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De Re and De Dicto

THOMAS JAGER

It is widely recognized that the modal sentence 'Necessarily, Socrates is
wise' can be interpreted in two different ways. Under the first interpretation, the
de re interpretation, it is understood as saying that Socrates has the property of
being wise essentially; i.e., that Socrates has the property of being wise in every
possible world in which Socrates exists. Under the second interpretation, the de
dicto interpretation, it is understood as saying that the proposition Socrates is
wise is true in every possible world. In [3] and [4] Plantinga has suggested a way
of understanding the notion of necessity using the concept of essence: a prop-
erty E which is exemplified in some possible world and is such that, in every pos-
sible world, for every x, if x has E then: (a) x has E essentially and (b) in no
world does anything distinct from x have E. Using this notion of essence, an
applied semantics can be introduced for both de re and de dicto necessity which
satisfies the doctrine of serious actualism, that, necessarily, there are no objects
that do not exist and objects can have properties only in worlds in which they
do exist. For a first-order modal language L, a corresponding formal semantics
for de re necessity (and denial) and de dicto necessity (and denial) can be intro-
duced (the systems A and A* of [2]). Because L contains a single necessity oper-
ator and a single denial operator, it does not allow for the simultaneous
treatment of both kinds of interpretations. In this paper the language L is
extended by introducing a new class of operators; the result is a language rich
enough to support a semantics treating de re and de dicto notions simulta-
neously. The formal semantics introduced is characterized axiomatically.

Initially one might think that the problem of formally representing the two
senses of necessity simultaneously can be solved by introducing two necessity
operators, Di and D2, so that

(1) Di (Socrates is wise)

is interpreted as Socrates is essentially wise, and

(2) D2 (Socrates is wise)
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is interpreted as 'Socrates is wise' is necessarily true. Such a solution, however,
will not cover all of the possible constructions.

Consider the sentence

(3) Socrates is the teacher of Plato

and its necessitation

(4) Necessarily, Socrates is the teacher of Plato.

The latter can be interpreted in four ways:

(4a) The pair (Socrates, Plato) essentially stands in the relation 'is the teacher

of.
(4b) Socrates is the teacher of Plato is necessarily true.
(4c) Socrates has essentially the property of being Plato's teacher.
(4d) Plato has essentially the property of being Socrates' student.

Versions (4a) and (4b) are pure de re and de dicto versions of (4), while (4c) and
(4d) are hybrids. In worlds in which both Plato and Socrates exist, (4a) is the
weakest claim (requiring (3) to be true only in those worlds in which both
Socrates and Plato exist), (4b) is the strongest claim (requiring (3) to be true in
all worlds), and (4c) and (4d) are intermediate (requiring (3) to be true in all
worlds in which Socrates or Plato exists).

Negation displays the same complex behavior. Consider the denial of (3):

(5) It is not the case that Socrates is the teacher of Plato.

There are four possible readings:

(5a) The pair (Socrates, Plato) stand in the relation 'not the teacher of.

(5b) Socrates is the teacher of Plato is false.
(5c) Socrates has the property of not being the teacher of Plato.
(5d) Plato has the property of not being Socrates' student.

In any world in which both Socrates and Plato exist (5a)-(5d) have the same
truth value, but in worlds in which one or the other fails to exist the truth val-
ues may differ. For example, assuming the doctrine of serious actualism, if w
is a world in which Socrates exists but Plato does not, (5a) and (5d) must be false
while (5b) and (5c) must be true. Versions (5a) and (5b) are pure de re and de
dicto versions of (5), while (5c) and (5d) are hybrids.

In general, if F is an «-ary predicate, the necessitation and denial of the
statement ¥a{a2 . . an can each be interpreted in 2n different ways. The follow-
ing formal system is rich enough to represent all of these possibilities.

/ The formal semantics D We first define the language L for the seman-
tics. Its primitive symbols include those typically found in first-order modal lan-
guages: individual variables xu χ2,..., predicate symbols, connective and
quantifier symbols, and parentheses. In addition, there is a dictafier symbol V,
and for each individual variable ΛΓ, there are infinitely many position variants
#/, xf, xf,.... The formation rules are:
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(1) if Fis an «-ary predicate symbol and yx,... ,yn are position variants, then
Fyx.. .yn is an atomic wff,

(2) if a and β are wffs, so are ( ~ α ) , (α Λ β), and ( D α ) ,
(3) if a is a wff and xt is an individual variable, then (VX/α) is a wff,
(4) if a is a wff and xjf a position variant, then (Vxfa) is a wff. (An expres-

sion of the form 'V**' is called a dictafier.)

If α is a wff and xf a position variant, an occurrence of xjf in α is free if
it is not within the scope of a quantifier Vx,. Hence, the quantifier Vx, covers
all free occurrences of all position variants of xx within its scope. A variable xz

is free in a if some position variant of x, has a free occurrence in a. An occur-
rence of xf is V-free in α if it is free in a and is not within the scope of a dic-
tafier Vx/\ A variable x, is V-free in α if some position variant of X; has a
V-free occurrence in a. A dictafier Vxf binds only V-free occurrences of the
position variant xf itself. We l e t / ( α ) be the set of variables which are free in
a and let d(a) be the set of variables which are V-free in a. If d(a) is empty,
we say that a is V-closed. If {Xi,x2, >xn] = <*(«)> then Vx{ix2 . . . Vx^α is
the V-closure of α. Obviously, the V-closure of α is V-closed but not necessar-
ily closed in the quantifier sense.

A model structure for L is a quadruple M = (D, W, ψ9 φ), where D and PF
are nonempty sets (of essences and possible worlds, respectively), ψ is a func-
tion from W to the nonempty subsets of D (for H Έ If we write '£)„,' for
V( w)')> and </> is a function which assigns to each pair (F9 w), where Fis an A?-
ary predicate symbol and w E Ŵ, a set of π-tuples in Z)^. In addition, we
require that ( J Z)^ = D. If M is a model structure and w G W, then the pair

(M9w) is a model for Z/ and will be denoted by 6MW\
If M is a model structure, a function θ from the individual variables of L

to £> is called an essence assignment. We will assume that each essence assign-
ment θ is extended by the rule 0(x*) = 0(*,•), so that its domain includes all
position variants. We now define for each model Mw, assignment θ, and Z/-wff
a the notion that Mw satisfies a relative to θ:

(a) MwtθFyi >.yn itt(θ(yι)9...,θ(yn))Gφ(F,w)
(b) MwtθotΛβ iff M w N̂  α and Mw Vθ β
(c) Mw \=θ y/XiOL iff M w ha* α for every 0r such that 0' (*/) E Z)w and

0' has the same values as 0 for all variables other
than A:/

(d) M w he Vj^α iff M w ^ α
(e) MH, 1=̂  ~ α iff 0(x, ) E Dw for all x, G ί/(α) and not Mw tθ a
(f) M w Nθ Dα iff θ(Xi) G £>w for all xt E rf(α) and AfW' h# α for

every wr such that 0(ΛV) E Z)W' for all x, E ί/(α).

A wff a is vύr//rf in D if M w 1=̂  a for all A/, w, and 0.
To see how the system D allows the treatment of the various de re and de

dicto combinations, consider the following examples. Suppose Fz represents
Socrates is wise. By (f) and (d)

Mw Vθ ΠVzFz iff Mw. ¥θ Fz for all w',
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so that • VzFz represents the de dicto interpretation of 'Necessarily, Socrates
is wise'. By (f)

Mw Ve OFz iff θ(z) G Dw and Mw> f̂  Fz for all w' such that

0(z)ezv,
so that ΠFz represents the de re interpretation. Similarly, -VzFz represents
the de dicto denial

(6) Socrates is wise is false,

while ~ Fz represents the de re denial

(7) Socrates is nonwise.

If Fzy represents Socrates is the teacher of Plato, the four varieties of necessi-
tation (4a)-(4d) are represented by ΠFzy, • VzVyFzy, D VyFzy, and D VzFzy,
respectively; and the four varieties of denial (5a)-(5d) by -Fzy, -VzVyFzy,
-VyFzy, and '-VzFzy.

The system D contains as fragments the pure de re and de dicto systems
A and A* introduced in [2]. The set of dictafier free wffs in L containing only
the position variants x{9 x%,..., obviously gives the system A, and the set of
Z/-wffs generated from formulas of the form Vĵ  . . . VynFyι ...yn, where yj is
a position variant of the form */, by denial, conjunction, quantification, and
necessitation gives the system A*.

It follows easily by induction that if Mw !=<? a, then 0(x,) G Dw for all xt G
d{a). Consequently, every valid wff must be V-closed (though not necessar-
ily closed). For example, of the wffs y/x^Fx} v -Fx}), Vx}Fx} v ~Vx}Fx},
Fx} v -Fx}, and Vx}(Fx} v ~Fx}), only the first two are D-valid. The last
wff, Sjχ}(Fx} v -Fx}), has an interesting and useful property. Since Mw \=θ

VXΠFXI v ~Fxf) iff θ(Xi) G Dw, \/x}(Fx} v ~Fχ}) is a V-closed wff which
functions as an internally defined exemplification predicate; i.e., it is true of an
essence in a world iff that essence is exemplified in that world. In what follows,
the wff \/x}(Fx} v - Fx}) (for a fixed predicate symbol F) will be abbreviated
by exh

Let α be a wff and xt and Xj individual variables. We say that xt is free for
Xj in a. if no free occurrence of a position variant of #, is within the scope of a
quantifier Vxy. If χt is free for x} in a, then a substitution of variants of Xj for
all the free occurrences of variants of xz is a good substitution if: (1) no posi-
tion variant of Xj which is used has a free occurrence in VX/α, (2) distinct var-
iants of Xj are replaced by distinct variants of x,, and (3) multiple occurrences
of x* are replaced by the same variant of Xj. Any result of such a good substi-
tution will be denoted by a[Xi\xj]. That a[Xi\xj] is ambiguous will present no
difficulty in what follows.

If a is a wff and x, is an individual variable, then Vx̂ α will be an ab-
breviation of the wff resulting from prefixing a with dictafiers with respect
to all variants of xt which have V-free occurrences in α.

2 Axiomatics for D If a if an L'-wff, we write \-a if the V-closure of a
is a theorem. We have the following axiom formation rules:
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(Dl) If a is an instance of a truth functional tautology, then \-a.
(D2) For any α, β, xi9 |-VJt/(a D 0) D (vjc, α D VJC/JS).

(D3) For any a, jtf, \-a = Vx ^α.
(D4) If XiEdia), then \-Vxfα D e*, .
(D5) If x, £ / ( α ) , then (-<* = vjt/α.
(D6) If α is a wff and xt is free for xy in α and α [X/|*/] is any good substi-

tution, then h(V#, α) Λ eXj D S7xja[Xi\Xj].
(D7) If F is any predicate letter and yt and y* are variants of the same vari-

able, then \-Fy{ ...;>„ = Fyf. . .y*.
(D8) For any wff a, \-Πa D a.
(D9) For any ot, β, if d(a) - d(β) = {zu...,Zn}9 then \-Π(a D β) D

( D α D D(ezi Λ . . . Λ ezn Dβ)).
(D10) For any α, \-0a D DOα.
(Dll ) For any xh hOex,-.

In addition, there are three inference rules: modus ponens, necessitation, and
generalization. Formally:

(MP) If d(a) c d(β), [-a D β, and \-a, then \-β.
(N) If hα, then hDα.
(V) If hα, then for any xh hvxf α.

That the axioms are Z)-valid and that the inference rules preserve validity
are easy to show. Some examples will illuminate the necessity for the unusual
forms of (D9) and (MP). First, consider the wff

(8) VX;(D (Gxf DeXj)D (ΏGxf D ΏeXj)).

If M = (D,W,\l,,φ)9 where D= {a,b,c}, W= [wl9w2}9 DWι = {a,b},DW2 =
{c}9 φ(G,w{) = {a}, and φ(G, w2) is empty, then for θ(Xj) - a and θ(xj) = b,
it is false that MWγ h<? Ώ(Gx* D exβ D (ΏGxf D OeXj). Hence, (8) is not
valid and axiom schema (D9) cannot be replaced by the more familiar

(D9') For any α, β9 hD (a D β) D ( D α D Ώβ).

Second, since VxMFxjf v -Fxjf) D ex,) and VX/(Fx^ v -Fxjf) are valid, but
eXi is not we cannot conclude from the validity of the V-closures of (Fxϊ v
~Fxf) D eXi and (Fxf v ~Fxjf) the validity of the V-closure of ext (which is ex,
itself). Hence, modus ponens in its usual form does not work for D.

One further example of the quirks of D is useful. There is no analog to the
quantifier generalization rule (V) for dictafiers; i.e., the rule

(V) If hα, then (-Vx^α,

does not preserve validity. For example, the V-closure of (Fxjf v ~Fxf) is
valid, but the V-closure of Vjt/ίFx* v -Fxf) is not.

Some consequences of the axioms and inference rules follow.

Theorem 2.1 (Generalized modus ponens) If \-a D β, \-a, and d(a) —

d(β) = U i , . .,Zn), then \-eZ\ Λ . . . Λ ezn D β.

Proof: If n = 1, by (V), (D2), and (MP) we get \-Vz{β. By (D6), hVzi/3 Λ
ezi D VzijS; and by (D3) h Vzi βDβ. Hence, by (Dl) and (MP), f-Vzi^ Λ ez\ D
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β and hvzi0 D (€Zι D 0) . By (MP), \-eZχ D β. The general case follows easily by
induction on n.

Theorem 2.2 (Substitution) If the position variants with V-free occurrences
in λ are exactly those with SI-free occurrences in μ and a is like a' except for
containing an occurrence of μ where a contains λ, then \-λ = μ implies \-a =
a'.

Proof: By induction on the formation rules for a. If a is Πβ and a' is DjS',
then, since d(β) = d(β'), \-Πβ s Πβ' follows from \-β = β'. Suppose a is
VΛτf/3, α ' is VjtfjS', and \-β s 0'. Because rf(/3) = rf(jS') and f-Vx̂ /S D
|8, l-Vx/tf D 0'. Also, Vβ' D Vx/tf'. If JC, £ tf(β'), then hVxfiS D Vx^/3' fol-
lows from (MP). If xt e d(β'), then hex, D (Vxfβ D Vxfβ') follows from
Theorem 2.1. But, by (D4) Wxfβ D exh Hence, hV ĉ jS D Vxfβ'. The con-
verse follows similarly. The proofs for the rest of the cases are standard.

Theorem 2.3 For any xh h (V*, ) exz.

P/Ό0./: By (D3), \-(Fxl v ^Fx/) D exh By (V), (D2), and (MP), hVX/(Fx/ v
-Λc/) D (VXi)eXi. By (Dl) and (V), hVJC, (Fjc/ v - F x / ) . Hence, h(VJC/)€JC/.

Theorem 2.4 //"α ύr̂ ί/ α ' are alphabetic variants, then \-a = ocf.

Proof: By induction on the formation rules. Since for two alphabetic variants
the same position variants have free occurrences in each, all of the cases follow
from Theorem 2.2 except for the case that a is VXjβ and a' is VXjβ'[Xi\Xj]9

where β' is an alphabetic variant of β in which Xj is not free and β' [XJ\XJ] is the
good substitution which replaces each xf in βr with xf. By the induction
hypothesis and substitution, f-VX β Ξ VJC/J3'. By (D6) and (D3), hVJt/jS' Λ exj D
β' [Xi\Xj]. Since Xj is not free in β\ Theorem 2.3 along with (Dl), (D2), (D5),
and Theorem 2.1 gives hVX/β' D VXjβ'[Xi\Xj]. The converse follows similarly.

All of the usual modal redundancy results of the modal (55) propositional
calculus hold. Some of the less familiar results which are necessary for what fol-
lows are included in

Theorem 2.5 Ifd(a)= rf(δ),
(a) IfYOb D Oα, then f-O(Oδ D a)
(b) // hδ, then |-Oα D 0 (a Λ δ)
(c) h θ ( θ α D Oδ) s (Oα D Oδ).

The following results are somewhat technical in nature, but will be used in
proving completeness.

Theorem 2.6 Ifd(δ) = d(a) and z is not free in δ, then hΠv^D (δ D Dα) D
D(δD DVzΠα).

PAΌO/: |-ΠVzD(δD Dα) D DVz D ( - D α D -δ)
D DVz(D~Dα D G-δ)
D DVz(Oδ D Dα)
D D(OδD VzΠα)
D D(Π(OδD VzDα))
D D(DOδD DVzΠα)
D D(δ D DVzDα).
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Theorem 2.7 Ifd(δ) = d(λ) and z is not free in δ, then if hθ3zθλ, then
h θ 3 z θ ( θ δ D O(δΛ Oλ)).

Proof: By Theorem 2.5(b), hθδ D 0 ( δ Λ O3zθλ). Replacing α in Theorem 2.6
with ~λ and taking the contrapositive produces |-0(δ Λ O3zθλ) D O3zθ(δ Λ
Oλ). Hence, |-0δ D O3zθ(δ Λ Oλ). By Theorem 2.5(a), | -0(0δ D 3zO(δ Λ
Oλ)). Since z is not free in δ, |-03z(0δ D 0 ( δ Λ Oλ)). The conclusion now fol-
lows from Theorem 2.5(c).

Theorem 2.8 Ifd(\) = d(δλ)=...= d(δn) and h~ (λ Λ Dδ! Λ . . . Λ Dδ Λ ),
then h~(OλΛ Dδ! Λ . . . Λ D 6 Π ) .

Proof: Suppose h ~ ( λ Λ Dδx Λ. .Λ Dδ Λ ) . Then, \-Πδ{ D ( . . . D (Πδn D
~ λ ) . . . ) . By (N) and (D8), and redundancy of double necessitation, \-Πδ{ D
( . . . (Dδ Λ D D - λ ) . . . ) . Hence, I—(Oλ Λ Dδi Λ. . .Λ Dδ π ) .

Let β be a V-closed wff and Xj a variable not occurring in β. If Xι is any
other variable and β[Xi\xj] is the good substitution which replaces each free xf
in β with x/, then (3xzj8 D β[XJ\XJ]) Λ e c, is a 0-levelE-formula with respect to
Xj. If δ is an fl-level ϋ1-formula with respect to Xj and λ is a V-closed wff in
which Xj is not free, then Oλ D 0 (λ Λ δ) is an n + l-level E-formula with respect
to Xj.1

Theorem 2.9 If λ is a 0-level E-formula with respect to z, then |-3zλ.

Proof: The usual argument works because of Theorem 2.3.

Theorem 2.10 If λ is a k-leυel E-formula with respect to z, k > 0, then

hθ3zθλ.

Proof: Suppose k = 1 and λ is Oδ D 0 (δ Λ μ), where μ is 0-level. Then

hθδ D O(δ Λ 3z/χ) (Theorem 2.9 and Theorem 2.5(b))
D Olz(δAμ)
D 0 3 z 0 ( δ Λ μ ) .

By Theorem 2.5(a), f-O(Oδ D 3zO(δ A μ))9 so that |-03z(0δD O(δΛμ)). The
conclusion follows trivially.

Suppose k > 1, so that λ is Oδ D O(δ Λ μ) where μ has the form Oδ* D
O(δ* Λ /x*). By Theorem 2.5(c), \-μ = Oμ. By the induction hypothesis and
Theorem 2.7, |-03z0(0δ D O(δ Λ Oμ)). Using substitution of μ for Oμ pro-
duces |-O3zθλ.

Theorem 2.11 If a is V-closed, z is not free in α, and λ is an E-formula
with respect to z, then h ~ ( α Λ λ ) implies \-~a.

Proof: Suppose λ is 0-level and | - ~ ( α Λ λ ) . Then \-(a D — λ) . Since z is not
free in a, \-a D Vz~λ. Hence, |-3zλ D -a. By Theorem 2.9, I—α. Suppose
λ is /:-level k > 0. Then, hλ = Oλ. Suppose I— (a Λ λ) . By substitution, \-a D
~Oλ. Hence, hθα D O~Oλ, so that hθα D D~λ. Hence, |-0α D VzΠ-λ and
| - D 0 α D DVzΠ~λ. It now follows that hθ3zθλ D 0 D ~ α . Using Theorem
2.10 gives f-OD~α, from which \-~a obviously follows.

Theorem 2.12 Ifd(\) = {Zi,...,zn} then \-Π(ezi Λ . . . Λ ezn ~D V z i . . .

Vznλ) = D λ .
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Proof: By (D4), h Vz, ~ λ D ez, . Combining this with (D3) gives |—λ D βZi for
all /. Hence, h~λ D ezi Λ . . . Λ ezn Combining this with h Vzi... Vz^λ D λ
produces |- {ez\ Λ . . . Λ ezrt D Vzi . . . VzΛλ) D λ. Application of (N) and (D9)
gives one of the desired conditionals. The converse conditional follows directly
from (D9), (N), and hλ D Vzi . . . VzΛλ.

3 Completeness A Henkin system for D is a nonempty set Ω of pairs
(H, VH), where H is a nonempty set of L'-wffs and VH is a nonempty set of
variables satisfying

(a) If a E //, then d(α:) c F^
(b) If d(α) c vH, then exactly one of α, ~α is in //
(c) If d(a) c F// and ha, then α E H
(d) I f α D β , α € f f , then 0 e H
(e) If A:/ E K//, then ex, E H
(f) If JC, ί VH, then ^ex, E //
(g) If VX/α E //, Xj E l^/, and X/ is free for xy in α, then for every good sub-

stitution, α[*/|jC/] E //.
(h) If BΛΓ/α E i/ and a is V-closed, then there is an Xj E VH such that x, does

not occur in a and for some good substitution, α[x/|JC/] E H
(i) Vxf/3 E H iff /J E //
(j) If α is V-closed and Dα E //, then α E H' for every //'
(k) If a is V-closed and Oα E //, then a EH' for some //'.

Any pair (H, VH) satisfying (a)-(i) will be called a Henkin set.
If Ω is a Henkin system, the quadruple M = (A W9ψ,φ)9 where D is

the set of variables of L, W = Ω, φ(H, VH) = VH, and φ(H,F) = {(zi,...,
zn)\Fz*.. Zn E // for some position variants z* of Z/} is a model structure.
Observe that (Dll) guarantees that D = [J VH. If θ is the identity mapping

H

from the set of variables of L to D, the following theorem holds:

Theorem 3.1 For any wffa, MH \*θ a iff a E H.

Proof: Define the level L of a wff by

(*)L{Fyx...yn) = n + \
(b) L((a A β)) = L(a) + L(β) + 1
(c)L((~α))=L(α) + l
(d)L((V^α))=L(α) + 1
(e) L((vx/α)) = 2 £ ( α )

(f) L((Πa)) = \ALM.

By induction on the level of a. Basically the cases have standard proofs. The
argument for the case that a is V t/β follows from (h) applied to the V-closed
wff Vx Vzi Vẑ iS (where d(β) = {zi,... ,zn)), (i), and (g). The argument
for the case that a is Πβ follows from (i) and (k) applied to the V-closed wff
Πβ* given by Ώ(ez\ Λ . . . Λ ezrt D Vzi... VzΛβ) and Theorem 2.12. For exam-
ple, suppose MH VQ Πβ and Πβ £ H. Then d(β) = [zu . . . ,zΛ) c γH and by
Theorem 2.12 YΠβ m Πβ*. By (c), Πβ* D Πβ is in H. Since Πβ £ H, Πβ* £
H. But, [-ΠβD Πβ*,so that MH \=θ Πβ D Πβ*. Hence, MH \=θ Πβ*. Thus,
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β* is a V-closed wff such that L(/T) < L(Dj8), MH \=θ Dj3*, and Πβ* <£ //.
The usual argument now produces a contradiction from (k).

A wff a is D-consistent if not I—a. A set 5 of wffs is D-consistent if
every finite conjunction of wffs in S is D-consistent. If F* is a set of variables,
a set 5 of wffs is maximally V*-consistent if

1. If α G S, thenrf(α) c F*
2. If zG F*, thenezGS
3. / / z ί F*, then -ez G 5
4. If ί/(α) e F*, then either α G S or ~α G S
5. 5 is consistent.

Theorem 3.2 i fS /s maximally V*-consistent, then (S,V*) satisfies (a)-(g),
(i) of the definition of Henkin set. If in addition, S satisfies

(*) For every V-closed wff β, there is a variable Xj not occurring in β such
that for some good substitution (B t/β D β[Xi\xj]) Λ eXj is in S.

then (5, F*) is a Henkin set.

Proof: (a)-(f) are trivial.
(i) If β G S, since \-β D Vxfβ we have Vxfβ G S. Conversely, suppose

Vx/73 G S, so that d{Vxfβ) c F*. Since I-VJC/̂ /S D β, if rf(j8) c F* then /3 G
5. If Xi £ d(β), then rf(/J) c F*. If x, G rf(/J), by (D4) hVJĈ /J D ex,-, so that
eXi G S. But this forces xt G F*, so that d(β) c F*.

(g) If VX/α G S and xy G F*, then by (2) exj G 5. Using (D6) and (i),
a[Xi\xj] G S.

(h) Follows trivially from (*).

Theorem 3.3 If a is any V-closed consistent wff then there exists a Henkin
system Ω containing a Henkin set (H, VH) such that a G H.

Proof: As usual, we say that two is-formulas belong to the same ii-form if they
differ only with respect to the variable z- There are countably many E-forms:
E\, E2,..., each of which contains an infinite number of wffs.

We construct the set S as follows. Beginning with a we add a sequence of
ϋ7-formulas from the E-forms, at each step choosing an ZΓ-formula with respect
to a variable not occurring in any previous wff. It follows from Theorem 2.11
that the resulting set is inconsistent. Next we pass through the list of all wffs
β, adding β to the set if it can be consistently added. The resulting set is S and
is consistent by construction. Let Vs = [z\ez G S). Since S contains a 0-level E-
formula from each 0-level is-form, if S is maximally F5-consistent, (5, Vs) is a
Henkin set. First, suppose β G S and z G d(β). If z ί Vs then ez £ S. Hence,
S U {ez} is inconsistent. Since ez is V-closed and S is consistent, it follows that
S U {-ez} is consistent, so that -ez G S. But, by (D3) and (D4), \-β D ez, so
that I—(j3 Λ -ez). This conflicts with the consistency of S. Hence, (5, Vs)
satisfies condition (1) of the definition. (2) follows from the definition of Vs.
The proof of (3) is included in the proof of (1). Next, suppose d(β) <Ξ Vs and
neither β nor -β is in S. Then, there are conjunctions γ and r in S such that
h~(γΛj3) and h-(rΛ ~β). (Dl) and (MP) give | - ~ ( T Λ ~β) D ~(τΛγ) . If
{Zi zΛ) =rf(j3)Utf(τ) -d(7)Urf(τ) , by Theorem 2.1 we get hezi Λ . . . Λ
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ezn D ~ ( τ Λ 7), or |—(ez\ Λ. . . Λ ezn Λ T Λ 7) . Since tf(/3) <Ξ f/̂  this conflicts
with S's consistency. Hence, (5,F$) is a Henkin set.

Next, if 0/3 E 5 and β is V-closed, we define the set Sβ as follows. We
begin with β. If the first is-form is Ex = { δ π , δ 1 2 , . . . }, then, since S contains
a wff from each Is-form, S contains a wff of the form 0/3 D 0 ( 0 Λ δ l Λ l ) ,
where the variable z for which δ l A I 1 is an is-formula is not free in β. By The-
orem 2.11, δ 1 / 2 l can be consistently added to {β}. Similarly, if E2 =
{δ 2 1 > δ 2 2 , . . . }, S contains a wff of the form O ( / 3 Λ 6 1 Λ I ) D O ( / J Λ O 1 Π I Λδ 2 Λ 2 ),
where the variable z for which δ2n2 is an ^-formula is not free in β Λ δ l Λ . By
Theorem 2.11, {/3,δlrtl,δ2/ϊ2} is consistent. Continue this process through the
list of ii-forms. Now, for any wff Oλ in 5 such that λ is V-closed, add Dλ to
the set. The result is still consistent. If h~ (β Λ δ, l Π. Λ . . . Λ bikn. Λ Dλ y i Λ . . .
Λ Dλ y π ) , then by Theorem 2.8

(**) V~(O(β Λ δiιniι Λ. . Λ δ ^ . ) Λ Πλj, Λ. . .Λ ΠλjJ.

But, 0/3 G 5, 0 (β) D0(βA δ / l Π / i) G S, etc., so that 0(0 Λ δ / l Π / i Λ . . . Λ δ ^ ^ ) G
5. But, Dλ/ G S for each /, so that (**) cannot be true since S is consistent.
Finally, we go through the list of all wffs σ, adding σ to the set if σ can be con-
sistently added. The resulting set is Sβ. If Vβ = {z\ezG Sβ], then (Sβ, Vβ) is a
Henkin set.

Finally, {(S, Vs)} U {(5^, J^)| 0/3 G 5, /3 is V-closed} is a Henkin system.
This follows easily from the construction and the fact that DOσ is in a Henkin
set iff Oσ is.

Theorem 3.4 Every D-valid wff is a theorem.

Proof: From Theorems 3.1 and 3.3.

NOTE

1. This definition of E-formula and its subsequent use follows [1], pp. 165-168. How-
ever, since the Barcan formula, Vĵ Dα D DV t/α, is not valid in D (even for V-
closed wffs α), some modifications are necessary. In particular, h3*/λ holds only
for 0-level ^-formulas. For higher levels, we have the weaker result Theorem 2.10.
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