De Re and De Dicto

THOMAS JAGER

It is widely recognized that the modal sentence 'Necessarily, Socrates is wise' can be interpreted in two different ways. Under the first interpretation, the de re interpretation, it is understood as saying that Socrates has the property of being wise essentially; i.e., that Socrates has the property of being wise in every possible world in which Socrates exists. Under the second interpretation, the de dicto interpretation, it is understood as saying that the proposition Socrates is wise is true in every possible world. In [3] and [4] Plantinga has suggested a way of understanding the notion of necessity using the concept of essence: a property E which is exemplified in some possible world and is such that, in every possible world, for every x, if x has E then: (a) x has E essentially and (b) in no world does anything distinct from x have E. Using this notion of essence, an applied semantics can be introduced for both de re and de dicto necessity which satisfies the doctrine of serious actualism, that, necessarily, there are no objects that do not exist and objects can have properties only in worlds in which they do exist. For a first-order modal language L, a corresponding formal semantics for de re necessity (and denial) and de dicto necessity (and denial) can be introduced (the systems A and A^{*} of [2]). Because L contains a single necessity operator and a single denial operator, it does not allow for the simultaneous treatment of both kinds of interpretations. In this paper the language L is extended by introducing a new class of operators; the result is a language rich enough to support a semantics treating de re and de dicto notions simultaneously. The formal semantics introduced is characterized axiomatically.

Initially one might think that the problem of formally representing the two senses of necessity simultaneously can be solved by introducing two necessity operators, \square_{1} and \square_{2}, so that
(1) \square_{1} (Socrates is wise)
is interpreted as Socrates is essentially wise, and (2) \square_{2} (Socrates is wise)
is interpreted as 'Socrates is wise' is necessarily true. Such a solution, however, will not cover all of the possible constructions.

Consider the sentence
(3) Socrates is the teacher of Plato
and its necessitation
(4) Necessarily, Socrates is the teacher of Plato.

The latter can be interpreted in four ways:
(4a) The pair (Socrates, Plato) essentially stands in the relation is the teacher of'.
(4b) Socrates is the teacher of Plato is necessarily true.
(4c) Socrates has essentially the property of being Plato's teacher.
(4d) Plato has essentially the property of being Socrates' student.
Versions (4a) and (4b) are pure de re and de dicto versions of (4), while (4c) and (4d) are hybrids. In worlds in which both Plato and Socrates exist, (4a) is the weakest claim (requiring (3) to be true only in those worlds in which both Socrates and Plato exist), (4b) is the strongest claim (requiring (3) to be true in all worlds), and (4c) and (4d) are intermediate (requiring (3) to be true in all worlds in which Socrates or Plato exists).

Negation displays the same complex behavior. Consider the denial of (3):
(5) It is not the case that Socrates is the teacher of Plato.

There are four possible readings:
(5a) The pair (Socrates, Plato) stand in the relation 'not the teacher of'.
(5b) Socrates is the teacher of Plato is false.
(5c) Socrates has the property of not being the teacher of Plato.
(5d) Plato has the property of not being Socrates' student.
In any world in which both Socrates and Plato exist (5a)-(5d) have the same truth value, but in worlds in which one or the other fails to exist the truth values may differ. For example, assuming the doctrine of serious actualism, if w is a world in which Socrates exists but Plato does not, (5a) and (5d) must be false while (5b) and (5c) must be true. Versions (5a) and (5b) are pure de re and de dicto versions of (5), while (5c) and (5d) are hybrids.

In general, if F is an n-ary predicate, the necessitation and denial of the statement $\mathrm{F} a_{1} a_{2} \ldots a_{n}$ can each be interpreted in 2^{n} different ways. The following formal system is rich enough to represent all of these possibilities.

1 The formal semantics $\boldsymbol{D} \quad$ We first define the language L^{\prime} for the semantics. Its primitive symbols include those typically found in first-order modal languages: individual variables x_{1}, x_{2}, \ldots, predicate symbols, connective and quantifier symbols, and parentheses. In addition, there is a dictafier symbol ∇, and for each individual variable x_{i} there are infinitely many position variants $x_{i}^{1}, x_{i}^{2}, x_{i}^{3}, \ldots$ The formation rules are:
(1) if F is an n-ary predicate symbol and y_{1}, \ldots, y_{n} are position variants, then $F y_{1} \ldots y_{n}$ is an atomic wff,
(2) if α and β are wffs, so are $(\sim \alpha),(\alpha \wedge \beta)$, and ($\square \alpha)$,
(3) if α is a wff and x_{i} is an individual variable, then ($\left.\forall x_{i} \alpha\right)$ is a wff,
(4) if α is a wff and x_{i}^{k} a position variant, then $\left(\nabla x_{i}^{k} \alpha\right.$) is a wff. (An expression of the form ' ∇x_{i}^{k} ' is called a dictafier.)

If α is a wff and x_{i}^{k} a position variant, an occurrence of x_{i}^{k} in α is free if it is not within the scope of a quantifier $\forall x_{i}$. Hence, the quantifier $\forall x_{i}$ covers all free occurrences of all position variants of x_{l} within its scope. A variable x_{i} is free in α if some position variant of x_{i} has a free occurrence in α. An occurrence of x_{i}^{k} is ∇-free in α if it is free in α and is not within the scope of a dictafier ∇x_{i}^{k}. A variable x_{i} is ∇-free in α if some position variant of x_{i} has a ∇-free occurrence in α. A dictafier ∇x_{i}^{k} binds only ∇-free occurrences of the position variant x_{i}^{k} itself. We let $f(\alpha)$ be the set of variables which are free in α and let $d(\alpha)$ be the set of variables which are ∇-free in α. If $d(\alpha)$ is empty, we say that α is ∇-closed. If $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}=d(\alpha)$, then $\forall x_{1} \forall x_{2} \ldots \forall x_{n} \alpha$ is the ∇-closure of α. Obviously, the ∇-closure of α is ∇-closed but not necessarily closed in the quantifier sense.

A model structure for L^{\prime} is a quadruple $M=(D, W, \psi, \phi)$, where D and W are nonempty sets (of essences and possible worlds, respectively), ψ is a function from W to the nonempty subsets of D (for $w \in W$ we write ' D_{w} ' for ' $\psi(w)$ '), and ϕ is a function which assigns to each pair (F, w), where F is an n ary predicate symbol and $w \in W$, a set of n-tuples in D_{w}. In addition, we require that $\bigcup_{w \in W} D_{w}=D$. If M is a model structure and $w \in W$, then the pair (M, w) is a model for L ' and will be denoted by ' M_{w} '.

If M is a model structure, a function θ from the individual variables of L^{\prime} to D is called an essence assignment. We will assume that each essence assignment θ is extended by the rule $\theta\left(x_{i}^{k}\right)=\theta\left(x_{i}\right)$, so that its domain includes all position variants. We now define for each model M_{w}, assignment θ, and L^{\prime}-wff α the notion that M_{w} satisfies α relative to θ :
(a) $M_{w} F_{\theta} F y_{1} \ldots y_{n}$
iff $\left(\theta\left(y_{1}\right), \ldots, \theta\left(y_{n}\right)\right) \in \phi(F, w)$
(b) $M_{w} \vDash_{\theta} \alpha \wedge \beta$
iff $M_{w} \vDash_{\theta} \alpha$ and $M_{w} \vDash_{\theta} \beta$
(c) $M_{w} F_{\theta} \forall x_{i} \alpha$
iff $M_{w} \vDash_{\theta^{\prime}} \alpha$ for every θ^{\prime} such that $\theta^{\prime}\left(x_{i}\right) \in D_{w}$ and θ^{\prime} has the same values as θ for all variables other than x_{i}
(d) $M_{w} F_{\theta} \nabla x_{i}^{k} \alpha$
iff $M_{w} \vDash_{\theta} \alpha$
(e) $M_{w} F_{\theta} \sim \alpha$
(f) $\quad M_{w} \vDash_{\theta} \square \alpha$
iff $\theta\left(x_{i}\right) \in D_{w}$ for all $x_{i} \in d(\alpha)$ and not $M_{w} \vDash_{\theta} \alpha$
iff $\theta\left(x_{i}\right) \in D_{w}$ for all $x_{i} \in d(\alpha)$ and $M_{w^{\prime}} \vDash_{\theta} \alpha$ for every w^{\prime} such that $\theta\left(x_{i}\right) \in D_{w^{\prime}}$ for all $x_{i} \in d(\alpha)$.

A wff α is valid in D if $M_{w} F_{\theta} \alpha$ for all M, w, and θ.
To see how the system D allows the treatment of the various de re and de dicto combinations, consider the following examples. Suppose $F z$ represents Socrates is wise. By (f) and (d)
so that $\square \nabla z F z$ represents the de dicto interpretation of 'Necessarily, Socrates is wise'. By (f)

$$
\begin{aligned}
M_{w} F_{\theta} \square F z \quad \text { iff } \theta(z) & \in D_{w} \text { and } M_{w^{\prime}} F_{\theta} F z \text { for all } w^{\prime} \text { such that } \\
\theta(z) & \in D_{w^{\prime}},
\end{aligned}
$$

so that $\square F z$ represents the de re interpretation. Similarly, $\sim \nabla z F z$ represents the de dicto denial
(6) Socrates is wise is false,
while $\sim F z$ represents the de re denial
(7) Socrates is nonwise.

If Fzy represents Socrates is the teacher of Plato, the four varieties of necessitation (4a)-(4d) are represented by $\square F z y, \square \nabla z \nabla y F z y, \square \nabla y F z y$, and $\square \nabla z F z y$, respectively; and the four varieties of denial (5a)-(5d) by $\sim F z y, \sim \nabla z \nabla y F z y$, $\sim \nabla y F z y$, and ${ }^{\prime} \sim \nabla z F z y$.

The system D contains as fragments the pure de re and de dicto systems A and A^{*} introduced in [2]. The set of dictafier free wffs in L^{\prime} containing only the position variants $x_{1}^{1}, x_{2}^{2}, \ldots$, obviously gives the system A, and the set of L^{\prime}-wffs generated from formulas of the form $\nabla y_{1} \ldots \nabla y_{n} F y_{1} \ldots y_{n}$, where y_{j} is a position variant of the form x_{i}^{i}, by denial, conjunction, quantification, and necessitation gives the system A^{*}.

It follows easily by induction that if $M_{w} \vDash_{\theta} \alpha$, then $\theta\left(x_{i}\right) \in D_{w}$ for all $x_{i} \in$ $d(\alpha)$. Consequently, every valid wff must be ∇-closed (though not necessarily closed). For example, of the wffs $\forall x_{i}\left(F x_{i}^{1} \vee \sim F x_{i}^{1}\right), \nabla x_{i}^{1} F x_{i}^{1} \vee \sim \nabla x_{i}^{1} F x_{i}^{1}$, $F x_{i}^{1} \vee \sim F x_{i}^{1}$, and $\nabla x_{i}^{1}\left(F x_{i}^{1} \vee \sim F x_{i}^{1}\right)$, only the first two are D-valid. The last wff, $\nabla x_{i}^{1}\left(F x_{i}^{1} \vee \sim F x_{i}^{1}\right)$, has an interesting and useful property. Since $M_{w} \vDash_{\theta}$ $\nabla x_{i}^{1}\left(F x_{i}^{1} \vee \sim F x_{i}^{1}\right)$ iff $\theta\left(x_{i}\right) \in D_{w}, \nabla x_{i}^{1}\left(F x_{i}^{1} \vee \sim F x_{i}^{1}\right)$ is a ∇-closed wff which functions as an internally defined exemplification predicate; i.e., it is true of an essence in a world iff that essence is exemplified in that world. In what follows, the wff $\nabla x_{i}^{1}\left(F x_{i}^{1} \vee \sim F x_{i}^{1}\right)$ (for a fixed predicate symbol F) will be abbreviated by ϵx_{i}.

Let α be a wff and x_{i} and x_{j} individual variables. We say that x_{i} is free for x_{j} in α if no free occurrence of a position variant of x_{i} is within the scope of a quantifier $\forall x_{j}$. If x_{i} is free for x_{j} in α, then a substitution of variants of x_{j} for all the free occurrences of variants of x_{i} is a good substitution if: (1) no position variant of x_{j} which is used has a free occurrence in $\forall x_{i} \alpha$, (2) distinct variants of x_{i} are replaced by distinct variants of x_{j}, and (3) multiple occurrences of x_{i}^{k} are replaced by the same variant of x_{j}. Any result of such a good substitution will be denoted by $\alpha\left[x_{i} \mid x_{j}\right]$. That $\alpha\left[x_{i} \mid x_{j}\right]$ is ambiguous will present no difficulty in what follows.

If α is a wff and x_{i} is an individual variable, then $\nabla x_{i} \alpha$ will be an abbreviation of the wff resulting from prefixing α with dictafiers with respect to all variants of x_{i} which have ∇-free occurrences in α.

2 Axiomatics for $D \quad$ If α if an L^{\prime}-wff, we write $\vdash \alpha$ if the ∇-closure of α is a theorem. We have the following axiom formation rules:
(D1) If α is an instance of a truth functional tautology, then $\vdash \alpha$.
(D2) For any $\alpha, \beta, x_{i}, \vdash \forall x_{i}(\alpha \supset \beta) \supset\left(\forall x_{i} \alpha \supset \forall x_{i} \beta\right)$.
(D3) For any $\alpha, x_{i}^{k}, \vdash \alpha \equiv \nabla x_{i}^{k} \alpha$.
(D4) If $x_{i} \in d(\alpha)$, then $\vdash \nabla x_{i}^{k} \alpha \supset \epsilon x_{i}$.
(D5) If $x_{i} \notin f(\alpha)$, then $\vdash \alpha \equiv \forall x_{i} \alpha$.
(D6) If α is a wff and x_{i} is free for x_{j} in α and $\alpha\left[x_{i} \mid x_{j}\right]$ is any good substitution, then $\vdash\left(\forall x_{i} \alpha\right) \wedge \epsilon x_{j} \supset \nabla x_{j} \alpha\left[x_{i} \mid x_{j}\right]$.
(D7) If F is any predicate letter and y_{i} and y_{i}^{*} are variants of the same variable, then $+F y_{1} \ldots y_{n} \equiv F y_{1}^{*} \ldots y_{n}^{*}$.
(D8) For any wff $\alpha, \vdash \square \alpha \supset \alpha$.
(D9) For any α, β, if $d(\alpha)-d(\beta)=\left\{z_{1}, \ldots, z_{n}\right\}$, then $\vdash \square(\alpha \supset \beta) \supset$ $\left(\square \alpha \supset \square\left(\epsilon z_{1} \wedge \ldots \wedge \epsilon z_{n} \supset \beta\right)\right)$.
(D10) For any $\alpha, \vdash \diamond \alpha \supset \square \diamond \alpha$.
(D11) For any $x_{i}, \vdash \forall \epsilon x_{i}$.
In addition, there are three inference rules: modus ponens, necessitation, and generalization. Formally:
(MP) If $d(\alpha) \subseteq d(\beta), \vdash \alpha \supset \beta$, and $\vdash \alpha$, then $\vdash \beta$.
(N) If $\vdash \alpha$, then $\vdash \square \alpha$.
(\forall) If $\vdash \alpha$, then for any $x_{i}, \vdash \forall x_{i} \alpha$.
That the axioms are D-valid and that the inference rules preserve validity are easy to show. Some examples will illuminate the necessity for the unusual forms of (D9) and (MP). First, consider the wff
(8) $\forall x_{i}\left(\square\left(G x_{i}^{k} \supset \epsilon x_{j}\right) \supset\left(\square G x_{i}^{k} \supset \square \epsilon x_{j}\right)\right)$.

If $M=(D, W, \psi, \phi)$, where $D=\{a, b, c\}, W=\left\{w_{1}, w_{2}\right\}, D_{w_{1}}=\{a, b\}, D_{w_{2}}=$ $\{c\}, \phi\left(G, w_{1}\right)=\{a\}$, and $\phi\left(G, w_{2}\right)$ is empty, then for $\theta\left(x_{i}\right)=a$ and $\theta\left(x_{j}\right)=b$, it is false that $M_{w_{1}} \vDash_{\theta} \square\left(G x_{i}^{k} \supset \epsilon x_{j}\right) \supset\left(\square G x_{i}^{k} \supset \square \epsilon x_{j}\right)$. Hence, (8) is not valid and axiom schema (D9) cannot be replaced by the more familiar
(D9') For any α, β, ト $\square(\alpha \supset \beta) \supset(\square \alpha \supset \square \beta)$.
Second, since $\forall x_{i}\left(\left(F x_{i}^{k} \vee \sim F x_{i}^{k}\right) \supset \epsilon x_{i}\right)$ and $\forall x_{i}\left(F x_{i}^{k} \vee \sim F x_{i}^{k}\right)$ are valid, but ϵx_{i} is not we cannot conclude from the validity of the ∇-closures of $\left(F x_{i}^{k} \vee\right.$ $\sim F x_{i}^{k}$) $\supset \epsilon x_{i}$ and ($F x_{i}^{k} \vee \sim F x_{i}^{k}$) the validity of the ∇-closure of ϵx_{i} (which is ϵx_{i} itself). Hence, modus ponens in its usual form does not work for D.

One further example of the quirks of D is useful. There is no analog to the quantifier generalization rule (\forall) for dictafiers; i.e., the rule
(∇) If $\vdash \alpha$, then $\vdash \nabla x_{i}^{k} \alpha$,
does not preserve validity. For example, the ∇-closure of $\left(F x_{i}^{k} \vee \sim F x_{i}^{k}\right)$ is valid, but the ∇-closure of $\nabla x_{i}\left(F x_{i}^{k} \vee \sim F x_{i}^{k}\right)$ is not.

Some consequences of the axioms and inference rules follow.
Theorem 2.1 (Generalized modus ponens) If $\vdash \alpha \supset \beta$, \vdash, and $d(\alpha)-$ $d(\beta)=\left\{z_{1}, \ldots, z_{n}\right\}$, then $\vdash \in z_{1} \wedge \ldots \wedge \epsilon z_{n} \supset \beta$.

Proof: If $n=1$, by (\forall), (D2), and (MP) we get $\vdash \forall z_{1} \beta$. By (D6), $\vdash \forall z_{1} \beta \wedge$ $\epsilon z_{1} \supset \nabla z_{1} \beta$; and by (D3) $\vdash \nabla z_{1} \beta \supset \beta$. Hence, by (D1) and (MP), $\vdash \forall z_{1} \beta \wedge \epsilon z_{1} \supset$
β and $\vdash \forall z_{1} \beta \supset\left(\epsilon z_{1} \supset \beta\right)$. By (MP), $\vdash \epsilon z_{1} \supset \beta$. The general case follows easily by induction on n.

Theorem 2.2 (Substitution) If the position variants with ∇-free occurrences in λ are exactly those with ∇-free occurrences in μ and α is like α^{\prime} except for containing an occurrence of μ where α contains λ, then $\vdash \lambda \equiv \mu$ implies $\vdash \alpha \equiv$ α^{\prime}.

Proof: By induction on the formation rules for α. If α is $\square \beta$ and α^{\prime} is $\square \beta^{\prime}$, then, since $d(\beta)=d\left(\beta^{\prime}\right), \vdash \square \beta \equiv \square \beta^{\prime}$ follows from $\vdash \beta \equiv \beta^{\prime}$. Suppose α is $\nabla x_{i}^{k} \beta, \alpha^{\prime}$ is $\nabla x_{i}^{k} \beta^{\prime}$, and $\vdash \beta \equiv \beta^{\prime}$. Because $d(\beta)=d\left(\beta^{\prime}\right)$ and $\vdash \nabla x_{i}^{k} \beta \supset$ $\beta, \vdash \nabla x_{i}^{k} \beta \supset \beta^{\prime}$. Also, $\vdash \beta^{\prime} \supset \nabla x_{i}^{k} \beta^{\prime}$. If $x_{i} \notin d\left(\beta^{\prime}\right)$, then $\vdash \nabla x_{i}^{k} \beta \supset \nabla x_{i}^{k} \beta^{\prime}$ follows from (MP). If $x_{i} \in d\left(\beta^{\prime}\right)$, then $\vdash \in x_{i} \supset\left(\nabla x_{i}^{k} \beta \supset \nabla x_{i}^{k} \beta^{\prime}\right)$ follows from Theorem 2.1. But, by (D4) $\vdash \nabla x_{i}^{k} \beta \supset \epsilon x_{i}$. Hence, $\vdash \nabla x_{i}^{k} \beta \supset \nabla x_{i}^{k} \beta^{\prime}$. The converse follows similarly. The proofs for the rest of the cases are standard.
Theorem 2.3 For any $x_{i}, \vdash\left(\forall x_{i}\right) \in x_{i}$.
Proof: By (D3), $\vdash\left(F x_{i}^{1} \vee \sim F x_{i}^{1}\right) \supset \epsilon x_{i}$. By (\forall), (D2), and (MP), $\vdash \forall x_{i}\left(F x_{i}^{1} \vee\right.$ $\left.\sim F x_{i}^{1}\right) \supset\left(\forall x_{i}\right) \epsilon x_{i}$. By (D1) and $(\forall), \vdash \forall x_{i}\left(F x_{i}^{1} \vee \sim F x_{i}^{1}\right)$. Hence, $\vdash\left(\forall x_{i}\right) \in x_{i}$.
Theorem 2.4 If α and α^{\prime} are alphabetic variants, then $\vdash \alpha \equiv \alpha^{\prime}$.
Proof: By induction on the formation rules. Since for two alphabetic variants the same position variants have free occurrences in each, all of the cases follow from Theorem 2.2 except for the case that α is $\forall x_{i} \beta$ and α^{\prime} is $\forall x_{j} \beta^{\prime}\left[x_{i} \mid x_{j}\right]$, where β^{\prime} is an alphabetic variant of β in which x_{j} is not free and $\beta^{\prime}\left[x_{i} \mid x_{j}\right]$ is the good substitution which replaces each x_{i}^{k} in β^{\prime} with x_{j}^{k}. By the induction hypothesis and substitution, $\vdash \forall x_{i} \beta \equiv \forall x_{i} \beta^{\prime}$. By (D6) and (D3), $\vdash \forall x_{i} \beta^{\prime} \wedge \in x_{j} \supset$ $\beta^{\prime}\left[x_{i} \mid x_{j}\right]$. Since x_{j} is not free in β^{\prime}, Theorem 2.3 along with (D1), (D2), (D5), and Theorem 2.1 gives $\vdash \forall x_{i} \beta^{\prime} \supset \forall x_{j} \beta^{\prime}\left[x_{i} \mid x_{j}\right]$. The converse follows similarly.

All of the usual modal redundancy results of the modal ($S 5$) propositional calculus hold. Some of the less familiar results which are necessary for what follows are included in

Theorem 2.5 If $d(\alpha)=d(\delta)$,
(a) If $\vdash \diamond \delta \supset \diamond \alpha$, then $\vdash \diamond(\diamond \delta \supset \alpha)$
(b) If $\vdash \delta$, then $\vdash \diamond \alpha \supset \diamond(\alpha \wedge \delta)$
(c) $\vdash \diamond(\diamond \alpha \supset \diamond \delta) \equiv(\diamond \alpha \supset \diamond \delta)$.

The following results are somewhat technical in nature, but will be used in proving completeness.

Theorem 2.6 If $d(\delta)=d(\alpha)$ and z is not free in δ, then $\vdash \square \forall z \square(\delta \supset \square \alpha) \supset$ $\square(\delta \supset \square \forall z \square \alpha)$.
Proof: $\vdash \square \forall z \square(\delta \supset \square \alpha) \supset \square \forall z \square(\sim \square \alpha \supset \sim \delta)$

Theorem 2.7 If $d(\delta)=d(\lambda)$ and z is not free in δ, then if $\vdash \diamond \exists z \diamond \lambda$, then $\vdash \diamond \exists z \diamond(\diamond \delta \supset \diamond(\delta \wedge \diamond \lambda))$.

Proof: By Theorem 2.5(b), $\vdash \diamond \delta \supset \diamond(\delta \wedge \diamond \exists z \diamond \lambda)$. Replacing α in Theorem 2.6 with $\sim \lambda$ and taking the contrapositive produces $\vdash \diamond(\delta \wedge \diamond \exists z \diamond \lambda) \supset \diamond \exists z \diamond(\delta \wedge$ $\diamond \lambda)$. Hence, $\vdash \diamond \delta \supset \diamond \exists z \diamond(\delta \wedge \diamond \lambda)$. By Theorem 2.5(a), $卜 \diamond(\diamond \delta \supset \exists z \diamond(\delta \wedge$ $\diamond \lambda)$). Since z is not free in $\delta, \vdash \diamond \exists z(\diamond \delta \supset \diamond(\delta \wedge \diamond \lambda))$. The conclusion now follows from Theorem 2.5(c).

Theorem 2.8 If $d(\lambda)=d\left(\delta_{1}\right)=\ldots=d\left(\delta_{n}\right)$ and $\vdash \sim\left(\lambda \wedge \square \delta_{1} \wedge \ldots \wedge \square \delta_{n}\right)$, then $\vdash \sim\left(\diamond \lambda \wedge \square \delta_{1} \wedge \ldots \wedge \square \delta_{n}\right)$.
Proof: Suppose $\vdash \sim\left(\lambda \wedge \square \delta_{1} \wedge \ldots \wedge \square \delta_{n}\right)$. Then, $\vdash \square \delta_{1} \supset\left(\ldots \supset\left(\square \delta_{n} \supset\right.\right.$ $\sim \lambda) \ldots$. . By (N) and (D8), and redundancy of double necessitation, $\vdash \square \delta_{1} \supset$ $\left(\ldots\left(\square \delta_{n} \supset \square \sim \lambda\right) \ldots\right)$. Hence, $卜 \sim\left(\diamond \lambda \wedge \square \delta_{1} \wedge \ldots \wedge \square \delta_{n}\right)$.

Let β be a ∇-closed wff and x_{j} a variable not occurring in β. If x_{i} is any other variable and $\beta\left[x_{i} \mid x_{j}\right]$ is the good substitution which replaces each free x_{i}^{k} in β with x_{j}^{k}, then $\left(\exists x_{i} \beta \supset \beta\left[x_{i} \mid x_{j}\right]\right) \wedge \epsilon x_{j}$ is a 0 -level E-formula with respect to x_{j}. If δ is an n-level E-formula with respect to x_{j} and λ is a ∇-closed wff in which x_{j} is not free, then $\diamond \lambda \supset \diamond(\lambda \wedge \delta)$ is an $n+1$-level E-formula with respect to x_{j}. ${ }^{1}$

Theorem 2.9 If λ is a 0 -level E-formula with respect to z, then $\vdash \exists z \lambda$.
Proof: The usual argument works because of Theorem 2.3.
Theorem 2.10 If λ is a k-level E-formula with respect to $z, k>0$, then $\vdash \diamond \exists z \diamond \lambda$.

Proof: Suppose $k=1$ and λ is $\diamond \delta \supset \diamond(\delta \wedge \mu)$, where μ is 0 -level. Then

$$
\begin{aligned}
\vdash \diamond \delta & \supset \diamond(\delta \wedge \exists z \mu) \text { (Theorem } 2.9 \text { and Theorem 2.5(b)) } \\
& \supset \diamond \exists z(\delta \wedge \mu) \\
& \supset \diamond \exists z \diamond(\delta \wedge \mu) .
\end{aligned}
$$

By Theorem 2.5(a), $\diamond \diamond(\diamond \delta \supset \exists z \diamond(\delta \wedge \mu))$, so that $\vdash \diamond \exists z(\diamond \delta \supset \diamond(\delta \wedge \mu))$. The conclusion follows trivially.

Suppose $k>1$, so that λ is $\diamond \delta \supset \diamond(\delta \wedge \mu)$ where μ has the form $\diamond \delta^{*} \supset$ $\diamond\left(\delta^{*} \wedge \mu^{*}\right)$. By Theorem 2.5(c), $\vdash \mu \equiv \diamond \mu$. By the induction hypothesis and Theorem 2.7, $\vdash \diamond \exists z \diamond(\diamond \delta \supset \diamond(\delta \wedge \diamond \mu))$. Using substitution of μ for $\diamond \mu$ produces $\vdash \diamond \exists z \diamond \lambda$.

Theorem 2.11 If α is ∇-closed, z is not free in α, and λ is an E-formula with respect to z, then $\vdash \sim(\alpha \wedge \lambda)$ implies $\vdash \sim \alpha$.

Proof: Suppose λ is 0 -level and $\vdash \sim(\alpha \wedge \lambda)$. Then $\vdash(\alpha \supset \sim \lambda)$. Since z is not free in $\alpha, \vdash \alpha \supset \forall z \sim \lambda$. Hence, $\vdash \exists z \lambda \supset \sim \alpha$. By Theorem 2.9, $\vdash \sim \alpha$. Suppose λ is k-level $k>0$. Then, $\vdash \lambda \equiv \diamond \lambda$. Suppose $\vdash \sim(\alpha \wedge \lambda)$. By substitution, $\vdash \alpha \supset$ $\sim \diamond \lambda$. Hence, $\vdash \diamond \alpha \supset \diamond \sim \diamond \lambda$, so that $\vdash \diamond \alpha \supset \square \sim \lambda$. Hence, $\vdash \diamond \alpha \supset \forall z \square \sim \lambda$ and $\vdash \square \diamond \alpha \supset \square \forall z \square \sim \lambda$. It now follows that $\vdash \diamond \exists z \diamond \lambda \supset \diamond \square \sim \alpha$. Using Theorem 2.10 gives $\vdash \diamond \square \sim \alpha$, from which $\vdash \sim \alpha$ obviously follows.

Theorem 2.12 If $d(\lambda)=\left\{z_{1}, \ldots, z_{n}\right\}$ then $\vdash \square\left(\epsilon z_{1} \wedge \ldots \wedge \epsilon z_{n} \supset \nabla z_{1} \ldots\right.$ $\left.\nabla z_{n} \lambda\right) \equiv \square \lambda$.

Proof: By (D4), $\vdash \nabla z_{i} \sim \lambda \supset \epsilon z_{i}$. Combining this with (D3) gives $\vdash \sim \lambda \supset \epsilon z_{i}$ for all i. Hence, $\vdash \sim \lambda \supset \epsilon z_{1} \wedge \ldots \wedge \epsilon z_{n}$. Combining this with $\vdash \nabla z_{1} \ldots \nabla z_{n} \lambda \supset \lambda$ produces $\vdash\left(\epsilon z_{1} \wedge \ldots \wedge \epsilon z_{n} \supset \nabla z_{1} \ldots \nabla z_{n} \lambda\right) \supset \lambda$. Application of (N) and (D9) gives one of the desired conditionals. The converse conditional follows directly from (D9), (N), and $\vdash \lambda \supset \nabla z_{1} \ldots \nabla z_{n} \lambda$.

3 Completeness A Henkin system for D is a nonempty set Ω of pairs $\left(H, V_{H}\right)$, where H is a nonempty set of L^{\prime}-wffs and V_{H} is a nonempty set of variables satisfying
(a) If $\alpha \in H$, then $d(\alpha) \subseteq V_{H}$
(b) If $d(\alpha) \subseteq V_{H}$, then exactly one of $\alpha, \sim \alpha$ is in H
(c) If $d(\alpha) \subseteq V_{H}$ and $\vdash \alpha$, then $\alpha \in H$
(d) If $\alpha \supset \beta, \alpha \in H$, then $\beta \in H$
(e) If $x_{i} \in V_{H}$, then $\epsilon x_{i} \in H$
(f) If $x_{i} \notin V_{H}$, then $\sim \epsilon x_{i} \in H$
(g) If $\forall x_{i} \alpha \in H, x_{j} \in V_{H}$, and x_{i} is free for x_{j} in α, then for every good substitution, $\alpha\left[x_{i} \mid x_{j}\right] \in H$.
(h) If $\exists x_{i} \alpha \in H$ and α is ∇-closed, then there is an $x_{j} \in V_{H}$ such that x_{j} does not occur in α and for some good substitution, $\alpha\left[x_{i} \mid x_{j}\right] \in H$
(i) $\nabla x_{i}^{k} \beta \in H$ iff $\beta \in H$
(j) If α is ∇-closed and $\square \alpha \in H$, then $\alpha \in H^{\prime}$ for every H^{\prime}
(k) If α is ∇-closed and $\nabla \alpha \in H$, then $\alpha \in H^{\prime}$ for some H^{\prime}.

Any pair (H, V_{H}) satisfying (a)-(i) will be called a Henkin set.
If Ω is a Henkin system, the quadruple $M=(D, W, \psi, \phi)$, where D is the set of variables of $L, W=\Omega, \psi\left(H, V_{H}\right)=V_{H}$, and $\phi(H, F)=\left\{\left(z_{1}, \ldots\right.\right.$, $\left.z_{n}\right) \mid F z_{1}^{*} \ldots z_{n}^{*} \in H$ for some position variants z_{i}^{*} of $\left.z_{i}\right\}$ is a model structure. Observe that (D11) guarantees that $D=\bigcup_{H} V_{H}$. If θ is the identity mapping from the set of variables of L to D, the following theorem holds:

Theorem 3.1 For any wff $\alpha, M_{H} \vDash_{\theta} \alpha$ iff $\alpha \in H$.
Proof: Define the level L of a wff by
(a) $L\left(F y_{1} \ldots y_{n}\right)=n+1$
(b) $L((\alpha \wedge \beta))=L(\alpha)+L(\beta)+1$
(c) $L((\sim \alpha))=L(\alpha)+1$
(d) $L\left(\left(\nabla x_{i}^{k} \alpha\right)\right)=L(\alpha)+1$
(e) $L\left(\left(\forall x_{i} \alpha\right)\right)=2^{L(\alpha)}$
(f) $L((\square \alpha))=14^{L(\alpha)}$.

By induction on the level of α. Basically the cases have standard proofs. The argument for the case that α is $\forall x_{i} \beta$ follows from (h) applied to the ∇-closed wff $\forall x_{i} \nabla z_{1} \ldots \nabla z_{n} \beta$ (where $d(\beta)=\left\{z_{1}, \ldots, z_{n}\right\}$), (i), and (g). The argument for the case that α is $\square \beta$ follows from (i) and (k) applied to the ∇-closed wff $\square \beta^{*}$ given by $\square\left(\epsilon z_{1} \wedge \ldots \wedge \epsilon z_{n} \supset \nabla z_{1} \ldots \nabla z_{n} \beta\right)$ and Theorem 2.12. For example, suppose $M_{H} \vDash_{\theta} \square \beta$ and $\square \beta \notin H$. Then $d(\beta)=\left\{z_{1}, \ldots, z_{n}\right\} \subseteq V_{H}$ and by Theorem $2.12 \vdash \square \beta \equiv \square \beta^{*}$. By (c), $\square \beta^{*} \supset \square \beta$ is in H. Since $\square \beta \notin H, \square \beta^{*} \notin$ H. But, $\vdash \square \beta \supset \square \beta^{*}$, so that $M_{H} \vDash_{\theta} \square \beta \supset \square \beta^{*}$. Hence, $M_{H} \vDash_{\theta} \square \beta^{*}$. Thus,
β^{*} is a ∇-closed wff such that $L\left(\beta^{*}\right)<L(\square \beta), M_{H} \vDash_{\theta} \square \beta^{*}$, and $\square \beta^{*} \notin H$. The usual argument now produces a contradiction from (k).

A wff α is D-consistent if not $\vdash \sim \alpha$. A set S of wffs is D-consistent if every finite conjunction of wffs in S is D-consistent. If V^{*} is a set of variables, a set S of wffs is maximally V^{*}-consistent if

1. If $\alpha \in S$, then $d(\alpha) \subseteq V^{*}$
2. If $z \in V^{*}$, then $\epsilon z \in S$
3. If $z \notin V^{*}$, then $\sim \epsilon z \in S$
4. If $d(\alpha) \subseteq V^{*}$, then either $\alpha \in S$ or $\sim \alpha \in S$
5. S is consistent.

Theorem 3.2 If S is maximally V^{*}-consistent, then (S, V^{*}) satisfies (a)-(g), (i) of the definition of Henkin set. If, in addition, S satisfies
(*) For every ∇-closed wff β, there is a variable x_{j} not occurring in β such that for some good substitution $\left(\exists x_{i} \beta \supset \beta\left[x_{i} \mid x_{j}\right]\right) \wedge \epsilon x_{j}$ is in S.
then $\left(S, V^{*}\right)$ is a Henkin set.
Proof: (a)-(f) are trivial.
(i) If $\beta \in S$, since $\vdash \beta \supset \nabla x_{i}^{k} \beta$ we have $\nabla x_{i}^{k} \beta \in S$. Conversely, suppose $\nabla x_{i}^{k} \beta \in S$, so that $d\left(\nabla x_{i}^{k} \beta\right) \subseteq V^{*}$. Since $\vdash \nabla x_{i}^{k} \beta \supset \beta$, if $d(\beta) \subseteq V^{*}$ then $\beta \in$ S. If $x_{i} \notin d(\beta)$, then $d(\beta) \subseteq V^{*}$. If $x_{i} \in d(\beta)$, by (D4) $\vdash \nabla x_{i}^{k} \beta \supset \epsilon x_{i}$, so that $\epsilon x_{i} \in S$. But this forces $x_{i} \in V^{*}$, so that $d(\beta) \subseteq V^{*}$.
(g) If $\forall x_{i} \alpha \in S$ and $x_{j} \in V^{*}$, then by (2) $\epsilon x_{j} \in S$. Using (D6) and (i), $\alpha\left[x_{i} \mid x_{j}\right] \in S$.
(h) Follows trivially from (*).

Theorem 3.3 If α is any ∇-closed consistent wff, then there exists a Henkin system Ω containing a Henkin set $\left(H, V_{H}\right)$ such that $\alpha \in H$.

Proof: As usual, we say that two E-formulas belong to the same E-form if they differ only with respect to the variable z. There are countably many E-forms: E_{1}, E_{2}, \ldots, each of which contains an infinite number of wffs.

We construct the set S as follows. Beginning with α we add a sequence of E-formulas from the E-forms, at each step choosing an E-formula with respect to a variable not occurring in any previous wff. It follows from Theorem 2.11 that the resulting set is D-consistent. Next we pass through the list of all wffs β, adding β to the set if it can be consistently added. The resulting set is S and is consistent by construction. Let $V_{S}=\{z \mid \epsilon z \in S\}$. Since S contains a 0 -level E formula from each 0 -level E-form, if S is maximally V_{S}-consistent, (S, V_{S}) is a Henkin set. First, suppose $\beta \in S$ and $z \in d(\beta)$. If $z \notin V_{S}$ then $\epsilon z \notin S$. Hence, $S \cup\{\epsilon z\}$ is inconsistent. Since ϵz is ∇-closed and S is consistent, it follows that $S \cup\{\sim \epsilon z\}$ is consistent, so that $\sim \epsilon z \in S$. But, by (D3) and (D4), $\vdash \beta \supset \epsilon z$, so that $\vdash \sim(\beta \wedge \sim \epsilon z)$. This conflicts with the consistency of S. Hence, $\left(S, V_{S}\right)$ satisfies condition (1) of the definition. (2) follows from the definition of V_{S}. The proof of (3) is included in the proof of (1). Next, suppose $d(\beta) \subseteq V_{S}$ and neither β nor $\sim \beta$ is in S. Then, there are conjunctions γ and τ in S such that $\vdash \sim(\gamma \wedge \beta)$ and $\vdash \sim(\tau \wedge \sim \beta)$. (D1) and (MP) give $\vdash \sim(\tau \wedge \sim \beta) \supset \sim(\tau \wedge \gamma)$. If $\left\{z_{1}, \ldots, z_{n}\right\}=d(\beta) \cup d(\tau)-d(\gamma) \cup d(\tau)$, by Theorem 2.1 we get $\vdash \in z_{1} \wedge \ldots \wedge$
$\epsilon z_{n} \supset \sim(\tau \wedge \gamma)$, or $\vdash \sim\left(\epsilon z_{1} \wedge \ldots \wedge \epsilon z_{n} \wedge \tau \wedge \gamma\right)$. Since $d(\beta) \subseteq V_{S}$, this conflicts with S 's consistency. Hence, $\left(S, V_{S}\right)$ is a Henkin set.

Next, if $\diamond \beta \in S$ and β is ∇-closed, we define the set S_{β} as follows. We begin with β. If the first E-form is $E_{1}=\left\{\delta_{11}, \delta_{12}, \ldots\right\}$, then, since S contains a wff from each E-form, S contains a wff of the form $\diamond \beta \supset \diamond\left(\beta \wedge \delta_{1 n_{1}}\right)$, where the variable z for which $\delta_{1 n_{1}}$ is an E-formula is not free in β. By Theorem 2.11, $\delta_{1 n_{1}}$ can be consistently added to $\{\beta\}$. Similarly, if $E_{2}=$ $\left\{\delta_{21}, \delta_{22}, \ldots\right\}, S$ contains a wff of the form $\diamond\left(\beta \wedge \delta_{1 n_{1}}\right) \supset \diamond\left(\beta \wedge \delta_{1 n_{1}} \wedge \delta_{2 n_{2}}\right)$, where the variable z for which $\delta_{2 n_{2}}$ is an E-formula is not free in $\beta \wedge \delta_{1 n_{1}}$. By Theorem 2.11, $\left\{\beta, \delta_{1 n_{1}}, \delta_{2 n_{2}}\right\}$ is consistent. Continue this process through the list of E-forms. Now, for any wff $\diamond \lambda$ in S such that λ is ∇-closed, add $\square \lambda$ to the set. The result is still consistent. If $\vdash \sim\left(\beta \wedge \delta_{i_{1} n_{i_{1}}} \wedge \ldots \wedge \delta_{i_{k} n_{i_{k}}} \wedge \square \lambda_{j_{1}} \wedge \ldots\right.$ $\wedge \square \lambda_{j_{n}}$), then by Theorem 2.8
$(* *) \quad \vdash \sim\left(\diamond\left(\beta \wedge \delta_{i_{1} n_{i_{1}}} \wedge \ldots \wedge \delta_{i_{k} n_{i_{k}}}\right) \wedge \square \lambda_{j_{1}} \wedge \ldots \wedge \square \lambda_{j_{n}}\right)$.
But, $\diamond \beta \in S, \diamond(\beta) \supset \diamond\left(\beta \wedge \delta_{i_{1} n_{i_{1}}}\right) \in S$, etc., so that $\diamond\left(\beta \wedge \delta_{i_{1} n_{i_{1}}} \wedge \ldots \wedge \delta_{i_{k} n_{i_{k}}}\right) \in$ S. But, $\square \lambda_{i} \in S$ for each i, so that ($* *$) cannot be true since S is consistent. Finally, we go through the list of all wffs σ, adding σ to the set if σ can be consistently added. The resulting set is S_{β}. If $V_{\beta}=\left\{z \mid \epsilon z \in S_{\beta}\right\}$, then $\left(S_{\beta}, V_{\beta}\right)$ is a Henkin set.

Finally, $\left\{\left(S, V_{S}\right)\right\} \cup\left\{\left(S_{\beta}, V_{\beta}\right) \mid \diamond \beta \in S, \beta\right.$ is ∇-closed $\}$ is a Henkin system. This follows easily from the construction and the fact that $\square \diamond \sigma$ is in a Henkin set iff $\diamond \sigma$ is.

Theorem 3.4 Every D-valid wff is a theorem.
Proof: From Theorems 3.1 and 3.3.

NOTE

1. This definition of E-formula and its subsequent use follows [1], pp. 165-168. However, since the Barcan formula, $\forall x_{1} \square \alpha \supset \square \forall x_{i} \alpha$, is not valid in D (even for ∇ closed wffs α), some modifications are necessary. In particular, $\vdash \exists x_{i} \lambda$ holds only for 0 -level E-formulas. For higher levels, we have the weaker result Theorem 2.10.

REFERENCES

[1] Hughes, G. E. and M. J. Cresswell, An Introduction to Modal Logic, Methuen and Company LTD, London, England, 1968.
[2] Jager, T., "An actualistic semantics for quantified modal logic," Notre Dame Journal of Formal Logic, vol. 23 (1982), pp. 335-349.
[3] Plantinga, A., "Actualism and possible worlds," in Papers on Logic and Language, University of Warwick, Warwick, England, 1977.
[4] Plantinga, A., "De Essentia," pp. 101-122 in Essays on the Philosophy of Roderick M. Chisholm, ed., E. Sosa, Grazer Philosophische Studien, vols. 7 and 8 (1979).

Department of Mathematics

Calvin College
Grand Rapids, Michigan 49506

