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Constructive Predicate Logic with Strong

Negation and Model Theory

SEIKI AKAMA*

In this paper, we attempt to investigate the so-called constructive predicate
logic with strong negation from a model-theoretical point of view.

Strong negation was first introduced by Nelson [8] in connection with
Kleene's recursive realizability. At the same time, Markov [7] showed indepen-
dently that intuitionistic (Heyting) negation can be defined by strong negation
and implication. Then Vorob'ev [14] formulated constructive propositional logic
with strong negation. Polish logicians such as Rasiowa [9],[10] studied in terms
of lattice theory. Additionally, we can find a Gentzen-type formulation by
Almukdad and Nelson [1] and Ishimoto [5],[6], and a model-theoretic study by
Thomason [13] and Routley [11], to cite only a few.

Strong negation is a constructive negation different from Heyting negation.
For example, in intuitionistic logic, -^(A r\B) is not equivalent to the deriva-
bility of at least one formula of -*A or ~^B. And we cannot prove the equiva-
lence between -^VxA(x) and -^A(t). But these are equivalent in constructive
logic with strong negation.

In this paper, we research this system on the basis of Kripke's many worlds
semantics (the so-called Kripke model), and try to provide a Henkin-type proof
of the completeness theorem for the system. We will also inquire into the rela-
tionships among constructive predicate logic with strong negation, classical logic,
and intuitionistic logic.

1 Constructive predicate logic with strong negation Constructive predicate
logic with strong negation, instead of Heyting negation, is designated as S. As
stated above, Heyting negation can be defined in S by way of strong negation
and implication, as S does not have it as one of its primitives. We call the sys-
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tern with Heyting negation S+. The well-formed formulas (w.f.f.) in S and S+

are defined in terms of parameters (free variables), bound variables, predicate
variables including equality (=) as a binary predicate and function symbols with
any finite number of arguments as well as seven logical symbols, namely, Λ
(conjunction), v (disjunction), D (implication), -i (Heyting negation), ~ (strong
negation), V (universal quantifier), and 3 (existential quantifier). Here we ought
to pay attention to the fact that implication is a logical symbol in the sense of
intuitionistic logic. In fact Rasiowa [10] introduced a symbol => defined in terms
of ->(D) as follows:

A => B= (A-+B) Λ (~B-+ -A). (1.1)

Markov [7], on the other hand, used complete equality Ξ=;

A = B ΞΞ (A ΞS B) Λ (~A = ~B). (1.2)

Then, S is the system in which strong negation is embedded in intuitionistic logic.
We can define the Hilbert-type version of S as follows:

YAD.BDA (1.3)
\-(A D.BDC) D. (ADB)D (AD C) (1.4)
\-A D (B D.A ΛB) (1.5)
\-AΛB.D.A (1.6)

\-A/\B.D.B (1.7)
\-(A DC) D. (BDC)D (A v B .D C) (1.8)
YAD.AvB (1.9)
h £ D . , 4 v £ (1.10)
h~Λ D./1D5 (1.11)
}-~(A DB) =.A Λ~B (1.12)
h~(Λ Λ B ) =. -Λ v ~£ (1.13)
\-~(A vB) s . ^̂ 4 Λ ~B (1.14)
M = — A (1.15)
hvχ4(x) Dy4(0 (1.16)
\-A(t) D 3xA(x) (1.17)
I—VX4(AΓ) S 3X ~A(X) (1.18)
I—3JC4U) s VJC - Λ(x). (1.19)

This version of S is closed under detachment and the rules of restriction on vari-
ables in quantification.

\-ADB(t)^\-AD VxB(x) (1.20)
\-A(t) DB=> \-3xA(x) D B. (1.21)

A s 5 is an abbreviation for (AD B) A (BDA). Deleting Axiom (1.12)
from the list of axioms, Fitch's system [3] is obtained. It should be noted here
that the formula Vx(A v B(x)) D (A v VxB(x)) (x not free in A) is not prov-
able in S. But it is provable in Fitch's system (see Fitch [3] and Thomason [13]
for details). Fitch's system has a Kripke semantics with constant domains,
whereas S requires variable domains, as discussed later.

As stated above, Heyting negation can be defined in terms of strong
negation;

-iA=AD~A. (1.22)
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In S+ involving Heyting negation, the following formulas are provable:

Y(A D B) D. (A D -^B) D -ΛA (1.23)
t-iAD.ADB (1.24)
YA**~^A. (1.25)

Naturally we can find that S+ is equal to Vorob'ev's system. Moreover,
the following two axioms for equality can be added to S:

Ya = a (1.26)
\-a = b D.A(a) DA(b). (1.27)

2 Kripke's many-worlds semantics The Kripke model for 5 is a quintuple
<G, R9 VP, VNy P) where:

(2.1) G is a nonempty set (of possible worlds).
(2.2) R is a relation, reflexive and transitive, defined on two elements

belonging to G x G.
(2.3) VP and VN are functions, each of which maps every propositional

variable belonging to a subset of G satisfying the following:
a. VP(A) Π VN(A) = 0
b. VΓ*(Γ G VP(A) => Γ* G VP(A))

c. vr (ΓevN(A)**r*evN(A)).
(2.4) P is a function which maps from G to a nonempty set of parame-

ters which holds P(Γ) c P(Γ*) for any Γ satisfying TRY*.

Here 4̂ denotes a propositional variable, and Greek capitals such as Γ, Δ,
etc. denote meta-variables ranging over elements of G. And vΓ* and 3Γ* are
quantifications over the elements Γ* G G such that TRY* (cf. Fitting [4]).
Namely, the relation ΓRΓ* says that Γ* is better than Γ because of partial order
relation of R.

We can define two forcings, |=p and tN, with respect to any element of G
and propositional variable in the Kripke model <G, R, VP, VN, P) as follows;

Γ VPA <» ΓG VP(A) (2.5a)
Γ VNA <* Te VN(A). (2.5b)

Thus, the following relations as regards any formulas in S or S+ are
proved by induction on the length of the formulas;

Γ \=P A Λ B <# Γ NP A and Γ \=P B (2.6)
Γ f=p A v B <* Γ NP A or Γ f=P £ (2.7)
Γ (=p Λ D B & VΓ*(Γ* NP >1 =* Γ* Np 5 ) (2.8)
Γ Np -iB ̂ > vΓ*Γ* μP 5 (not Γ* Np 5 ) (2.9)
Γ tP~B <* Γ N N 5 (2.10)
Y VPA *> vΓ*Γ* NP 4̂ for any atomic A (2.11)
Γ \=PVxA(x) e> VΓ*Γ* NPV4(0 fora l l/GP(Γ*) (2.12)
Γ tP3xA(x) <* Γ VpA(t) for some ί G P(T) (2.13)
Γ Nyy ̂  Λ B e> Γ NN A or Γ (=N 5 (2.14)
Γ hv yl v B & Γ NΛΓ ̂ 1 and Γ NN 5 (2.15)
Γ hv >1 D ̂  Φ> Γ (=p ̂ 1 and Γ NN 5 (2.16)
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Γ NΛΓ ^B e> Γ tpB (2.17)
Γ |=N ~B <s>Γ tpB (2.18)
Γ \zN A *> vΓ*Γ* t=N A for any atomic A (2.19)
Γ N v vxA(x) *> Γ N Λ M ( O for some t E P(Γ) (2.20)
Γ tNlxA(x) <* VΓT* N Λ ^ ( O forallf G P ( Γ ). (2.21)

Given a model <G, /?, FP, F N , P>, if Γ NP v4 for any Γ E G, then ,4 is
valid in the model. If a formula is valid in any model, it is valid. We obtain the
model for S by deleting relations (2.9) and (2.17) involving Hey ting negation.
Moreover, only either of the universal and existential quantifiers is needed since
one of them can be defined in terms of the other due to (1.18) and (1.19).

Lemma 1 Given a model <G, R, VP, VN, P>,

vΓ*(ΓNp^=>Γ*NP^),
VΓ*(Γ\=NA^T*\=NA)

for any Γ e G and A.

Proof: We can prove this lemma by induction on the length of the formulas.
The induction steps are as follows:

a. Γ Np A Λ B & Γ \=P A and Γ \=P B
=> Γ* \=P A and Γ* \=P B & Γ* (=P A Λ B.

b.Γ \=pADBt* VΓ*(Γ* \=PA ^ Γ * NP B)
=» VΓ**(Γ** \=P A =* Γ** Np £) ^ Γ* Np >1 D 5.

c. Γ f=PVj&4(jt) & VΓ*Γ* N P ^ 4 ( O for a l l / E P ( Γ * )
=> vΓ**Γ** tpA(t) for all / e P(Γ**)
«» Γ* NpVx4(x).

d. Γ Np -^1 ^ Γ N^ ̂ 4 => Γ* |=N yl ^ Γ* |=P -^4.
e. Γ (=p -ΛA ^ VΓ*Γ* Np>l => vΓ**Γ** ΨPA & Γ* NP - Ά

In the case of ]=N, the induction steps are similar to those in the case of
\=P. Lemma 1 tells us that Np and ]=N have a monotonicity property.

Lemma 2 Given a model <G, R, VP, VNi P) Γ tP A and Γ N/v A never
come out simultaneously for any Γ E G and A.

The proof is carried out by induction on the length of the formulas on the
basis of (2.3a).

Corollary 1 Given a model <G, R, VP, VNi P) Γ VP A and Γ YP -A never
come out simultaneously for any Γ E G and A.

3 The properties of constructive predicate logic with strong negation In
this section we are first going to prove the soundness and completeness for 5.
The soundness can be derived from the fact that the axioms for S, namely
(1.3)—(1.19), are valid in any model. Thus we can obtain the consistency theorem
forS.

Theorem 1 (Consistency Theorem) If A is provable in S then it is valid.
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Proof: We can prove the theorem by induction on the length of the proof. The
proof of axioms without strong negation is similar to that of classical logic. The
induction steps for other axioms are exemplified as follows:

Γ NP (~A v ~B) D ~(AΛB)

& VΓ*(Γ* |=p ~A v ~B => Γ* (=p ~ (A Λ B))
#> VΓ*(Γ* Np ~A orΓ* t=p ~ £ => Γ* YN A Λ 5 )
<* VΓ*(Γ* \=NA or Γ* (=N B => Γ* (=„ ̂  or Γ* \=N B).

Γ \=PAΛ~BD ~(ADB)
& VΓ*(Γ* Np A A ~B => Γ* Np - (^ D /?))
* VΓ*(Γ* Np^landΓ* NP ^ B => Γ* | = N ^ 4 D 5 )
^VΓ*(Γ* YpA andΓ* N^ B =» Γ* NP yl and Γ* μ^Jϊ).

Γ tp~vxA(x) D 3x~A(x)
*> VΓ*(Γ* Np ~VJC4(X) => Γ* Np 3JC ~ yl(jc))
^ VΓ*(Γ* |=N VX^I(JC) => Γ* (=p ~ ^ ( 0 for some ί G P(Γ*))
^ VΓ*(Γ* N N i4(0 =>Γ* ¥NA(t)) for some ί G P ( Γ ) .

Likewise we can prove the consistency theorem for S+:

Γ ¥P~-^A DA & VΓ*(Γ* tp~-iA=*Γ* VPA)
<=> VΓ*(Γ* tN -^A => Γ* \=PA)
* VΓ*(Γ* Np^=*Γ* YpA).

T Yp-^AD .AD -A. ^ VΓ*(Γ* Np pA =* Γ* YP A D -A)
<* VΓ**(Γ** \=NA =>.Γ** \=PA=>Γ** ϊNA).

T Yp-iAD .ADB. ^ VΓ*(Γ* Np ^A=>T* YpAD B)
* VΓ**(Γ** ψpA =*. Γ** Npv4 =>Γ** | = P ί )
^ VΓ**(Γ** YNA =>. Γ** N N ^=>Γ** μ N ^ ) .

Next we show that the converse of Theorem 1, namely, the completeness
theorem, is provable. The proof is carried out by means of the Henkin-type
proof construction. Thus we need to introduce several concepts for the proof.
According to Shoenfield [12] and van Dalen [2], the intuitionistic counterparts
of the Henkin theory can be used in our proof.

Definition A set of sentences Γ satisfying the following conditions is a prime
theory with respect to L:

(3.1) Γ is closed under \-
(3.2) AvBEΓ =>AeT or BGΓ
(3.3) 3xA(x) G Γ => A(c) G Γ for some constant c in L.

The constant c in (3.3) is an analog of the witness constant in Henkin the-
ory. Then we extend language L to L by adding a suitable set of witness con-
stants. Thus the following lemma is provable.

Lemma 3 Let Γ and φ be closed. IfT\fφ, then there exists a prime theory
Γ' such that V \f φ.
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Proof: The prime theory of Γ can be defined as:

Ln=LΌcn

Cn+{ = Cn U [c\c is a witness constant}.

Then Γ' is obtained by series of extensions Γo £ ΓΊ g That is, Γ' is a union
of Γ and the set of witness constants satisfying (3.3). Now put Γ* to be given
such that Tk\f φ and contains a lot of witnesses. Then two cases can be consid-
ered. First, suppose that k is even. Take the first existential sentence 3xA(x) in
L that has not been treated, such that Γ* h 3xA(x)9 and assume that d is a wit-
ness constant not appearing in Tk. Then Tk+\ = Γ^ U {A(d)} holds.

Suppose, on the other hand, that k is odd. Take the first disjunctive sen-
tence AvB such that Tk\- Aw B was not treated before:

Tk+ι = Tk U {A} if Tk, A \fφ

ΓkU{B}ifΓk,A\-φ.

From (3.2), it is not needed that both Γ l 5 A \- φ and Γ2, B (- φ hold simulta-
neously. Γ" consists of all IVs satisfying the above-mentioned properties, Γ' =
( J IV As a result, it suffices to show the existence of the prime theory in

which T' \fφ holds.

Case L Γ" \f φ. First, we prove Γ, \fφ by induction on /. If / is even, then
assuming Γ, + 1 \- </>, Γ, , A(d) \- φ holds. Though we obtain Γ, |- φ since Γ, h
lxA(x), this contradicts the assumption. Thus Γ/+1 \f φ holds. For any /, Γ, \f φ
holds by induction on /. If Γ" \- φ, Γz \- φ for some /. But by contraposition and
Γ7 \f φ, Γ' \f φ holds.

Case 2. Γ' is a prime theory. We may check three conditions on a prime theory:
(3.2): Let A v B G Γ' and k is the smallest number such that Γk\-AvB.

By assumption, for any h such that k < h,Th\- A v B. Then A E Th+ι or B G
Γ Λ + 1 . Hence A^Γ' or Be Γ'.

(3.3): Let 3xA(x) G V and k, h are described as before. By assumption,
since ΓΛ \- 3xA(x), A(d) G ΓΛ + 1 c Γ' holds. Also it is trivial that (3.1) holds.
Then, we get Lemma 3.

Next, we have to prove that there exists a model for unprovable formulas:

Theorem 2 (Model Existence Lemma) If Γ \f φ then there is a Kripke
model such that Γ0/?ΛΓ and Γo ψ φ. [Here Rn is an «-time application of R
defined in (2.2).]

Proof: Let C = {Q| / > 0} be the set of constants not appearing in L. In the first
place, we shall extend Γ to the prime theory Γ, such that Γ,• \f φ. Consider the
language U such that for any k belonging to the set of natural numbers IN it is

A r - l

a union of L and the set of constants C = ( J c, . Then we can define a Kripke

model satisfying Theorem 2. According to the definition in Section 2, if G is N,
(2.3) is sufficient since N is a partially ordered set. Also VP and VN are defined
as follows:

VP\ IN -> [n\n G IN, n is even}
VN: IN-* {A?|A2GIN, n is odd).
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Moreover we shall consider a mapping P from IN to the set of constants
and mapping Σ from N to the set of atomic formulas containing a constant over
P(N). As 0Rkk9 it is clear that P(0) is a set of constants in Γo and Σ(0) is a set
of atomic formulas in Γo.

Now, let N correspond to ordered pairs (αo>βo)> («i>0i)> • in L' satis-
fying Σ(n), at \f j8/. And for each i, apply Lemma 3 to Σ(n) U (α,) and ft . As
a result the prime theory Γz is obtained. Now Σ{n) is the constants and atomic
formulas belonging to Γ, . This model must be satisfied by the following state-
ments since it is a prime theory:

ntPψ<* Σ(n) h φ.

Proof: The proof is carried out by induction on the formula φ. The inductive
step is exemplified as below:

A v B: =>) n (=P A v B & n |=P A or n hp B
=> Σ(n) \-A or Σ(n) V B & Σ(n) \-A v B.

«=) Σ(«) h i4 v B & Σ(n) h A or E(/ι) h 5
=> /i |=p v4 or n VP B <=» « t=p ̂ 4 v 5.

ylD5:=*) Assume Σ(n) \f A D B% By definition Σ(AZ), >1 (/ B holds. And
there exists some n' >n such that Σ(AZ) U {̂ 4} g Σ(«') and Σ(nf) \f B. From
the inductive basis, n' YP A and from n' >n and n |=P A D B, n' |=P B but it
is a contradiction since Σ(n') \- B by hypothesis. Therefore Σ(«) \- A D B.

«=) Σ(«) M 3 ^ ^ Σ(n) h v4 => Σ(/2) h 5
vm(m f=p ̂ 4 =* w |=p ̂ ) for m > /2 <=» /2 Np ̂ 4 D ̂

3x4(x): =0 « t=p 3XV4(A:) <=» 3m(m \^PA(t)) for m>n, some / £
P(m)
=> Σ(m) hv4(0 <* Σ(n) \- lxA(x).

<=) it is trivial since Σ(n) is a prime theory.

TV and G are in one-to-one correspondence and TV is a partially ordered set,
thus Γo ¥ Φ holds. By the model existence lemma, the completeness theorem
for S is obtained:

Theorem 3 (Completeness Theorem) A is provable in S iff A is valid in S.

Proof: Necessity is presented in the proof of Theorem 1. Sufficiency, that is,
completeness, is clear since by the model existence lemma there exists a model
for it assuming Γ̂  (/</>.

Theorem 4 (Compactness Theorem) There exists a model for Γ iff there
exists a model for finite subset AofT.

Proof: The proof is carried out by contraposition. Namely, there is no model
for Γ iff there is no model for Δ Q Γ. Sufficiency is trivial since Δ is a finite sub-
set of Γ. Necessity is proved as follows: By Theorem 2, if there exists no model
for Γ, then Γ is a set of inconsistent formulas. Since Γ \- _L, there is a set of
formulas Ax,..., An E Γ satisfying Δi , . . . ,Δ Λ h -L. That is, there is no model
for Δ = [Δi, . . . ,ΔΛ). Now consider the domain [J P(T) for a Kripke model

ΓGG

<G, R, VP, VN, P>. Then the following theorem holds:
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Theorem 5 A is valid in all models iff A is valid in all models with the set
of denumerable parameters.

Proof: Necessity is trivial. Sufficiency can be proved as follows: Consider the
model <G, R, VP, VN, P) with nondenumerable parameters in which A is not
valid. By Theorem 3, A is also unprovable even if parameters are restricted to
denumerable numbers since A is not provable. Then there exists a model with
denumerable parameters corresponding to the primary model.

Next we shall investigate the relationships among 5, intuitionistic logic //,
and classical logic C. To do so, we first define the mapping Γfrom all formulas
in H to formulas in S recursively.

TA = A for any atomic A (3.4)
T(AΛB) = TAΛTB (3.5)

T(AMB) = TAVTB (3.6)

T(ADB) = TADTB (3.7)
T(->A) = TA D -TA (3.8)
T(VxA(x)) = VxT(A(x)) (3.9)
T(lxA(x)) = 3xT(A(x)). (3.10)

We provide a Kripke model for H before we consider the relationships
between S and H. The Kripke model for H is a quadruple <G, R, VH, P). G,
R9 and P are described in (2.1), (2.2), and (2.4), VH is a mapping from every
propositional variable to a subset of G satisfying the property:

vr*(Γe vH(A)*r*e vH(A)).

The forcing \=H is defined in terms of the forcing \=P except in the case of
strong negation.

Lemma 4 Given models < G, R, VHy P) for H and < G, R, VP, VN, P) for S

Γ YHA iff Γ \=P TA for any Γ(EG).

Proof: The proof is carried out by induction on the length of formulas. Exam-
ples of inductive steps are given below:

Γ \=H A Λ B «». Γ htf A and Γ VH B => Γ [=P TA and Γ NP TB. <s> Γ NP

TA Λ TB.

& r ι=p Γ M Λ#) .

T YHADB^ VΓ*(Γ* N H ^ => Γ* \=H B) =* VΓ*(Γ* hp 7M =» Γ* NP TB)
**Γ tpTADTB &Γ £p T(A D B).

YYH-^A<* VΓ*Γ* ΨHA=> VΓ*Γ* feέp TA <* VΓ*(Γ* μP 7M => Γ*
¥P~TA)

<*Γ \=PTAD -TA <*> Γ tP T(-iA).

Γ \=H VxA{x) Φ> VΓ*Γ* ΪH A{t) for all ί G P(Γ*)
=* VΓ*Γ* Np 7M(0 for all ί G P(Γ*)
<=> Γ NP VJC7M(X) ^ Γ (=P Γ(VJO4(X)).

Theorem 6 (Embedding Theorem) 4̂ w vα//ί/ m H iff TA is valid in S.
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Proof: First we should prove the necessity condition. If we assume that A is not
valid in H then there exists a model <G, R, VH, P) for H such that Γ ψH A.
For the counter-model for S, VP and VN are defined as follows:

VP(A) = VH(A)9 VN(A) = { Γ | v Γ T * £ Ktf(Λ)}.

This model is a model for 5 when Γ \=H -*A <=» Γ |=p ~^4 holds. For any
atomic formula A

Γ VHA & Γ E F ^ U ) «• Γ E FpG4) «» Γ t=P,4 «• Γ f=P 7M.

By Lemma 4, Z4 is not valid in a model <G, /?, VP, VNi P) for S. Thus The-
orem 6 is proved. Now assume the equivalence between provability of TA in S
and that of A in H. Then we get the completeness theorem for H by way of the
completeness theorem and the embedding theorem for 5.

Corollary 2 A is valid in HiffA is provable in H.

Similarly, the compactness theorem for H is obtained. The proof on the basis
of Kripke semantics can also be found in Fitting [4].

Next consider the relationships between classical logic C and S. The fol-
lowing theorem is first proved by Ishimoto [5],[6] in the Gentzen-Schiitte type
formulation:

Theorem 7 (Embedding Theorem) A is provable in classical predicate logic
C iff -A D A is valid in S, where A is not containing D.

Proof: For proving necessity, assume — A D A is not valid in S. Thus there exists
a model for S such that Γ \=P ~A and Γ ψP A. Now let us define the function
Vc in C corresponding to VP and VN in S, namely,

Γ ΪPA => VC(A) = T (3.11)
Γ h v ^ VC(A)=F (3.12)

where A is a formula not containing D. Proving necessity is carried out by induc-
tion on the length of formulas. Several examples of inductive steps are given
below:

Γ ΪPAΛ B <*. Γ VPA and Γ hP£=>. VC(A) = T and VC(B) = T

<* VC(A/\B) = T.

Γ YP~A ^ Γ ΪNA <* VC(A)=F* VC(~A) = T.

Γ \=PVxA(x) e>. vΓT* \=PA(t) for all tGP(T*).
=> Vc(A(t)) = T for all/.
*> Vc(VxA(x)) = Γ.

Γ \=N A v B <Φ . Γ NΛΓ.4 and Γ h,v £ => VC(A) = i 7 and VC(B) = F.

<* F c ( ^ l v 5 ) =,F:

Γ h v VJC4(JC) «• Γ \=NA(t) for some / G P ( Γ ) .
=> FC(^1(O) = Z7 for some t.
& Vc(VxA(x))=E

By (3.12) Γ NP -^4 holds since VC(A) = E That is, A is not valid in C.
Sufficiency is easily proved by induction on the length of formulas. As a cor-
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ollary of Theorem 7, the completeness theorem for C is obtained. Thus if A is
valid in C then -A D A is a theorem of S. Though -A D A is a theorem of C
since 5 is a subsystem of C, this is equivalent to A. Then A is a theorem of C
The following corollary holds by means of -ιA = A D -A.

Corollary 3 (Embedding Theorem) A is valid in C iff ~^~A is valid in S+

where A is a formula not containing D.
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