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A First-Order Logic

With No Logical Constants

CHARLES B. DANIELS*

1 The language LQ The language LQ consists of a denumerable set
{x,y,z9X\,y\9... } of (individual) variables, for each n > 1 a set of «-place
predicates, and a denumerable set of atomic wffs. LQ has no punctuation marks.
The set of wffs of LQ is the smallest set S such that

(1) if A is an atomic wff, A G S
(2) if (xγ,... ,xn) is a sequence of variables and F is an tf-place predi-

cate, Fxγ... xn G S, and
(3) if A, B G S and x is a variable, xAB G S.1'2

An occurrence of a variable x in A is free if it is not in a subwff xBC of
>1. A variable x occurs free in A if there is a free occurrence of x in A. A vari-
able x is free for a variable y in a wff >1 if no free occurrence oίx'mA is in a
subwff yBC in ^4. We write Ax/y for the wff that results when the variable y
is substituted for the variable x at all free occurrences of x in A.

Finally, throughout this paper, where A is a wff in which a variable JC does
not occur free, we use the notation A (x)* and A (x)** in the following way:
A (x)* stands for xAA when A (*)** stands for Λ, and ,4 (#)** stands for xAA
when v4 (x)* stands for A.

We now provide natural deduction rules for LQ. In almost all natural
deduction systems we have the following three rules:

*I wish to thank Bas van Fraassen, Kit Fine, and an anonymous reader for helpful sug-
gestions.
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Stutter Importation Hypothesis

M
A A I

[y]

A A

where in Importation y is not free in A. To these we add the following six:

Switch Expansion Combination

xAB A(x)* A

xBA xA(x)**B B

yxABxAB

Reductio Generalization Instantiation

LΛ(x)** [y]
yAB

B(yγ xAB
yAB xAy/zBy/z

B(y)m

Λ(xT

where: (1) in Expansion x is not free in B\ (2) in Combination neither x nor y
is free in A and B; (3) in Generalization x is free in neither A nor B and the sub-
proof has no hypothesis; and (4) in Instantiation y is free for z in A and B and
x is free in neither Ay/z nor By/z.

In classical logic, LQC, with ~, v, and V we have the following natural
deduction rules:

—Out —In v-Out

L~A \A A\ιB

B B I A

~B ~B C

A ~A

I c
c
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v-In V-Out V-In

[y]
A (Vy)A

A
AvB Ay/x (Vy)A

(or By A)

where in V-Out y is free for x in A and in V-In the subproof has no hypothesis.
Formulas in LQ can be defined in LQC and vice versa. In LQ we have the

following definitions:

6-A' =df
 <xAA\ where x is not free in A,

'A v /?' =df 'yxAAxBB\ where neither x nor y is free in A or B,
i(Vx)A' —df 'xyAAyAA9, where y is not free in A and x is.

Likewise in LQC, we have the definitions:

'xAB' -df '-A v ~B\ where x is free in neither A nor B,
'xAB* =df

 ί(Vx)(~Av ~B)\ where x is free in either A or 5.

These are not proper definitions, to be sure; they are definition schemes.
Suppose we find '-A' in a wff in a deduction. Which member of the denumer-
ably infinite set [xAA: where A is a wff and x is a variable not free in A} are
we to take '-A' to be standing for? The answer is, of course, any member —
provided that we take it to be standing for the same member throughout a
deduction.

Not all wffs of LQC can be defined in LQ. Wffs with vacuous quantifiers
like '(vx)(vy){vx)A\ or '(Vx)A' where x is not free in A9 are not defined in
LQ. But these formulas can be dropped from LQC without loss anyway. Hence-
forth LQC will be considered not to have them.

The question arises of whether the rules of LQ can be validated in LQC,
and vice versa. The answer is Yes. The proof is tedious. I shall just offer two
examples from it.

First it must be shown that all the rules of LQC can be validated in LQ.
Here is a proof of LQC's rule v-Out in LQ. The varialbes x and z are chosen so
as not to occur free in A or B, and y so as not to occur free in C.

1. zxAAxBB
2. LyCC
3. \A
4. Γc
5. I yCC
6. xAA
1. \B
8. C
9. yCC

10. xBB
11. xzxAAxBBzxAAxBB
12. zxAAxBB
13. C
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That C follows from A and from B is given in v-Out, which explains lines
4 and 8. Line 11 follows by Combination. Reductio is used in lines 6, 10, and 13.

Second it must be shown that the rules of LQ can be validated in LQC As
an example, let me prove LQ's Combination rule in LQC:

1. A
2. B
3. I ~A\ι ~B
4. I -A
5. I ~Av~B
6. A
7. ~A
8. ~{~Av~B)
9.

10. I ~B
11. I -A v ~B
12. V B
13. I ~B
14. ~(~,4v~£)
15. ~(~Av~B)
16. ~Λv~£
17. ~(~^v~£)
18. ~(~A v ~β) v ~{~A v ~£)

Thus one can claim that for each wff A in LQ for which there is a cate-
gorical proof, there is a categorical proof of any translation T(A) of A in LQC,
and vice versa. So if A is a theorem of LQ, T(A) is a theorem of LQC, and vice
versa.

2 Semantics A model for LQ is a triple < U, At, I), where U is a nonempty
set, At is a subset of the set of atomic sentences of LQ, and / is a function such
that:

(11) for all variables x, I(x) E U, and
(12) for all n > 1 and all «-place predicates F, I(F) c £/".

Let x, Xι,. . . ,xn be variables, i 7 be an fl-place predicate, /? be an atomic
wff, A and B be wffs, M (= <U,At,/» be a model, and Mx (= <U, At,Ix)) be
a model where for all predicates and variables a other than x, I (a) = Ix(a).

(MAt) M Ih A if p e Λf, otherwise M | / ?
(MPr) M Ih /ocj . . .xn if </(*i) , . . . ,/(*„)> G /(F) , otherwise M ||f

F x i . . . *„
(M5β) M Ih x 4 £ if for all Mx Mx ||/ ,4 or Mx ||/ J5, otherwise M11/ JC4£.

M if M Ih ̂ 4 for all models M.
The semantics of LQC is that of LQ save that LQC has different evalua-

tion rules for complex wffs from the one rule used in LQ. These are:

(M~) M Ih -A if M \\fA, otherwise M \\f -A
{MM) M Ih A v B if M Ih A or M Ih 5, otherwise AT | |M v JB
(MV) M Ih (V*M if for all Mx Mx\\-A, otherwise M \\f (Vx)A.
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Lemma Where the variable x does not occur free in A, in both LQ and LQC
Mx\VAiff{Mx)*\VA.

This can easily be proved by induction on the complexity of A.
As a consequence of this lemma, we have, for instance, that where x does

not occur free in A and in B: (1) Mx Ih A iff for all (Mx)* {Mx)* |h A; (2)
(Mx \\f A or Mx \\f B) iff (for all (Mx)*[(Mx)* V A or (Mx)* \\f B])9 and so on.

Theorem Where T(A) is a translation of A: (I) for all wffs A of LQC and
models M,M\\-A in LQC iffM\YT{A) in LQ; and (II) for all wffs A of LQ
and models M, M Ih A in LQ iffM\\-T(A) in LQC.

Proof: By induction on the complexity of A.

Base Cases. (1) A is atomic. T(A) = A, and the case is immediate; (2) A is of
the form Fxx .. .xm. T(A) = A, and the case is immediate.

Inductive Hypothesis (IH): The theorem holds for all wffs of complexity less
than n. Suppose that A is of complexity n, then:

(la) A is ~B and T{A) is xBB, where x is not free in B, M Ih xBB in LQ
iff for all Mx, Mx \\f B or Mx \\f B in LQ iff for all Mx, Mx \\f B in LQ iff, by
the lemma, MM Bin LQ iff, by IH, MM Bin LQC iff, by (M~), M Ih ~B in
LQC.

(Ib) 4̂ is B v C and T(A) is j^x^^xCC, where neither x nor j> is free in B
and C. M Ih yxBBxCC in Lβ iff for all My, My ||/ x££ or My ||/ xCC in LQ iff,
by the lemma, M 11/ x££ or M ||/ xCC in LQ iff for some My, {My Ih 5 and
My Ih B) or for some My, {My Ih C and My Ih C) in LQ iff for some My,
My Ih B or for some My, My Ih C in LQ iff, by the lemma, M Ih £ or M Ih C in
LQ iff, by IH, M |h 5 or M Ih C in LQC iff, by (Mv), M Ih 5 v C in LQC.

(Ic) A is (Vx)£ and Γ(,4) is xyBByBB, where .y is not free in B. M Ih
xyBByBB in LQ iff for all Mx, Mx \\f yBB or Mx ||/ >>££ in LQ iff for all Mx,
Mx ||/ ji?/? in LQ iff for all Mx there is some Mxy such that Mxy Ih B and
Mxy Ih 5 in LQ iff for all Mx there is some Mxy such that Mxy Ih B in LQ iff,
by the lemma, for all Mx, Mx Ih B in LQ iff, by IH, for all Mx, Mx Ih B in
LQC iff, by (Mv), M Ih (Vx)£ in LQC.

(Ha) .4 is x£C, x is free in neither B nor C, and Γ(^4) is ~B v ~C. M Ih
~B v ~C in LQC iff M Ih ~ £ or M Ih ~C in LQC iff M ||/ 5 or M ||/ C in
LQC iff, by IH, M ||/ 5 or M ||/ C in LQ iff, by the lemma, for all Mx, Mx \\f
B or Mx 11/ C in LQ iff M Ih x£C ι/i LQ.

(lib) A is x£C, x is free in B or C, and Γ(Λ) is (Vx)(~£ v ~C). M Ih
(Vx) (~B v ~C) in LQC iff for all Mx, Mx Ih ~B v ~C in LQC iff for all Mx,
Mx Ih ~B or Mx Ih ~C in LQC iff for all Mx, Mx \\f B or Mx ||/ C in LQC iff,
by IH, for all Mx, Mx \\t B or Mx ||/ C in LQ iff, by {MSe)y M Ih x£C.

This concludes the proof of the theorem.

Thus LQ is sound and complete with respect to its semantics iff LQC is
sound and complete with respect to its semantics.

Problem: What is the shortest length for a single axiom for the language of LQ
that together with the rules:
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(Rl) if \-A and \-yAxBC, then \-C (where y is not free in A9 B, or C and x in
B or C),
(R2) if \-xAB, then Ky/12? (where x is free in neither A nor 5),

will give in translation all and only the theorems of a complete axiomatization
of the language of LQCΊ

NOTES

1. It might be alleged that the title of this paper is false advertising in that the variable
x in xAB counts as a logical constant, or at least that a structural feature of xAB
counts as a logical constant. In the sense in which the typical description of an artifi-
cial language starts by listing the primitive signs out of which it is to be assembled —
variables, constants, and punctuation marks —the only constants in the language just
described are predicate and sentence constants. There are no other constants. In the
sense that an axiomatics is given which allows complex wffs of the form xAB to be
transformed, or an interpretation is intended for this language which arrives at a
valuation of the complex wff xAB in terms of valuations of the wffs A and B of
which it is composed, the language does contain something that puts wffs together
into a complex wff and requires the complex to be manipulated or interpreted. This
something may itself be thought of as a logical constant despite the fact that a par-
ticular language contains no sign to represent it. The title, then, is at most half mis-
leading.

2. Using the variable as a dyadic sentence connective also works for second-order logic,
provided that there are no sentence variables. Sentence variables spoil things, since
if */?' is a sentence variable, 'pAB9 may turn out to be ambiguous. If A is 'ppp9 and
B ζp\ we have 'ppppp'i but this can be decomposed so that A is '/?' and B is 'ppp\
A reader has also pointed out that Quine uses a similar device for predicate-functor
logic in [1].
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