects, to their
spatio-temporal or, more generally, their public character, or, going the whole
hog, to the idea that the thought processes themselves are formal (i.e., mechan-
ical in the sense of the perfect computer), in which case only formal rules can
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be unambiguous. All this would carry little weight without the master assump-
tion that there are genuine doubts about the precision or reliability of principles
currently in use. (Viewed this way, all those little paradoxes are a godsend for
this assumption.)

Now if the principles in question are in fact 100% reliable, doubts about
them are dubious, which doubts can be just as much as can assertions. The priv-
ileged place given to doubts, for example, by Descartes, looks very much like
other pious conventions that are only too familiar. But it pays to be more spe-
cific.

To put first things first, there can be perfectly proper doubts, even about
principles. Thus, not so long ago, —antecedents of—those now current about
sets were problematic. The problems were solved by saying out loud which sets
were meant (and not by putting principles into formal dress which, after all,
Frege did in his Grundgesetze); cf. the end of Section 1 on completeness.
Though, occasionally, obviously problematic principles are investigated, most
often those proper doubts are about—the probability of—incorrect applications
of correct principles. In this case preoccupation with reliability-in-principle, that
is, reliability of principles, simply distracts from the dominant factor, here, dom-
inant source of error.

Is this factor a foundational concern? According to a principal tradition
of the subject, it is not. In this case the topic of reliability has been discovered
not to be primarily foundational; by the way, not necessarily a comedown;
see the end of Appendix 2. A discovery of the nonfoundational character of a
topic —here of reliability—is to be compared to discoveries in the natural sci-
ences; for example, of the gravitational or magnetic character of some phenom-
enon, say, near the surface of the earth; in other words, whether the dominant
force, if there is one, is gravity or the magnetic field of the earth. Similarly, in
the remark for specialists in Section 2 concerning "impure" methods, problems
stated in logical language but solved by topological methods are thereby discov-
ered to have topological character. As in other scientific experience, research has
produced ways both to cope with such delicate points as mixtures and, above
all, ways to recognize when enough is enough: that is, enough for using such
characterizations without looking for new evidence or even referring to the old.
(Our existing knowledge of those characterizations is thus treated as a priori.)
Given the level of generality of all this, it applies of course to norms as well, here
of precision but surely also in practical life. For the literal sense of "philosophy",
recognizing when enough is enough has always been a central concern. Thus in
the Metaphysics Γ 4, 1006a, 6-9, Aristotle relied on good breeding. The following
couple of points help too.

First, there is extended experience, which may but need not confirm ordi-
nary practice. For example, as already explained in Section 2, experience has
rehabilitated our ordinary 'norms' or, more simply, checks in the case of logi-
cal reasoning, as opposed to the demands of so-called formal reasoning. In con-
trast, after the discovery in the last century of so-called abstract reasoning we
have never looked back. Specifically, we express in axiomatic terms what we feel
to be essential about an argument. For example, in elementary number theory
analysis in terms of abstract finite groups is used; we do not isolate only, say,
the 'numerical content'.
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Secondly —and this is particularly significant for the present section —a
good deal of the foundational literature obscures the consequences of such
extended experience, including logical experience. Thus, it wails about "far-
reaching reductions" that are (allegedly) lost by the refutation of the thesis here
considered, apparently without remembering the fact that those would-be magic
reductions are already available in substantial areas — such as elementary geom-
etry or logic —but not used: least of all, as a norm of precision.

Readers familiar with foundational (bad) habits surely know much more
along these lines. But the snippets above are enough to show that the topic of
reliability is not a rewarding market for formalization, and certainly less so than
the answers in Section 3 to the question: What more . . . ? This suggests also
a genuinely philosophical conclusion.

It is simply not plausible that this particular topic will get very far with-
out closer attention to thought processes, which, by Section 1, are neglected in
the pale formal picture. (See also the Remark at the end of Appendix 1.) Warn-
ing for readers of pages 394-399 in the volume under review: The heading
"length of proofs" suggests consequences for understanding thought processes;
but the formal picture is just too pale to support such colorful interpretations!
A short description of a long formal proof, especially with underlining of its
memorable parts, is in fact easier to process than a relatively short formal proof.
In a similar vein, the process of discovering a new axiom to prove some given
result is often not only less demanding than discovering a proof of it from given
axioms, but has a similar flavor. Though such a proof by given axioms can in
principle be found mechanically by trial and error, in practice it is not so
found.4

5 Short answers to the initial questions The refutations, including the Pyr-
rhic victories, of the thesis were involved in locating and examining assumptions
behind it; such as dubious doubts or doctrinaire norms of precision. Admittedly,
those assumptions can be and were questioned before settling or even formulat-
ing the thesis. But the refutation and, particularly, its elementary character
(stressed in Appendix 2(c)) can help establish a sense of proportion for the
examination: above all, by eliminating undue worry about not having grasped
the full inwardness of the thesis.

As to the tools, sketched in Appendix 2, the situation is not too different
from that of the Pythagorean thesis except that sixty, not 2500, years have
passed. This affects both the choice of problems and the methods of solution.
Thus there is a greater difference between the proofs of MordelΓs conjecture,
a recent highlight, and the irrationality of V2 in the theory of diophantine equa-
tions than between, say, "double" diagonalization in so-called priority arguments
of Higher Recursion Theory and simple diagonalization in Appendix 2(b). But
GόdeΓs proofs remain memorable samples in the second subject.

For the record, I still find his direct and self-assured style in the volume
under review appealing, compared not only to the extremes of pedantry and
sloppiness rampant at the time but also to some constipated parts of the editorial
material. The so-called substance, of proofs and results, has been superseded,
in accordance with Buffon's ces choses sont hors de Γhomme (those things —
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meaning results —are impersonal), which preceded his much better known
pronouncement (on August 25, 1753): le style est Γhomme.

So much for logic, the business of this journal, at least according to its
name. But logicians do not live by logic alone—not even intellectually. To me,
a principal reward for refuting rather than ignoring extravagant theses is in that
broader area, as follows.

6 Refutations: For a better quality of life Evidently, a parallel with mate-
rial pollution is meant, which presents a similar choice. In the austere 50's those
complaining of noise or other pollution were told to ignore it. Progressives,
always characterized more by temperament than by specific views, had only con-
tempt for the (to them, obviously absurd) Air Force general played by George C.
Scott in the film Dr. Strangelove, who worried about chemicals in drinking
water. And for all I know they may have a point if selection by resistance to pol-
lution helps the species flourish in our cold, unfriendly universe. But for some
(of us) it was not so easy to ignore the pollution.

Similarly, (we) logically sensitive souls do not so easily ignore the logical
atrocities in (Hubert's) presentations of the thesis, especially when research stag-
nated and the claims inflated. The pollution was all around, spread by a band
of the faithful who found the presentation so congenial that it matters little
whether it helped form or "only" consolidate their views. Here are a couple of
samples.

(a) The laws of thought are mechanical and Non ignorabimus.

Actually, the idea was that those laws were already formulated in Hubert's sys-
tems, and that we shall —want to —know the answers to all the problems for-
mulated there.

As a kind of fallback Hubert had a weaker, would-be cute meaning for
6non ignorabimus':

(b) It is consistent to assume that every problem can be solved.

In other words, to assume for every proposition P that either P is a formal the-
orem (of the "foundational" system) or its negation is.

GδdeΓs results refute (a) and (b) conclusively and most elegantly. For (a)
this is clear without further analysis. For (b), a corollary, derived in Appendix
2(c)(ii), is needed that is valid only for a more special class of systems, but cer-
tainly for all current at the time:

(b') It is even consistent to assume that every proposition can be proved,

from which (b) follows trivially. We breathe more freely.
This relief is hardly necessary in practice; not, for example, for the robust

among us who ignored the thesis in their work even if they gushed about it in
private. Philosophically, the relief is only a palliative. It just distracts from the
source of the pollution, the assumptions behind the thesis. But, as seen by Sec-
tion 4, cleaning this up is a costly business, requiring more capital (i.e., scien-
tific experience) and labor (sustained reflection). Palliatives have a wider market.

To pursue the parallel a little further, but also to end on an irreverent note,
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it may be remembered that similar technologies can create and clean up pollu-
tion, and that quite often the same firm manufactures both types. In the 50's,
Gδdel himself (as so often in this review, in effect, not in these words) modi-
fied (a) above by adding nil nisi externum (to non ignorabimus: what he actu-
ally asserted was that we know everything about our own constructions). Then
his incompleteness result implies the hot news:

Either mind is not mechanical or the natural numbers are not our own con-
struction

nor (pace Kronecker) the reals. For the record, I don't choke at that emission,
but almost cherish it, together with memories of many conversations with him,
spiced with spontaneous twists of a similar flavor.

But all in all it's fair to say that elementary metamathematics and, partic-
ularly, GόdeΓs contributions are good value; at least for those who for one rea-
son or another have learned about them. What seems to me wide open is how
effective those contributions are for conveying that which is of general interest
in them, in particular, that which is genuinely generally accessible; effective com-
pared to metaphors from more widely available knowledge, as in the Pythag-
orean thesis. The matter is wide open because my skepticism seems to be shared
by others in the trade, and so existing (unsuccessful) attempts at popular expo-
sition have been perpetrated by the uninformed in line with the proverb: . . .
where angels fear to tread.5

Appendixes6

1 Doing sums formally

(a) Numerical equations: The alphabet (i.e., symbols): 0, 1, +, , (, ), = .
Terms: 0 and 1; (/ + /') and (t>f) if t and /' are terms.
Equations are of the form t — tf where, here and below, t and t' stand for
arbitrary terms.
Axioms: 1 = (0 + 1) and substitutions of terms for a and b in the schemata
(i.e., recursion equations)

(a + 0) = α, (a + (b + 1)) = ((a + b) + 1);
(aΌ) = 0, (a (b+ 1)) = ((a-b) + a)

Derivations are finite partially —or, for ordinary writing, linearly — ordered
sequences of equations E such that E is either an axiom or obtained by sub-
stituting / for one or more occurrences of t' in tx = t{ if both t — t' and
h = t{ precede E in the sequence. This rule of "inference" is called substi-
tution of equals for equals.
Exercises: Derive (all instances of) a = a. Hint: (t + 0) = t is an axiom. Sub-
stitute / for (t + 0) in (t + 0) = /.—From (any derivation of) t — t' infer
t' = t. Hint: Substitute t for the right t' in tr = t'.

(i) Numerals and numerical values: By definition, the numerals are 0, (0 +
1), ((0 + 1) + 1 ) , . . . that is, if n is a numeral the next numeral is
(n+1).

Exercise: For each term t there is a numeral, 11\, such that t — \t\ is a
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formal theorem. Hint: 0 is itself a numeral. 1 = (0 + 1) is an axiom.
Note that for numerals \t\ and | f'|, (\t\ + \t'\ and (|t\ |V | ) can be
proved to be equal to numerals, and follow the buildup of terms.

(ii) Reflection on numerical values, when the symbols of the alphabet are
given their usual arithmetic meaning (parentheses being part of the nota-
tion for addition and multiplication). The words completeness and
soundness of formal rules, used in the text, mean here that exactly the
true equations t = t' are formal theorems.
Exercise: Prove this. Hint: The axioms are true and the rules preserve
truth. So all formal theorems are true. But t = tf is true only if 11 | and
I/'I are identical, in which case \t\ = \t'\ is an instance of a = a and
thus a formal theorem.

(iii) Reflection on possible orders of applying the rules of (a) for comput-
ing the numerical value, say, of (O /). Like other formal rules, those of
(a) leave a choice in their order of application. Knowledge of arithmetic
properties —here, that |(0 0 | = 0 —helps in an efficient choice.
Exercise: (O (b + 1)) = (O b). Hint: For a = 0, (a- (b + 1)) = ((a-b) +
a) becomes (O (b + 1)) = ((0-6) + 0), which becomes (0- (b + 1)) =
(0'b) when (0-b) is substituted for a in (a + 0) = α.
Conclusion: When / has the form (f + 1), do not compute t' first, as
in the exercise of (i), but use (O (tf + 1)) = (0 f ) as the first step in
computing (0-t) = 0.

(b) Numerical inequalities: t Φ t'. One additional axiom schema: (a + 1) Φ 0.
Rules: substitution of equals for equals is extended: from t = t' and t\ Φ t[
infer any inequality obtained by substituting t for t' in tλ Φ t{. Also, a new
rule: Infer (f + 1) Φ (f + \) from t Φ t'. (This corresponds to the cancel-
lation rules for equations: Infer t = t' from (t + 1) = (/' + 1), which is
superfluous in the sense that the rules of (a) are complete without it.)
(i) Completeness of the rules for inequalities. Exercise: Prove it. Hint: If

/ Φ t' is true, one term, say | V | , of the pair of numerals \t\ and \t'\ is
a proper part of the other. Let | ^ j be (the numeral of) the difference.
Then 1̂ 1 Φ 0 is an instance of (a + 1) Φ 0, and \t\ Φ \t'\ is inferred
from 1̂ 1 Φ 0 by (\t'\ applications of) the new rule.

(c) Diophantine questions, mentioned already in connection with V2, concern
equations between polynomials with numerical coefficients; in the notation
of (a), such polynomials are the terms generated by adding the "variables"
X\,X2, . to the "constants" 0 and 1. Diophantine questions ask whether or
not an equation has a solution by natural numbers. For positive answers, the
rules in (a) are enough since, if X\9X2, . are—the numerals of—solutions,
this fact is verified by computation. But there are simply no formal rules at
all that are—correct and — enough for all negative answers, so-called
diophantine inequalities; recall n2 Φ 2m2 in connection with V2. For special-
ists: negative response to Hubert's demand for such rules (in his tenth
problem).

Thus, even if only logical relations are considered, solving diophantine
equations is not like doing sums.
(i) There is a plausible parallel between diophantine questions and meta-
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mathematical questions about derivability by formal rules. If a formula
is derivable, this fact is verified by (nonnumerical) computation with for-
mal objects. Underivability is usually established by use of specific prop-
erties of the formula considered, as illustrated by non-Euclidean models
in the case of Euclid's fifth postulate. Specialists know a precise sense of
this parallel from work on Hubert's tenth problem above.

(d) Thinking about sums: facts of experience. Building up derivations, for exam-
ple, by following the rules in (a) mechanically, is more exhausting than, say,
reflecting on shortcuts, and thus, realistically speaking, more liable to error.
This fact is dismissed in foundations as human weakness and thus as irrele-
vant to logic. Perhaps; but if so, the broader philosophical topic of human
data processing just does not have a (primarily) logical character; in partic-
ular, those "weaknesses" may be of the essence in determining the extent to
which human data processing is not discrete.
Remark for readers familiar with —the literature on —Wittgenstein's queries
about following (mechanical) rules correctly: His wording is purely logical
since it concerns the idea of a correct application of a given rule (like Kant,
Kritik der reinen Vernunft, A 132-133), and possibly irreconcilable conflicts
over different interpretations of that idea in certain imagined situations.
Actually, computational errors do occur, with the difference that their pres-
ence is recognized (even if no erroneous step is located!) and so those
(imagined) conflicts are rare. However, it is to be noted that the errors are
of a kind that would not at all be expected to occur frequently in wholly dis-
crete data processing.

2 Two twists by Godel on Cantor's enumerability results

(a) Words of a numbered alphabet and relations between them:
(i) Cantor's enumerations of pairs and of finite sequences of objects in an

enumerated set are familiar. Reminders: Rationals (pairs of integers),
algebraic numbers determined by the sequence of coefficients of their
primitive equations; cf. Appendix l(c). Formal objects like those of
Appendix 1 are sequences (of letters in the alphabet of the system used).

Cantor himself did not pay attention to the numerical properties
and relations that correspond to those for numbered sequences. Below,
two operators (i.e., functional relations), λ* and σ will be used where

λ*w = *w, that is, the sequence resulting from putting the ele-
ment * in front of w, and

σ( w, v) is the result of substituting (the sequence) v for some cho-
sen element in w.

But given a numbering it is, in practice, a matter of routine to write
down the corresponding operations, which pass from the numbers of w
and υ to the numbers of λ* w and of σ( w, v). Here "in practice" means
that any of the familiar arithmetic operations, like exponentiation, are
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used; in any case, polynomials alone, the subject of Appendix 1, would
not be enough.at

The following twist by Gόdel involves something new, even if it is
little more than remembering —the possibility of—incompleteness, in
other words, a difference between truth and formal provability.b It con-
cerns:

(ii) Two kinds of formal representation, specifically, of properties of num-
bers (of formal objects); here, the property Γof being the number of a
formal theorem of the system considered. As in Appendix l(a), ή is the
numeral of n. Let Fτ be a formula with one free variable, here chosen
to be a. Then, here and below, Fτ is said to represent T numerically iff,
for each number n,

T(n) is true iff Fτ(n) is a formal theorem.

Exercise: Verify that in an inconsistent system, where every formula is
a formal theorem, only one property is representable (which holds for
all n). End of exercise. Let -» be formal negation.

For a complete (formal) system, where either Fτ(n) or -ι/γ(/z) is
a formal theorem, it follows that

(*) T{n) is false iff ~^Fτ(n) is a formal theorem.

To underline the point the literature uses a new word for representations
that also satisfy (*): originally, entscheidungsdefinit: today, more often
invariant definitions.

The idea is extended to sequences, P, of properties Pι,P2,...9

Pm. A formula Fp with two variables represents P if, for all m and n>
Pm(n) is true iff Fp(m,n) is a formal theorem. Evidently, even if each
member of a sequence has a representation the whole sequence need not
be representable by any formula of the system; for example, in Appen-
dix l(c), each polynomial is represented, but no sequence that includes
all the polynomials. This warning serves as a foil to

representing a sequence of all representable properties

by use of Fτ and a variant σ of the substitution operation σ in Appen-
dix 2(a)(i), where now not the word with number n but the numeral n
replaces the privileged variable α. (In the notation of Appendix 2(a)(i),
v is n, and a is the "chosen element".)

If Pm is the property represented by the formula with number m
then

Pm(n) is true iff Fτ[σ(m,n)] is a formal theorem.

Reminder: If the system considered is complete, the representation is a
definition, and so Fτ[σ(m,n)] would define an enumeration of all
representable properties, a notion familiar from Cantor's cardinal arith-
metic.

tSuperscript letters refer to the Addenda, p. 175.
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(b) A formal counterpart to Cantor's diagonal construction: As usual, two prop-
erties of numbers are called different iff some number has one of the prop-
erties, but not the other.
(i) For every sequence P of properties there is a property, say Dp, depend-

ing of course on P, that is different from each property of the given
sequence. Let

(**) Dp(n) be true iff Pn (n) is false.

Consider any Pm. It differs from Dp; specifically, at the argument m,
which, by (**), has the property Dp iff it does not have the property

Pm
Remark: The literature sometimes speaks of "self-reference" here. This
is literally true since an argument where Dp differs from Pm is the sub-
script of Pm itself; after all, for most function terms their evaluation at
the argument n refers to n. Psychoanalysts may speculate on the fact of
experience that the word has clouded the critical judgment of many, but
the practice itself is harmless. We return to Cantor.

For a long time the principal use of the passage (i.e., the operation)
P h Dp was made in cardinal arithmetic, Cantor's pet. Specifically, in
contrast to (say) the set of all algebraic numbers, and like the set of all
real numbers, the set of all sets of natural numbers is not enumerable.
An enumeration is nothing else but a sequence, and it would not include
the corresponding diagonal set (**).

Long before the representation of all representable sets (by Godel)
at the end of Appendix 2(a)(ii), Cantor's argument caused malaise, and
people thrashed about for ways of expressing this malaise. There were
those dubious doubts about the existence of (the) uncountable sets men-
tioned above, but also talk about the language in which they are defined,
although cardinal arithmetic is not restricted to sets that happen to be
specified in any particular language.

Similar words —but with quite a different meaning! —get a point in
the twist from cardinal arithmetic to formal representations,

(ii) GόdeFs twist on Cantor's diagonal construction is applied to the sequence
represented by Fτ[σ(m,n)] . c

If the system considered were complete, the diagonal set of that
sequence would be defined by ~^Fτ[σ(aya)] or, equivalently, by
Fτ[σ'(a9a)], where σ'(a,a) is short for λ^[σ(a,a)] introduced in
Appendix 2(a)(i).

Now, the formula Fτ[σ'(a9a)] has a number, say, g. By the diag-
onal construction this purported representation of the diagonal set is cer-
tainly not a definition for a = g, whence incompleteness with respect to

FτWg,g)] ά

This is a little slick, and it pays to interpret the formulas used. Write
G for Fτ[σ'(g9g)], which has the number σ(g,g). Suppose G is a for-
mal theorem. Since, by Appendix 2(a)(ii), Fτ represents the property of
being a formal theorem, the formula with number σ(g,g), namely,
-ιG, is also a formal theorem —a contradiction.

Conversely, suppose -«G is a formal theorem. Then, by the other
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direction of Appendix 2(a)(ii), Fτ[σ' (g,g)], that is, G is also a formal
theorem.
Remarks: The twist above is only implicit in GόdePs famous paper. It
is explicit in Turing's work in 1936, but also in GόdePs letter to Zermelo
(1931), which can be found in [1], but not in the volume under review.
Secondly, readers familiar with the literature are warned that, instead of
G, usually the formula ~~l/γ[<J(go>£o) is used where g0 is the number
of -ιFτ[σ(a9a)] above.

(c) Further interpretations of (b) above in terms of two related metamathemat-
ical properties of formal systems:
(i) Each formal theorem is true: This is applied in Section 2 of this review to

the formula -<G with number σ' (g,g). Thus G, short for Fτ[σ'(g,g)]9

represents "~ιG is a formal theorem" and, as usual, ->G means "-ιG is
true". So the instance of the principle used is expressed by G -• -iG, which
reduces to -ιG.

As a corollary, (even) the particular case of the principle above
applied only to ->G, is not a formal theorem of the system considered,

(ii) Consistency is applied in Section 6 to the pair of formulas G and -iG. (As
usual a system is called consistent if such pairs are not both formal the-
orems.)

First, the principle (i) applied to both G and -iG implies that not
both G and -iG are formal theorems (since not both are true). Evidently,
here no specific restriction on G is used.

Secondly, for systems that are complete for G, that is, for which
G -• Fτ[σ(g,g)] is a formal theorem, consistency implies the principle
(i) for -iG. For, by consistency, even assumed only for the pair G and
- G ,

Fτ[σ(g,g)] -+ - iF Γ [σ ' ( | ,g)] , for short, Fτ[σ{g,g)] -+ i G ,

which, together with the completeness for G, leads to G -+ -«G; cf.
Appendix 2(c)(i). Here two special properties are used: that of G being,
by Appendix l(c)(i), like solvability of a diophantine equation; and of
course of the system considered, which must prove of itself that verifi-
cation by computation loco citato is possible.

As a corollary, for such systems S, their consistency is not a formal
theorem, and so it is consistent to assume (that is, add to S the axiom)
that S is inconsistent.6

For use in (b') of Section 6 it should be recalled that many current
systems satisfy the additional condition that, demonstrably, each incon-
sistency implies an arbitrary formula. With this additional condition it is
consistent to assume that every proposition is a formal theorem. For spe-
cialists: some current systems, for example, cut-free ones, do not satisfy
this additional condition.

Finally, it is worth noting that the (second) relation above, with the
Principle 2(c)(i), makes consistency—for the special systems considered —
more than a purely necessary, so to speak negative virtue (i.e., the absence
of particularly crass errors like contradictions).
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(d) Discussion: We have conflicting requirements for a scientifically successful
pursuit of mathematical logic and for a philosophically adequate examina-
tion of foundational claims like Hubert's thesis. For the former it is most
rewarding to pursue the details of (a) and (b), including the details of Fτ,
thus establishing the potential of formalization. But for a proper assessment
of the intended thesis it is essential to realize how few details are needed (for
its refutation)!

Either the various representations are not available in the system con-
sidered when it fails because it lacks expressive power, or the system is
incomplete and so fails because it lacks deductive power.

This refutation is, perhaps, little more than a wisecrack. If so, the pun-
ishment fits the crime, as it were: the thesis is so badly wrong that a refu-
tation is so undemanding. This kind of thing is familiar in memorable
foundations, and not only in the case of refutations. Thus Tar ski gave an
impeccable translation of" 'snow is white' is true" by "snow is white" (used
in Appendix 2(c)(i) above). Whatever problems there may be here, they con-
cern the optical properties of snow, not the general notion of truth. This
shows, for example, that Pilate had no reason to stay for an answer. In any
case, it does not seem to be recorded whether he asked his question with
bated breath or a shrug-and-a-wink.
Reminder: This use of mathematics, in particular, mathematical logic, is a
refrain of the whole review. Being mundane enough to remove any sense of
awe inspired by those Big Words, it corrects our view of them.

Addenda

(a) Numberings — of words of a numbered alphabet and of other syntactic
objects —are used traditionally, and appropriately if some proposition about
numbers is to be shown formally independent. But if the rhetoric about set-
theoretic foundations were taken literally, one would consider systems for
sets, and code (i.e., represent) their syntactic objects by means of hereditarily
finite sets, as is done in some elementary texts. For the rhetoric mentioned
the "identification" of symbols with sets is a matter of course, and the rep-
resentation of sequences of sets by sets is familiar. Viewed this way it is quite
lopsided to present arithmetization as a most central component, let alone
novelty, in GόdeΓs proofs of incompleteness. NB. Arithmetization or, more
precisely, ingenious variants have become central for such delicate later
developments as reducing the number of variables in a "universal" diophan-
tine equation; cf. Addendum (c) below.

(b) Actually, GόdeΓs proofs apply also to suitable sets (of axioms) that are not
formal (or, equivalently, recursively enumerable). Reminder: the set of con-
sequences should be representable. It is if, for example, all true V-sentences
are added to formal arithmetic.

(c) This is a representation of a sequence of all representable properties (of the
system considered) in the sense of (a)(ii) in Appendix 2 or, equivalently, an
enumeration of them for m = 0,1, It is perhaps satisfaisant pour Γesprit
that Kleene called such enumerations, which are indeed central to in com-
pleteness, complete (for recursively enumerable sets); "universal" is more
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usual now. In the language of functions they correspond to partial recursive
enumerations of all partial recursive functions. Here the difference between
total and partial functions corresponds to the difference between truth and
provability, mentioned at the end of Appendix 2(a)(i).

(d) Up to this point the notion of numerical representation, explained in Appen-
dix 2(a)(ii) for properties or, equivalently, sets, has been perfectly adequate.
Specifically, the results stated so far hold for all representations (of the par-
ticular set in question), even though the latter need not be formally equiv-
alent. For example, if for each n9 A(ή) is a formal theorem, F and Ft\A
represent the same set even if VxA(x) is not a formal theorem. Similarly, if
σ' represents the substitution operation, loco citato, so does σ{ where σ{ =
σ' + 0, but the corresponding gλ Φ g. Both Fτ[σ'(g,g)] and Fτ[σ'(gugι)]
satisfy the condition for so-called Gόdel sentences S: S <-• Fτ(s) is a formal
theorem, where s is the number of the formula -ιS. In (literate) English the
popular use of the definite article —"the" Gόdel sentence —requires some
equivalence relation connecting all formulas that satisfy the condition above.
For broad classes of common systems all Gόdel sentences are in fact formally
equivalent, for others they are not or not known to be equivalent. (Specialists
will think here of so-called Rosser systems, and readers of Note 5 will raise
similar questions about "this" in "This sentence is false".)

More generally, attention is required not only by the representation of
sets, as in Appendix 2(a)(ii), but also of propositions. Here, as so often, the
best guide for progress comes from broad mathematical experience rather
than from the recent logical literature; specifically, from the introduction of
(algebraic) coordinates in (synthetic) geometry.7

Codes —arithmetic or set-theoretic—correspond to the coordinates; syn-
tactic objects —either thought of as finite words of an enumerated alphabet
or as finite trees, say, in print, respectively on a blackboard—correspond to
geometric points; finally, properties of the objects—such as terms, formulas,
derivations — and relations, say, between derivations and their last formula
correspond to geometric relations, for example, collinearity.

At least one (historical) difference is to be noted, especially with respect
to the delicate cases of projective or desarguean geometry, which would be
called weak systems in contemporary logical jargon (compared to the geom-
etry of the full Euclidean plane). The geometric axioms came first, and the
corresponding algebraic ideas —of skew fields, fields etc. —afterwards. In
contrast, axioms for arithmetic including (weak) subsystems of familiar for-
mal arithmetic came first, while formal systems for syntax—concatenation
theory or theories of finite trees —are still not very familiar; especially, the
choice of axioms satisfied by the syntactic properties and relations above is
usually left implicit. Put differently, it is left open which data determine the
formal rules considered for generating terms etc. (If Post production rules
are meant, the corresponding additional axioms of the concatenation the-
ory have the form of so-called elementary inductive definitions including the
principle of proof by induction, which expresses that the least solution of
the inductive definition is meant.)

Readers will recall two elements in the introduction of coordinates.
First, there is the matter of determining (algebraic) coordinates for points
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uniquely up to transformations of a suitable kind, usually, some transfor-
mation group. Secondly, for a given choice of coordinates it is shown that
algebraic relations that satisfy the geometric axioms must be of a certain
form; for example, a relation satisfying the axioms for collinearity in two
dimensions will be linear in the algebraic sense.

Warning: There is a difference in jargon. The mathematical tradition does
not have the refrain, introduced at the end of Appendix 2(a)(i), about the
difference between truth and provability, but about truth in, say, the Euclid-
ean plane, and validity for all projective or desarguean planes. The defini-
tions involved in the introduction of coordinates are uniform for all
projective or desarguean planes considered.

The notion, called in the logical literature canonical representation (of
formal rules), follows the model just recalled; with modifications for canon-
ical invariant definitions, especially of operations, corresponding to Appen-
dix 2(a)(ii). In particular, given a (canonically defined) coding of the syntactic
objects, such canonical representations of syntactic properties are arithmetic
predicates satisfying, (demonstrably), the inductive definitions induced by
the Post production rules for those properties. Any two canonical represen-
tations of a given property are then demonstrably equivalent, provided of
course the system of arithmetic considered contains enough induction.

The corresponding uniqueness condition satisfied by the (canonical)
codings themselves is adequately illustrated by the humble matter of (sur-
jective) pairing TΓ with its left and right inverses, say λ and p, satisfying
π[λ(z),p(z)] = z for all z. If (7r',λ',p') is another such pairing then the
transformation: z h z' is given by: z' = π' [λ(z),p(z)]. (The weaker condi-
tion on —not necessarily surjective—pairings that used to be quoted, namely,
that π(x9y) = π(x',y') -> (x = x' t\y = >>'), would of course not be enough
for that transformation.) This uniqueness-up-to-definable-isomorphism here
corresponds to uniqueness within the geometric transformation group in the
case of coordinates. Before going further into the function(s) of canonical
representations it is as well to recognize a:

Wide-spread malaise about details of coding, often felt to be boring. This
is a 'subjective correlative' of the fact that, generally, the results actually
proved — about a particular coding or by use of it — are also valid for any
other coding that may come to mind. In other words, the details are intro-
duced for some ritual of precision', which draws attention away from the
more demanding questions of what one is being precise about, and why. At
an elementary stage there are two principal strategies for progress. One,
exemplified by the canonical representations above (and categorical axioms
in another sphere), is to formulate some kind of maximal requirement,
enough for any developments in sight. At an opposite extreme one looks at
minimal requirements for each of the more prominent results. At a later
stage, brute power may be used as in the 'ingenious variants' alluded to at
the end of Addendum (a), and, as always, there is the delicate job of dis-
covering relatively few requirements adequate in relatively many situations.
(All this may be hard, but it is not boring.) A good example of the latter is
provided by the popular and successful:
Modal language of provability logic. It realizes the idea of 'relatively many
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situations' by its established expressive power. A moment's thought shows
that the full panoply of canonical requirements is liable to be excessive here.
They—are enough to —cover also propositions about proofs (i.e., deriva-
tions) while the language is restricted to provability statements. The latter
require only conditions on representing logical operations and the set of con-
sequences, say Fτ and Fτ>, which ensure that statements in the modal lan-
guage are equivalent when Fτ, respectively Fτ> are substituted for D.
Because of the iteration of D, it is not enough that Fτ be a representation
in the sense of Appendix 2(a)(ii). As experts surely know, but do not pub-
licize, if modus ponens or, pedantically, D (p -> q) -• (Ώp -+ Πq) is deriv-
able for the representation Fτ used, the required condition simplifies.
Instead they talk of modus ponens being "natural", ignoring both the dis-
covery that cut-free rules are useful, and the philosophical observation, at
the end of Section 4, about the general weakness of the formal picture for
understanding the phenomena of proof.

Bibliographical comment for readers familiar with the (sloppy) litera-
ture on natural representations, especially common in connection with con-
sistency statements (in weak systems). The classical literature on the
foundations of geometry was far more sophisticated! It did not assume that
what happened to be familiar from ordinary analytic geometry since Des-
cartes would also be natural for, say, all projective planes. On the contrary
it investigated whether familiar techniques were adequate in the case of
unfamiliar, so to speak nonstandard (projective) planes; 'adequate' for its
elegant, though half-forgotten representation theorems with their explicitly
stated adequacy conditions. Remark: For the record I was not conscious of
the close relation between canonical representations and the introduction of
coordinates when I introduced the former some twenty-five years ago
(though I had learnt the latter from Hubert's Foundations of Geometry
twenty years earlier; cf. the footnote on p. 261 of [2]).

(e) This oblique reference to systems that prove their own consistency is worth
amplifying, specifically, in terms of canonical representations in the sense
of (d). Reminder: The "deviant" (self-referential) sentence introduced by
Rosser—to eliminate Gόdel's condition of ω-consistency for a system 5,
say —is simply a Gόdel sentence, in the sense of (d), for the canonical rep-
resentation of the following system, say, SR. Here

d, with end formula A, is a derivation in SR iff d is a
derivation in 5, and there is no derivation d\ before d, of -vl.

I do not know whether, in general, SR proves its own consistency, of course
formulated canonically, but S£ certainly does, where it is required in addi-
tion that

if A' is the end formula of d\ then A is not -υ4' either.

Note that the passage S h S£ is not only a simple but a recursive operation
(here meant in the usual, strong sense, not merely the sense of having recur-
sive values at recursive arguments). Incidentally—and without forgetting
limitations of all formal systems; cf. the end of Section 4 and of (d) — SR
possesses a feature of actual experience with proofs that is not present in
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more usual systems: the results are cross-checked against background
knowledge.

For consistent S, S and SR have not only the same set of theorems but
the same proofs; only the procedures for checking the latter are different.
Thus the —still common —formulation of GόdeFs second theorem "for all
sufficiently strong systems" is not at all sloppy but just sadly ignorant, in par-
ticular of anything like S£ above. A civilized formulation (modulo minimal
conditions) is in the

Theorem Either consistency or completeness for Σι

0 statements is not
(internally) derivable.

In fact this can be sharpened and expressed in modal language by
restricting completeness to provability statements, where not arbitrary Gόdel
sentences G: D (G *-+ D-iG) are used, but only G of the form G->G0; see
the opening paragraph of (d). This is a modal counterpart of so-called literal
Gόdel sentences, actually constructed in Appendix 2(b).

Proof (following Jeroslow): Completeness with respect to provability state-
ments, (ΏA) -» (DDi4), is enough to derive a literal Gόdel sentence from
consistency, -ι (ΏB Λ Ώ~*B). Specifically, for A = -iG 0 and B = ΏA. For,
by the defining property of such Gόdel sentences,

(D-1G0) ~ D-iD-πG0;

hence,

D-πG0-> D - D-iGo,

while completeness for Π-ιG 0 means

D-iG0-> DD-iGo

Corollary Since the proof does not use closure under modus ponens, and
ordinary cut-free systems are complete with respect to Σ? statements, such
systems do not prove their own consistency either.

Finally, to repeat what cannot be repeated too often: Without complete-
ness with respect to Σ? statements, consistency is very pale indeed: it does
not even ensure the truth of (proved) Π? statements; cf. Appendix 2(c)(ii),
where G EΣ® and so (-»G) G Π?. Remark: As readers will have noticed,
above consistency was taken in a sensible form, not merely in Hubert's coy
version, π D l , which implies consistency in the presence of modus ponens:
cf. end of Appendix 2(c). In cut-free systems, -ιD JL is provable in the sys-
tem itself.

NOTES

1. Even if not the oft-quoted part about settling moral or legal squabbles mechanically.
It seems to me it should not be too hard to program expert systems that generate,
statistically, more or less the usual judgments. But the market is likely to be limited.
Lawyers would not be enthusiastic, for obvious reasons; nor those, among the
accused and litigants, who are not satisfied with statistical justice (even when they
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accept the two cherished principles of the uniqueness of each individual and of equal-
ity before the law, which would make it wise to be satisfied).

2. In contrast to the pioneers a century ago, around the middle of our century Turing
proposed a test for identifying' thinking behavior by its not being distinguishable
from human performance. Naturally, distinctions by reference to certain aspects, so-
called results, were meant; comparable in the case of AL (artificial locomotion) to
'identifying' walking with roller skating as long as one starts and finishes together.
For AL viewed as a branch of engineering, which lives on achieving given results
(i.e., tasks) by novel processes, Turing's proposal is a matter of course. It becomes
remarkable if it is viewed as contributing somehow to elucidating the processes in
data processing, by putting them into black boxes, as it were, or ignoring them in
other ways. Needless to say that 'test' has become popular, among the vulgar, like
the most vulgar uses of Ockham's razor (where the fact that something is not needed
to explain a particular bunch of phenomena is interpreted to show that it does not
exist). For the record, that 'test' is the only indiscretion of Turing that I both know
of and have found at all disturbing.

3. For example, by 1929, a couple of years before Gόdel's discovery of incompleteness,
the number theorists Siegel and Weil discounted, in effect though in different terms,
the possibility of a complete formal theory for diophantine equations. In fact, their
equations had just two variables, for integral, respectively rational solutions. (WeiPs
equations were even only of degree four.) The question of whether or not there is
a complete formal theory for these special cases is still open. Incidentally, the two
papers referred to were immediately famous.

4. The ethereal business of possibilities-in-principle has been most prominent in foun-
dation; not only in the writings of Kant, mentioned already, but also of logicians like
Russell, who described Principiα as "a parenthesis in the refutation of Kant". Here,
as at the end of Appendix 2, the punishment fits the crime. Many of Kant's obser-
vations on reasoning apply impeccably to actual phenomena but are false if inter-
preted as needs-in-principle. Thus, contrary to Kant, appeal to geometric experience
(especially, visualization, also called Λnschαuung) is not needed in principle for
mathematical deductions. But it continues to be used widely, and to good effect.
More specifically, Euclidean geometry does not have the privileged place that Kant,
taken literally, gave to it (nor, of course, for physical space near massive bodies; and
it is not the geometry of visual space either). But, to this day, mathematicians con-
tinue to think in Euclidean terms, also when defining non-Euclidean spaces.

5. At least in my view, Smullyan's What is the name of this book? does not belong here
at all. (For one thing, the author is well informed.) It contains a remarkable collec-
tion of puzzles, puns, and other jeux d'esprit in which their logical aspects may fairly
be said to be dominant. They are understood by use of propositional or at most
(propositional) provability logic. But realistically speaking this recreational corner
of experience seems to me to be of very specialized interest; for example, more so
than the broader matters in the last chapter of his book, with more jokes, but with-
out much (relation to any earlier) point. True, Smullyan's fancies are no further from
ordinary linguistic experience than, say, Galileo's bags of feathers falling behind
leaden spheres are from ordinary mechanical phenomena. But they bring at least to
my mind a jolly wake for a defunct two-thousand-year-old tradition, that of the Liar,
rather than a first step to higher things like celestial mechanics.

6. It will not have escaped the reader's notice that the preceding pages of this review
are meant for a broad audience. The same applies to the following two appendices.
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However, the latter may be more useful, at least, for specialists if some relations to
the technical literature are pointed out explicitly. This is done at the end, in the
Addenda (a) to (e).

7. Readers familiar with interpretations in the sense of Tarski, that is, uniform defini-
tions of a model for one theory in another, may wish to compare the introduction
of coordinates to the interpretation of the particular systems of geometry considered
in the corresponding algebraic systems; to be quite precise, systems for vectors over
the coordinate space. Reminders: Projective geometry corresponds to skew fields,
Pappus to commutative fields, etc. But over and above an interpretation, coordinates
provide an embedding, which induces the (definable algebraic) relations that inter-
pret the so-called nonlogical constants of the geometry considered. All this is well
known.

Hubert went further in his Foundations, and interpreted the algebraic systems
in the corresponding geometry too. Specifically, he defined ternary relations, say, A
and M in the language of projective geometry, and proved for them geometrically
the laws of addition and multiplication that hold in the corresponding algebra, with
the same (formulas) A and M for all the extensions of the projective axioms, respec-
tively those for skew fields (and the same embedding, the identity, for the planes,
respectively algebras in question). This tour de force is a high spot in the tradition
to which so-called reverse mathematics belongs.

In the Addendum (d) coding of syntax is meant as interpreting a suitable for-
mal theory of syntax, that is, of finite words or finite trees with certain inductive
definitions —of such syntactic properties as: being terms, proofs, provable —in gen-
erally weak systems of arithmetic. The reverse direction, corresponding to Hubert's
tour deforce, does not seem to have been investigated. Roughly speaking, it looks
for an arithmetic 'structure' in —the language of—syntax (even though so far this has
no more been needed in coding than the tour de force was needed in geometry).
Reminder: Strictly speaking, a relative interpretation is involved since the embedding
is not onto, that is, not all natural numbers are codes of some syntactic object.
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