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Some Notes on lterated Forcing With 2% > K,

SAHARON SHELAH*

Introduction By Solovay and Tenenbaum ([7]) and Martin and Solovay ([3])
we can iterate c.c.c. forcing with finite support. There have been many works
on iterating more general kinds of forcings adding reals (e.g., [4]), getting gen-
eralizations of MA, and so on, but we were usually restricted to 2% = X,.
Note only this is a defect per se, but there are statements that we think are inde-
pendent but which follow from 2% < R,,

Some time ago Groszek and Jech (in [2]) got 2% > K, + MA for a family
of forcing wider than c.c.c. but for X; dense sets only.

In Section 1 we generalize RCS iteration to «-RS iteration.

In Section 2 we combine from [4], X, XII (i.e., RS iteration and some
properness and semicompleteness) with Gitik’s definition of order ([1]). (He uses
Easton support, each Q ({2}, «;) -complete where for important i, k; = i. His
main aim was properties of the club filter on inaccessible: precipitousness and
approximation to saturation.)

In Section 3 we get MA-like consequences (strongest-from supercompact).
In Section 4 we get that, e.g., for Sacks forcing (though not included), and in
the models we naturally get, for every X, dense subset there is a directed set
intersecting all of them.

In Section 5 we solve the second Abraham problem.

The main result was announced (somewhat inaccurately) in [6].

1 On x-revised support iteration We redo [4], Ch. X, Section 1, with “< k”
instead countable.

Remarks 1.0:

(1) Now if P, = Py * Qo, g1 a Pi-name, G, S P, generic over V, then in
V1Gol, g can be naturally interpreted as a Qp-name, called q,/Go,
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which has a Py-name ¢q,/Gy, or q,/Py; but usually we do not care to
make those fine distinctions.

(2) Using O = (P;, Qi1 i < a), P, will mean RLim O (see Definition 1.2).

3) If DisafilteronasetJ, DEV, V< VT (e.g.,, VI = V[G]) then in
an abuse of notation, D will denote also the filter it generates (on J)
in V1.

(4) D, is the closed unbounded filter on «.

Definition 1.1 We define the following notions by simultaneous induction
on a:
(A) O=<(P, Qi1 i < a) is a k-RS iteration (RS stands for revised support)
(B) a O-named ordinal (or [j, a)-ordinal)
(C) a O-named atomic condition (or [j, o)-condition), and we define q !
£ q ! {£} for a O-named atomic [j, a)-condition g and ordinal £.
(D) the «-RS limit of O, RLim, Q which satisfies P; <o RLim, O for every
i < k and we define p | 8 for p € RLim, 0, 8 < «. (We may omit «.)

(A) We define “Q is a «-RS iteration”
a = 0: no condition.
a is limit: Q = (P;, Q;: i < a) is a «-RS iteration iff for every 8 < a,
O ! B is one.
a =B+ 1: Qis an RCS iteration iff O ! 8 is one, P; = RLim,(Q I 8),
and Qg is a Pg-name of a forcing notion.

(B) We define: { is a Q-named [/, 8)-ordinal above r. It means r €
U P; (where v = Min{3,/(Q)}) and { is a function such that:

i<

(1) Dom(g) is a subset of |J (P;: i < v}

(2) for every g € Dom({) for some i, {q,r} € P;and P;Fr < q.

(3) for every g1, g € Dom({), if for some i < a{q;,q>} € P; and in
P; they are compatible then §lq) = {(q2)-

4) if g€ Dom({), q € U P, and i = i(q) is the minimal / such

I<a

that g € P; then {(q) is an ordinal =/, but <7,B

We define “{is a O-named ordinal above r” as “ {isa O-named
[0, / (Q)) ordinal above r”. We omit “above r” when r = & G.e.,
we omit demand (2)).

(C) Wesay “gis a O-named atomic [j, o)-condition above r” if

(1) g is a pair of functions ({,, cnd,;) with a common domain D =
D,: ) )

(2) cnd, satisfies (1) and (3) above and:

Q) &i isa (O ) —named [}, «) —ordinal above r

(4) for p € D,, cndy(p) is a Py (p-name of a member of Q;q(p,
We omit “[J, a)- whenj=0, a = t’(Q) and we omit “above r”
when r = @. If [(Q) > o we mean Q | a. We define q I & as
(5q ! Dy, cndg ' Dy) where Dy = {pE€Dy: §,(p) <£}. We define
g (&) as (§ 1 Dy, cndy | D;) where D, = {p € Dy: §(p) = £).

(D) We define RLim, Q as follows:
if &« = 0: RLim, Q is trivial forcing with just one condition, @.
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if o« > 0: we call g an atomic condition of RLim, Q, if it is a Q-named
atomic condition.
The set of conditions in RLim, Q is

{p: p a set of N\ atomic conditions for some A < «; and for every
B<a plB=21(r!B:rep} EPB,andpFBII—pB“theset
{r! {B}: r € p} has an upper bound in Qﬁ”}

We definep I 8= {rlB:rep)l.

The order is inclusion.

Now we have to show Ps <o RLim, Q (for 8 < «). Note that any O-named
[, B)-ordinal (or condition) is a Q-named [, a)-ordinal (or condition), and see
Claim 1.4(1) below.

Remark 1.1A: Note that for the sake of 1.5(3) we allow « to be not a cardinal
and then we really use |«|*.

Remark 1.1B: We can obviously define O-named sets; but for conditions (and
ordinals for them) we want to avoid the vicious circle of using names which are
interpreted only after forcing with them below.

Definition 1.2
(1) Suppose Q is a k-RS i_teration, {isa O-named [/, «)-ordinal above r,
B < a, r € G € Gen(Q) (see Definition (3) below). We define {[G] by:

() {[G]=iifforsomey<=B>aandp€E Dom({) N G, we have
t(p)=i.
(ii) otherwise (i.e., G N DS =¢orré&QG) {[G] is not defined.
For a Q-named [, a)-condition above r, g, we defined g[G] similarly.
(2) We denote the set of G < U P;,; such that G N P, is generic over
i<a
V for each i < « by Gen(Q).
(3) For { a Q-named [/, a)-ordinal (above r) and g € U P;let g IFp

“t=¢if forevery G € Gen(Q) suchthatre G:q€ G = Gl =¢.

Remark 1.3: From where is G taken in (2), (3)? e.g., Vis a countable model of
set theory, G taken from the “true” universe.
Now we point out some properties of «-RS iteration.

Claim 1.4: Let Q = (P;Q;: i < &) be a -RS iteration, P, = Rlim, Q.

(1) IfB< athen: Pgc P,; forp,,p, €Ps, Pg F py < p, iff P, F
p1 < py: and Pg <- P,. Moreover, if g € Pg, p € P,, then g, p are
compatible iff g, p [ 8 are compatible.

@ If {isa O-named [j, a)-ordinal G, G’ € Gen(Q) G N P, =
G'N P, and {[G] = £ then {[G’] = £; hence we write {[G N P;] =¢.

(3) If B,y are 0- “named [J,/ (Q))-ordmals then Max{, —y} (defined nat-
urally) is a O-named [j, /(Q))-ordinal.

@) If @ =By + 1, in Definition 1.1(D), in defining the set of elements of
P, we can restrict ourselves to 8 = (y. Also in such a case, P, =
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Ps*Qp, (essentially). More exactly, {p U {g}: p € Py, g a Pg,-name
of a member of Qp,} is a dense subset of P,, and the order p; U
{q1} =P U (¢} iff py < pay P2 IF g1 < ¢ is equivalent to that of
Pa, i.e., we get the same Boolean algebra.

(5) The following set is dense in P,: {p € P,; forevery 8 < a, if r{, r, €
p, then |kp, “if ry I (B} # @, ry I (B} # O then they are equal”}.

6) | P, (E,<02 1), for limit «.

o If IFpi“[Q,I < \”, « a cardinal, then |P;, | < 2!%! + \ (assuming,
e.g., that the set of elements of G is \).

Proof: By induction on «.

Lemma 1.5 The Iteration Lemma
(1) Suppose F is a function, then for every ordinal o there is one and only one
k-RS-iteration O = (P;, Q;: i < o), such that:

(a) for every i, Q; = F(Q 1 i),

®) a' <a,

(c) either aT = « or F(Q) is not an (RLim, Q)-name of a forcing notion.
(2) Suppose Q is a k-RS-iteration, o = 1(Q), 8 < a, Gg S Py is generic over V.
Then in V[Gﬁ], Q/Gﬁ = (P;/Gg, Qi: B <i<«k)is a«k-RS-iteration and RLim,
Q = P *(RLim Q/Gg) (essentially).
(3) The Associative Law: If o (& < £(0)) is increasing and continuous, oy = 0;
O =(P;, O;: i < ay(o)) is a k-RS-iteration, Py, = RLim, O; then so are {P, ),

a(E+1)/Pa(£) E < S(O)) and <P/Poz(E)$ Q, C((E) <i< C((E + 1)); and vice
versa.

Remark 1.5A: In (3) we can use a;’s which are names.

Proof: (1) Easy.
(2) Pedantically, we should formalize the assertion as follows:

(*) There is a function F (= a definable class) such that for every x-RS-iteration

Qand /(Q) = a, and B < a, Fy(Q,B) is a Pg-name of QT such that:

(@) IFp, “QT is a k-RS-iteration of length a — 8”.

(b) Py % (RleKQT) is equivalent to P, = RLim, O, by F;(0,8) (.e.,
F,(g, B) is an isomorphism between the corresponding completions to
Boolean algebras)

©ifB=y=alp“F(Q!y,B8)=F(Q,8) ! (y —B)” and F(Q,8)
extends Fy (Q I v,8) and F,(Q v, B) transfer the P,-name O, toa
PB-name of a (RLim, (Q’r I (¥ — B))-name of Q7 —g (where Q7 5=
<Q3+, i<y-—pB).

The proof is the induction on «, and there are no special problems.
(3) Again, pedantically the formulation is

(+%) For Q is an RCS-iteration, /(Q) = (o), @ = {a;: £ < £(0)) increasing
continuous, F3(Q, @) is a k-RS-iteration QT of length (o) such that

(a) F4,(Q,a) is an equivalence of the forcing notions RLim, Q.
RLim, Q".
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(b) F3(Qfag,af(§'+1))_=F3(Q),5f) M _
(c) Qg is the image by F,(Q Pag, @l (§ + 1)) of the P,, = RLim,(Q !
ag)-name Fo(Q oy, o).

The proof again poses no special problems.
Claim 1.6: Suppose we add in Definition 1.1(B) also:

(5) if « is inaccessible, and for some 8 < a for every v satisfying 8 <
¥ < a, Ip, “| P,/Pg| < @” then (38 < @) [Dom { < Pg].

Then nothing changes in the above (only we have to prove everything
by simultaneous induction on f‘)’ and if A is an inaccessible cardinal > « and
|P;| <\ for every i < A and Q =<P;, Q;: i <\) is a «x-RS iteration, then

(1) every O-named ordinal is in fact a (Q ! i)-named ordinal for some
i<a,

(2) like (1) for O-named conditions.

G P.=UP.

i<k
(4) if k is a Mahlo cardinal then P, satisfies the A-c.c. (in a strong way).

2 The «-finitary revised support We deal with forcing notions Q satisfying:

Definition 2.1 Let v be an ordinal, S € {2} U {\: A a regular cardinal}. Now
Q satisfies (S,vy) — Pry if

M =9l =, =0

(i) as a forcing Q = (|Q|, =)

(ili) =, is a partial order

(iv) [p<0g=p=4q]

(v) for every cardinal x € S and Q-name 7, such that |-g “7 € «” and
pEQforsomeqe Q, /€, p=<gqandq g “if k =2, 7=1and if
k=ZRg, 7=1”

(vi) for each g € Q in the following game player I has a winning strat-
egy: for i < v player I chooses p,; € Q such that ¢ <o p2;i: A A\ Pj <o

j<2i
D»; and then player II chooses p,;i 1 € O, P2 <o Dait1-
Player I loses if he has sometimes no legal move which can occur in
limit stages only.
Let (S,vy) — Pr{ means ({«},vy) — Pr; for every « € S.

Fact 2.2:
(1) If k <y, y2 < k™ then (S,v;) — Pry is equivalent to (S, y,) — Pry.
@) If k+ 1 <=y <«™ and O, (i.e., there is a sequence (Cs: 6 < k), Cs S
o closed unbounded) [6; € Cs, 6, =sup 6; N C5 = G5, = Cs N 6]
and Q satisfies (S,v) — Pr; then Q satisfies (S,«*) — Pry.
(3) If Q satisfies (S,y) — Pr;, A<+, and A € S then in V€ \ is still a reg-
ular cardinal and when A = 2, Q does not add bounded subsets to v.
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(4) If Q satisfies (S,vy) — Pr;, N € S, \ regular, and for every regular p,
¥ = u < N= |Fg “u is not regular” (e.g., [y, \) contains no regular
cardinal) then \ is regular in V€.

Proof: Straightforward.

Definition 2.3 (S, <k) — Pry, will mean (S,vy) — Pr; for every y < «.
Fact 2.4: The following three conditions on forcing notion Q, a set S < {2} U
{N\: N\ a regular cardinal} and regular ordinal x are equivalent:
(a) there is Q' = (Q’, =, <¢) such that (Q’, <), (Q, =) are equivalent
and Q' satisfies (S, k) — Pry.
(b) for each p € Q, in the following game (which last k moves) player II
has a winning strategy:
in the ith move player I chooses \; € S and a Q-name 7; of an or-
dinal < \; then player II chooses an ordinal o; < A;.
In the end player II wins if for every « < « there is p, € Q, p < p,, such
that for every i < a p, |F “either \; = 2;, 1, =a; 0r \; = 8y 7; < ;.
(¢) like (a) but moreover (Q, <) is k-complete.

Proof: (c) = (a): trivial.

Proof: (a) = (b): Choose g € Q' which is above p. We describe a winning strat-
egy for player II: he plays on the side a play (for g) of the game from 2.1 (vi)
where he uses a winning strategy (whose existence in guaranteed by (a)). In step
i of the play (for 4.2(b)) he already has the initial segment (p;: j < 2i) of the
play for 2.1(vi). If player II plays \;, 7; in the actual game, he plays p,; € Q' in
the simulated play by the winning strategy of player I there and then he chooses
Daiv1s D2i <0 Daiv1 € Q’, which forced the required o; (exists by 2.1(v)) and then
plays «; in the actual play.

Proof: (b) = (c): Find winning strategy for player II in the game from 2.9(b).
We define Q': Q' = {(p, (N, Ti» a;: i< E)): pE Q, and (N, 74, a;: i < ) is
an initial segment of a play of the game from 2.4(b) for p in which II uses his
winning strategy.

The order = is:

(pa <)\i’ Tis O i< E)) S0 (P’, <)\II’ Zi’s ail: i< EI»
iff (both are in Q') and
QFkp t<¢,andfori< ¢
£\ )

’ 14

Ti=1Ti, 0=

D’
>\i,9
and the order < on Q’ is

(.U, <)\i’ Ti> 2 i< E)) = (p,s (>‘1/’ Zil’ O‘i[: i< gl»
iff (both are in Q" and) Q k p < p’. Moreover, p’ g “N\; =2, 7, = o 0r \; =

Ro, 7: < ;” for i < £.
The checking is easy.
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(1) Let Gen(Q) = {G: G = |J P; is directed, G N P; generic over V

Definition 2.5

{ i<a
for i < oz]. Let Gen’(Q) = {G: for some (set) forcing notion P*,
/\ P; <> P* and G* < P* generic over Vand G = G* N |J P,-}.
i<a i<a

Q) IfO=(P:i<a)or Q=(P;, Qiri<a)Pis <e-increasing we define

a Q-name 7 almost as we define U P;)-names, but we do not use

i<a
maximal antichains of |J P;, G< |J P
i<a i<a

(*) 7is a function, Dom(7) € U P; and every directed G € Gen’(Q), 7[G]

<a
is defined iff Dom(7) N G # J and then 7[G] € V[G] [where “every
G...”is taken? e.g., Vis countable, G any set from the true universe] and
7 is definable with parameters from V (so 7 is really a first-order formula
with the variable G and parameters from V).

(3) Forpe O (i.e., relU P,-) , O-names 7, ...,7,_;, and (first-order)

formul_a Vietp kg \I/(I;:, ...T,—1) means that for every directed G €
Gen'(G), with p € G, VIG] k¥ (70[G],..., 7,1 [G]).

(4) A Q-named [/, 8)-ordinal { is a Q-name { such that if {[G] = £ then
j=t<Band (3p € GN Pyny) p ko “¢ = £” (Where o =1(0)). If we
omit “[j, 8)” we mean [0, /(Q)).

Remark 2.5A: We can restrict in the definition of Gen”(Q) to P* in some class
K, and get a K-variant of our notions.

Fact 2.6:
(1) For Q as above and Q-named [, 8)-ordinal { and p € {J P; there

are{,gand g, suchthat p<gq, q lkp“q: € G, q; € Pg,'§a< a, and
a1 ko “r=2¢"orqlg, “{is not defined”.

(2) For Q as above, and g,s O-named [/, 8)-ordinals, also Mm{i‘,é},
max{{, £} (naturally defmed) are O-named [/, 8)-ordinals.

(3) For Q as above and O-named ordinals £1,...,¢pandp e U P there
i<a
are {<aand g€ P, p<q,qltp“{ = Max{¢y, ..., 6.7 Similarly
for Min.

Definition 2.7 We define and prove by induction on « the following simul-
taneously:

(A) O =(P;, Q;: i < a) is a k-Sp,-iteration.

(B) A Q-named atomic condition g (or [j,B)-condition, 8 < o) and we
define ¢ lE, q I (£} for a O- named atomic condition g and ordinal
£ < o (or Q named ordinal £).

© If g is a Q-named [j, 8)-atomic condition, ¢ < «, then q l'Eis a
(O'! £)-named [/, Min[B, £})-condition and gl{§lisa Ps-name of
a member of Q; or undefined (and then it is assigned the value &, the
minimal member of Q; similarly for £).
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(D) The k — Sp,-limit of Q, Sp,-Lim,Q, and p | ¢ for p € Sp,-Lim,Q, £
an ordinal < « (or Q-named ordinal).

(E) P; <o Sp, Lim,Q (if O = (P, Qi: i < a) is a k-Sp,-iteration,
B < a, P;, Q satisfying (i)-(iv) of Definition 1.2). In fact P; <
Sp,-Lim,Q (as models with two partial orders, even compatibility is
preserved) and q € Pg, p € Sp, Lim,Q are compatible iff g, p | 8 are
in PB’

Proof:

(A) O =«(P;, Qri<a)isa k-Sp,-iteration if Q I 8 is a k-Sp,-iteration for
B<a,andif « =8 + 1 then Pg = Sp, Lim,(Q ! B) and Qp is a Pg-name
of a forcing notion as in Definition 2.1()~(iv).

(B) Wesaygisa Q-named atomic [/, 8)-condition when: g is a O-name,
and for some { = $a QO-named [j, 8)-ordinal |5 “{hasa value iff g has, and
if they have then §<Min(B, ! (Q), g€ Q;” Now ¢ I £ will have a value iff S
has a value < £ and then its value is the value of g. Lastly, ¢ I {£} will have a
value iff $a has value ¢ and then its value is the value of q (similarly for £).

(C) Left to the reader.

(D) We are defining Sp, Lim, Q. It is a triple P, = (IPa| , <, <o) Where

(@ |Py| ={{gii<i(*)};i(*) <k, eachg;isa Q-named atomic con-
dition, and for every ¢ < a, (2% “{qe | [£): i< i*) has an =<,
upper bound in Q;”}.

(b) P, Fpy <o pyiff for every { < a |Fp, (gl (¢} i < 1’(*)} are
equal for I =1, 2 or for some i < i%(*) for every j; < i'(*) E
Gy, Qs Fa; <o g7 where p; = {g: i < i'(*))

(©) P, kp! < p?iff:

(i) for every { < a (p*1{) kp, “p' 1 (£}, p? I {{) are equal as
subsets of Q¢ (remember (F)) or for some i < i?(*) for every
J<i'(*) Fp” O k g} < qf” where p' = (qf: i < il(¥))

(ii) for some n < w and Q-named ordinals £1,... &y foreach ¢ <
H(O): P kg “if ¢ & {£1,.. .40} then for some r € p,,
GlGl =fand foreverysep, [{;={=5=o r]”. We then
say: p; < py over {£1,...,&,).

Remark: We could use names for n too, but as it is finite this is not necessary.
Now for ¢ < «, and p € Sp, Lim,Q, let us define

pleE=(rtérep)
pl{g) =1(rl{&):rep.

Proof of (E): Let us check Definition 2.1 for P, =4 Sp, Lim LO:

« s a partial order: Suppose po < pl < p,. Let 1/, 50, e gﬁ, appear in
the defmmon of py<pi41. Let n = n® + n', and

gifi<n
$e= g}_no if 1 = n°.

Now Ik pr I (e} < prey 1 {5}, “hence kg po ! (§e} < pa T {50}
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Also | “if ¢ & {$o5- -5 8ne1) then po T {$) <o P 1 {$) <op2 I (). So
we finish.

<o is a partial order: As in 1.

D <o @ = p < q: By the definition; easy.

So in Definition 2.1, (i), (ii), (iii), and (iv) hold. We leave the checking of
the rest to the reader.

Remark 2.8: This is a combination of [4], X with the recent Gitik ([2]) (which
uses Easton support, each Q is ({2}, «;)-complete, where for the important i’s
k; = i: as his aim was mainly cardinals which remain inaccessible).

Lemma 2.9 Suppose v is an ordinal and Q = (P;, Qii<a)isa
k-Sp,-iteration.

(1) ifp<gqinP,=Sp, Lim,Q then for some n ordinals ¢, <...,< &,, r€
P,, q=<r andp <rabove {£,...,§,}.

(2) If v is successor cardinal (or not a cardinal) then the parallel of 1.4, 1.5,
1.6 holds.

(3) If « is inaccessible but |p, “« is a regular cardinal” for each i < o then the
parallel of 1.4, 1.5, 1.6 holds.

Proof: Left to the reader.

Lemma 2.10 Suppose Q = (P;, Qi1 i < a) is a k-Spy-iteration, k > R, a reg-
ular cardinal, S € {2} U {u: Ro < u < «, p regular} and each Q; (in V), has
(S, <«k) — Pry, then:
(1) P, =Sp,-Lim, Q has (S, <«k) — Pry, and if each Q, has (S, k) — Pr; then
P, has it.
(@) Ifk € Sand cf(a) =« then | J P; is dense in P,.
i<a

(B) Ifk €S, a strongly inaccessible, a > |P;| + « for i < a then P, satisfies
the a-chain condition (in a strong sense).
(4) If each Q; has a power of <x, then P, has a dense subset of power
=(la| + x)<x.
B) If1Qil =x, x<*=x, 1(Q) = x™ then Q satisfies the x*-c.c.
6) If S ={«}, (1) works even for (S, k) — Pr which is defined as the game def-
inition of semiproperness; i.e., using Fact 2.4(b) with winning means:

N\ (3Po)Po I+ Sup7; < Supq;

o <a I<a
Proof:

(1) Let us check Definition 2.1. Now (i)-(iv) hold by 2.7.

For (v) let u € S, Fp_ “r < u”, p € P,. For simplicity 4 # 2. We define by
induction on n p,, p = p°, p" <o p"*'. For each n let {£§: i <yn<k] bethe
domain of p” (i.e., {{;: r € p"}) and define by induction on i < v, pf*, p§ = p,.
pl' is <¢-increasing (in 7).

If p/" is defined let (writing a little inaccurately) G S P;r. be generic over
V. In V[G] if there are of < p, r € P,, r 1 (¢} + 1) € G, pl" <o 1, such that
r ke, “T < of”, let rl'[G] be like that; otherwise, let " = p/". So r, o are
P;n,-names. Now in V[G N Pyr], Q_E;.u is a forcing notion, ¢ a name of
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an ordinal < p; hence there are 8" < u, ¢/, pi' | {£§]} <o ¢/ € Q¢r, VIG N
Pg;.n] E“qf o, “aff < B'”. So Bl'is a Pgp-name, ¢ a O-named atomic con-
dition. Now define p/%, as p2ty =pP Urf 1 [E7 + 1, o) U {g"}.

We have an obvious flaw — why is there a limit for p/(i < §)? (or p"(n <
w)). For this, use (v) of Definition 2.1, i.e., increase p/., albeit according to the
winning strategy. Now p,,, will be = p; according to the strategy too.

So there is p*, p"” <, p* for each n. Dom p* = | Dom p,. We claim

n<w

that for some a < p, p* kp, “r<a”. If not,let g€ P,, g = p*, and B < p
be such that q IFp, “r = 3. So by 2.9(3) w.l.o.g. ¢ = p* above some {&,,...,
En-1}, &0 <...< &,—;. Choose such number n, and ordinals §;(/ < n) with
minimal £,_; (or n = 0 is best of all). If n >0, w.l.o.g. for some m< wq ! £,_;
Fp,, " £, € Dom p™” and we get contr. to the choice of p™*!

(vi) is left to the reader.

(2), (3) are left to the reader.

4), (5) Like [4], Ch. III x.x, use only names which are hereditarily < «.

Definition 2.10 We define Sp; iteration Q and Sp; Lim, O like x-SP, with
only one change: instead p € P; being of cardinality < x, we require:

(¥) for every p € P,, N\ < [(Q) which is strongly inaccessible, and (Vi <
k) [| P;| <] IkgM\ “the domain of p I \ is bounded below \”. Hence, for
each A |J P; is dense in P,.

i<\

Claim 2.11: The parallel of Definition 2.10 holds.

3 We can get from the lemma of preservation of forcing with (S,vy) — Pr,
by k-Sp, iteration (and on the A-c.c. for then) Martin-like axioms. We list below
some variations.

Notation 3.1: Reasonable choices for S are
(1) S2 = UR Car<, = {u: p a regular cardinal, R, < p < «}
(2) S! = RCar., = {u: p a regular cardinal, Ry < p < «}
(3) $? = (2} U Car,
(4) If we write “< «” instead <  (and S, instead S’) the meaning should
be clear.

Fact 3.2: Suppose the forcing notion P satisfies (S,y) — Pry
(1) If 2 € S then P does not add any bounded subset of .
(2) If pis regular, and \;(i < u) are regular, and {p} U {\i:i<pu} <SS, D

is a uniform ultrafilter on p, 0 = ¢f H Ni/D} (N\;-as an ordered set)

then P satisfies (S U {0}, v') — Pr, ;;ﬁenever py’ < u. (We can do
this for all such 6s simultaneously.)

(3) If N € S is regular, u < v then for every f: u —» \ from V?* for some
g: p— N from V for every o < u, f(a) < g(a).

Claim 3.3: Suppose MA_, holds <i.e., for every P satisfying the X;-c.c. and
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dense D; € P (for i < a < k) there is a directed GES O, A GND; # @) . Then
i<k

the following forcing notions have expansions (by <o) having the (U RCar,

k) — Prd.

(1) Silver forcing: {(w,A): w S w finite, A S w infinite}
(WI,AI) = (Wz,Az) iff wiEw, S wy U Al’ A2 c Al.
(2) The forcing from [5], Section 2 (changed suitably).

Proof: (1) Let P’ be the set of (w, A, B) satisfying: w S w finite, B € w infi-
nite, B € A € w, with the order

(w1, A1By) < (W2, A3, By) iff (w1, A1) < (W, A4)
and B, S* B, (i.e., B, — B, finite)

(Wi, A1, By) <¢ (W3, A2, B) if wy = w,
Al =A2
B, € * B,.

Let us check Definition 2.1: (i)-(iv) easy.

Note that {(w, A, A): (w,A,A) € P} is dense in P.

(iv) Let u > R, be a regular cardinal, 7 a P’-name, |Fp “7 < p. Let p =
(w, A, B) be given. Choose by induction on i < w, n;, 4; such that

(@) Ag=B(SA)

(b) n; = Min A,’

© A1 S A; — (n;}

(d) for every uc {0,1,2,...,n;} for some a; , < p, (U, Aiy1, Ais1)
Fp “T= ;. ” or forno BS wand a < u(u, B, B) F “r=«w;,,”.

There is no problem to do this, now g =4 (w, A, {n;: i < w})

satisfies:

() p<qg € P’ and even p < q.

®)ghp ""1E€E o i<w,us{0,1,2,...,n}}.

So q is as required.
(v): Suppose p;(i < vy) is <g-increasing so p; = (w, 4, B;) B; € A, B; is *-
decreasing. It is well known that for y < x, MA_, implies the existence of an
infinite B € w, (Vi < y) B S * B;.

Claim 3.4: The following forcing notions have the (U RCar, k) — Pry:
(1) R;-c.c.
(2) k-complete
(3) (f: f a function from A4 to {0,1}, A € w, A = ¢ mod D} where D is
a filter on w, containing the co-finite sets, such that if A; € D for i <
i* < k then for some BE D /\ B =*A;
i<i*
Discussion 3.5: Let x < A, A regular. Each of the following gives rise naturally
to a generalized MA, stronger as A\ is demanded to be a larger cardinal (so if A
is supercompact we get parallels to PFA).
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Case I: We use Q of length \, a «-SP, iteration, |Fp, “|Q;| < N”, each Q; hav-
ing (S!,x) — Pr{.

Now P, = k — SP, Lim, Q have the (S/, «) — Pr; by 2.10, so all regular
u < « remain regular and usually every N’ € («, \) is collapsed. But A is not col-
lapsed if it is strongly inaccessible (by 2.10(3)) and also if (¥x < A)(x <*<A\)
(by 2.10(5)). If 2 € S€, no bounded subset of « is added.

Case II: Like Case I with (k + 1) — Sp, iteration Sp, Lim,,,; and every N’ €
(k, \) is collapsed. Here we need A to be strongly inaccessible.

Case III: Q is Sps-iteration, has length «, | Q;| < « for i < «, k is strongly inac-
cessible, and Q; have (S,v;) — Pry .

By 2.11 P, = Sp; Lim Q has the «-c.c. (and |P;| < k of course). Let S =
{p < «; p regular and for some i, |Fp, “u is regular and u € S;, p < v;, forj >
i} then |Fp,.

Fact 3.6: Suppose A is strongly inaccessible, limit of measurables, A > «, k reg-
ular. Then for some \-cc forcing P not adding bounded subsets of «, |P| = A,
and |p “2* = A = «*, and for every A € « there is a countable subset of A not
in L(A).

Proof: We use k-SPy-iteration (P;, Q;: i <\), | P;| <\. For i even: let x; be the
first measurable > | P;|, (but necessarily < A\) and 7. Then Q; is Prikry forcing
on k; and Q;,; is Levi collapse of ;" to «.

4

Lemma 4.1 Suppose
(i) R is an R -complete forcing notion.

(i) ForreR,Q"=(Pl:i<al), Plis <s-increasing iniand if i < o" has co-
finality w,, then every countable subset of V' belongs to V¥ for some i < a.
(i) Ifr'<r*thenQ" < Q.

(iv) IfreRand Q is a P, -name of a forcing notion, then for some r'>r

P31 =PoxQor ke, Q does not satisfy the c.c.c.
) If r¥(¢ < 8) is increasing, & < w,, then for some r

Nrisrandao, = | o,

¢<é <6
Let P[Gr] be U{P/: r € Gg, i < a,}, so it is an R-name of a forcing notion.
Then g [lpigg “for any R, dense subsets of Sacks forcing, there is a
directed subset of Sacks forcing not disjoint to any of them”].

Remark: Qguexs = {7: 7 S“> 2 is closed under initial segments nonempty and
(VpeN@Av)(n<vav " eTrv " IYeET)and 1, <7, if 7, S 7.

Proof: Let D; be R*P[Gg]-name of dense subset of QREICR! for i < w,
(Q& ks is Sacks forcing in the universe V).

For a subset E of Sacks forcing let var(E) be {(n,T): TE E, n < w}
ordered by (n,T}) < (n,, ) iff ny <n,, T, < Ty, and Ty N™"M=2 =T, N™M= 2,
We now define by induction on { < w;, r({), and D, such that:
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(a) r({) € R is increasing, a,(;)-increasing continuous.

(b) D;is a vaff;ﬂ)-name of a countable subset of Qg,cxs-

(©) If T€ D¢, n € Tthen Ty, =4 {v:n " v € T} belongs to D,.

(d) If Ty, T, € Dy then {{ ), €0) “q: n € T}, ), 1) " n: 9 € T»} and
their union belongs to D;.

(e) Let &£ < ¢, then for T} € D; thereis T, € D, Ty = T, and for T, € D,
there is 77 € DE’ T, =T,

(f) If T € Dy, then for some n for everyn € "2 N T, T,y =4 (vE T:
v < 79 or 7 < v} belongs to D;.

(8) Suppose { is limit, then PL{}Y; = PL8L* Ty, Ty is [var U pf] if ¢ <
<¢

w
w; and Ty is [var U DE] if { = w; (the w-th power, with finite sup-
£<¢
port).

Next the generic subset of T, gives a sequence of length w of Sacks con-
ditions closing the set of those conditions lzy (c) + (d) we get D.. We have
to prove that T; satisfies the X;-c.c. in VR Peyy: When ¢ < w; this is trivial

n
(as T; is countable). Let { = w;. It suffices to prove that [var U Dz] satis-
£<¢
fies the ®;-c.c.where n < w. So let / be a R * P.¥) name of a dense subset of

~%r¢)
n
[var U Dg] .Wecanfindat <¢,cf§ =8psuchthat[; = {x: x€ VR*Pul) and
E<t

n
every p € R * P{{Y) /R x P.{) force x to be in I} is predense in [var U Dv]
<&

(exists by (e)). Check the rest.

Remark: This argument works for many other forcing notions like Laver.

5

Definition 5.1 Let S be a subset of {2} U {\: \ is regular cardinal}, D a filter
on a cardinal A\ (or any other set). For any ordinal vy, we define a game
Gm*(S, v, D). It lasts ¥ moves. In the i-th move player I choose a cardinal A €
S and function F; from A to A; and then player II chooses a; < A;.

Player II wins a play if for every i < v,

d(N;, Fj, a0 j < D) =g {f < N: forevery j <i [N =2=Fi({) = o]
[N >2=F;i({) < a;} #+ D mod D.

Remark S5.1A:
(1) See [4], Chapter X on this.
(2) If not said, otherwise we assume that A — {{} € D for { < \.
(3 If D is an ultrafilter on N\, (]y| + «*)-complete for each
k € S then player II has a winning strategy.

Definition 5.2 For F a winning strategy for player II in Gm*(S,v,D), D a
filter on A (we write A = N(D)), we define Q = Qg » = OF,s,1.0, Q= (|Q], =,
=<o).
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Part A: Let (T,H) € Q iff

(i) T is a nonempty set of finite sequence of ordinals < A.

(i) neT=y1LET, and forsomenand n: TN "=A={n!{: £ <n},
|T N "*I\| = 2; we denote n = stam(T) = stam(T, H) (it is unique).

(iii) H is a function, T — {stam(T) ! £: £ < Ig(stam(T))} € dom H S “>\.

(iv) for each n € Dom H, H(7) is a proper initial segment of a play of the
game Gm™*(S, v, D) in which player II use his strategy F so H(y) =
()\‘H(r/)’ F,'H("), aiH(”): i< iH(n)>’ and i <« .

) forneT,d(H(n) ={{< N0 (HET).

Part B: (T}, H,) < (T, H,) (where both belong to Q) iff T, € T, and for
each n € T, if stam(T,) < n then H,(7) is an initial segment of H, (7).

Part C: (T, H,) <¢ (T, H,) (where both belong to Q) if (T\,H;) <
(T,, H,) and stam(Ty) = stam(T,).

Remark 5.2A: (1) So if (T, H) € Qp, and F, S(v, D) are as above, n € T,
n = stam(T) then d(H(n)) # @ mod D.
(2) We could restrict H to T in (iii).

Notation 5.2B: For p = (T,H) € Qg xand n € Tlet p!" = (T H), T =
{rET:v=<nory=<v}. Clarly p<p" € Q.

Lemma 5.3 If Q = Qr,s,4,p» D a uniform filter on N(D) then |¢g cf
AN(D) = Rp.

Proof: Let ng = |J (stam(p): p € Go).

Clearly if (T,, He) € Gy for £=1,2 then for some (T, H) € G, (T, Hy) <
(T, H); hence stam(Ty) < stam(T), hence stam(T,, H,) U stam(T,, H;) is in
“>X\. Hence 1o is a sequence of ordinals of length < w. It has length w, as
for every p = (T, H) € Q, and n, there is n € TN "\, hence p < p'™ € Q (see
5.2B), and p | “Ig(n0) = n” because n < stam(p[”]) and for every g €
O, q g “stam(q) = ng”. Obviously, o “Rang(ng) S N”. Why |g sup
Rang(ng) = A? Because for every (7,H) € Q and a < A, letting ¢ =4
stam(T), clearly d(H(n)) # & mod D (see Definition 5.12) but D is uniform,
hence there is 8 € d(H (7)), 8>, 509 " (BYE T, and (T, H) < (T, H)!""®
Q, (T, H)!""® | “n = (B) < no” hence (T, H)'""® | “sup Rang(ng) =
B”, as a < 8 we fimsh

Lemma 5.4 If S, v, D are as in Definition 5.1, Ry & S, F a winning strat-
egy of player Il in Gm*(S, v, D), ¢f vy > Ry, then Q satisfies (S, cfv) — Pr; (see
Definition 2.1).
Proof: In Definition 2.1, parts (i), (ii), (iii), (iv), (vi) are clear. So let us check
(v). Let k € S, 7 be a Q-name, |Fo “7 € «” and p = (T, H) € Q. We define by
induction on n, p,, = (T,, H,) such that:

() Po=D, Pp <0 Pn+1, TN AN=T NN

(ii) if » € T,, N "\, and there are g, o satisfying

® “pM<iqgeQa<k gl fk=271=a,ifk=Ry, 7<”

then p,[,’,’L], , @, satisfying this.
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(iii) if » € T,,.; N "\ and there are g, B satisfying
*) p,[,’lr]l <0 q € Q, and for every r, B < «,
[g=or€Q->Ar)(r=rne€fankifk=271=4,if k=8, 1<B"]

then plV, satisfies (¥).
Let p,, be the limit of {p,: n < w), i.e., p, = (T, H,), T, = (\ T, H,(n)

n<w
is the limit of the sequences H, (4) (for y € T,, — {stam(T) | £: £}). It is well
defined as ¢f (y) > K.
Now for each n € T,,, H,(n) is a proper initial segment of a play of the
game Gm*(S,v, D), and it lasts i moves. Player I could choose in his
i _th move the cardinal « and the function f,: \ - &,

(o) = a,~¢py if defined (which is < «)
™7 o otherwise.

So, for some 8,, H,(n) ~ {a,f,,B,) is also a proper initial segment of a play
of Gm*(S,v,D) in which player II use the strategy F. So there is
Dos1 = (Tw+1’Hw+l) € Qa Ps =0 Po+is and for each nE Tw+1 - {V: v <
Stam(T)}’ Hw+l(77) = Hw(n) - <K’fn’ 677)‘

We can easily show

Fact S4A: If p=(T,H) € Q, k € S, f: T — k, then for some p; = (T}, H,) €
Q, p < py, and for every n € Ty, [« = 2 A f | Sucy, () is constant] or [k =
Ry A f I Sucy, (9) is bounded below «].

[ Proof: Define by induction r”, p <o r" <o r"*! € Q, r"*! satisfies the conclu-
sion of 5.4A for n of length n, now any r® € Q, (vn)r" <, r¢ is as required].

Fact 5.4B: If p=(T,H) € Q, A € T then there is p) = (11, H;) € Q, p <¢ D;
and for every n € T;, and k < w:

(veA)veTiann<svalg(f) =kl -
(V@) [g€ QAp[" <o q— (I € A)(» € g Ay < vAlg(v) = k)]

[Proof: Define by induction on n r”, p <q r" <o r**! € Q, r**! satisfies the
conclusion of 5.4B for  of length <# and k < n. Now any r* € Q, (Vn)r" <,
r¢ is as required.]

Let A = {n € T,4: a, well defined}, and let g, p,+; < g € Q be as in
5.4B. Now for every n € T9 there is r € Q, q'"' < r, and r force a value for 7.
So stam(r) € A (as p,, < g, see the definition of the p,’s), and p[¥"1 force a
value to 7; hence, g™ I does, and let k, be lg (stam r) for such r with mini-
mal lg(stam(r)). So by 5.4B,

(*) Foreveryn€ TY% andr, q'" <ore Q, forsomev e g™, n <, lg(v) =
k,, and v € A.
Now for each g, ¢ <o g1 € Q, n € T we can, by k, applications of
5.4A, get an ordinal « < « and g5, ¢[" =, ¢», and

® (V@3 €EQ) G2 =<0q:> (W EA)(vETBAIg(v) =k, A, < a)] (orif
k=2, a,=a).
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But this shows that 3, is defined for every n € T9. Finishing alternatively
by repeated application of 5.4A we can define by induction on n, g(n) € Q,
q(0) =g, g(n) <o q(n+ 1) and B for n € T9™ such that:

(@) By =8,
(b) when k = Ro: 9~ () € Tppy = BI = Binesy
(C) when « = 2: n - <§_) (S Tn+1 = 6,7+1 = B,;l/\(g->.
Let g, € Q be such that g, < g, for n < w.
Now if k > R, (is regular), we claim

g0 ko= UBZ,

n<w

Clearly p <0 q, € O, |J B¢, < « so this suffices. Why does this hold? If not,

n<w

then for some ¢’, ¢, <q' € Q, ¢’ o “r = |J B¢y. Let n = stam(q’), son €
n
T, and o, is well defined, and as p!" <, (¢")!", o, > |J B,. But as 9 €
n
(N 79, B&™ = B, and we get a contradiction.

n<w

If k = 2, we note just that if n € TV, 8, =BY =B,.
Lemma 5.5 Suppose Q = (P;, Q;: i < \) is a k-Sp,-iteration, |P;| < \ for
i<\, each Q; has (S,<«k) — Pryand (S, 0) — Pry o < k regular, S € {2} U {6:
0 regular uncountable <k} and in V, D is a normal ultrafilter on \ (so \ is a mea-
surable cardinal). Then |p, “player II wins Gm*(S, , D) ”.

Remark: Also for «-Sp;.

Proof: Let A = {u < \: (Vi < p)|P;| < p, p strongly inacessible > «}.

Let G, < P, be generic over V, G, = G N P,.

W.lL.o.g. player I choose P\-names of functions and cardinals in S. Now
we work in V and describe player II’s strategy there. For each u € A the forc-
ing notion P\/P, has (S, 0) — Pr,; hence, player II has a winning strategy
F(P\/G,) € V[G,], so F(P\/G,) is a P.-name, (F(P\/G,): p) a Py-name.
Let us describe a winning strategy for player II.

So in the ith move player I chooses §; € S and f;: A — §;. Player II chooses
in his i-th move not only g; < §; but also 4;, f;, vi, Kpf:j=<i>: p € A;) such
that v; is an ordinal < A, )

(1)./<l=71<7l

(2) A;eD, A, €V, A < nA and A; = () 4;

i< Jj<é
B) Ffir N0, 0, €S8
@) for u € A;,
(g}‘: J=2i+2)
is a P,-name of an initial segment of a play as in (vi) of 2.1, for the

forcing P\ /G,, p{fjﬂ “'PX/G‘,. “_[i(y.) =gqg;if 6; =2, fi(u) < af if 6, =
Ro”, af a P,,-name.

In the i-th stage clearly A? =4qr ﬂ AjN Aisin D, and let v = sup Yjs

so v < \ and choose 'y# € (7#, ) such that §; is a P.1 yi-name. For every pE
A, p > v’, we can define P,-names pz,, Dji+1,> @f such that:
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@ IFp, “(g}‘: J < 2i + 2) is an initial segment of a play as in (v) of 2.1
for P,/P, in which player II uses his winning strategy F(P\/G,).
(®) Phiv1 ke, “filp) = af if §; =2, fi(p) < of if §; = Ro”.

Now ¢/ is a P,-name of an original <k < p, it is Pg(,)-name for some
Blun] < u (as P, satisfies the u-c.c. see 2.x). By the normality of the ultrafilter
D, on some A} € A?, B[u] = B, for every u € A}. Let v; = v} + 8.

Easily for each i < g, IFp, “{p € A;: P5iv1 € G\} # & mod D”, so we
finish. .

Now we can solve the second Abraham problem.

Conclusion 5.6: Suppose A is strongly inaccessible {u < \:pu measurable} is sta-
tionary, k <\, S € {2} U {6: 6 < « regular uncountable}. Then for some forc-
ing notion P: | P| = \, P satisfies N-c.c. and (S, <«) — Pry (and (S, k) — Pry,
if we want), and |Fp “N = |«|*” (s0 |Fp, 2! = N\) in V'*: and: for every A
A, for some 6 < A, there is a countable set o 8, which is not in V[A4 N 6], we
can also get suitable axiom (see 3.5).

Remark 5.6A: We can also prove (by the same forcing) the consistency of Dy +
{6 < \: ¢f 6 = Ry} is precipitous: if in addition there is a normal ultrafilter on
A\ concentrates on measurables.
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