More on Trees and Finite Satisfiability: The Taming of Terms

MIODRAG KAPETANOVIĆ and ALEKSANDAR KRAPEŽ

As Boolos showed in [1], the new rule proposed by Burgess provides (together with the usual tableaux rules) a simple and elegant method for testing finite satisfiability of first-order sentences. We present an extension of the method to the case of languages which contain function symbols. For these languages the usual rule "from $\forall x \phi(x)$ infer $\phi(t)$ for any term t " produces in some cases only infinite models. For instance, when applied to $\forall x R f(x)$ it gives us the infinite one-branch tree:

Where language contains equality we can in principle get rid of function symbols in standard way, replacing them by new predicate symbols (which are to serve as their "graphs"), but it is more natural to try to put up with terms.

In order to avoid ambiguities we first list some necessary definitions.
A tableau for a sentence ϕ is a tree built up by placing ϕ at the top node and then applying the following reduction rules.
($\neg \neg)$ If $\neg \neg \phi$ lies on a branch B we extend it to (B, ϕ).
(\wedge) If $\phi \wedge \psi$ lies on B, we extend it to (B, ϕ, ψ) (similarly for $\neg \vee, \neg \rightarrow$).
(v) If $\phi \vee \psi$ lies on B, then B splits into two extensions $(B, \phi),(B, \psi)$ (similarly for $\neg \wedge$ and \rightarrow).
(new \mathfrak{j}). If $\exists x \phi(x)$ lies on B and a_{1}, \ldots, a_{k} are all constants occurring on B, then B splits into $k+1$ extensions $\left(B, \phi\left(a_{1}\right)\right), \ldots,\left(B, \phi\left(a_{k}\right)\right),(B, \phi(a))$ where a is new for B; i.e., does not occur on B (similarly for $\neg \forall$).
(\forall) If $\forall x \phi(x)$ lies on B, extend it to ($B, \phi(a)$) where a is a constant on B to which (\forall) has not been applied yet (on that branch) and if there is no constant on B, then a is new for B (similarly for $\neg \exists$).
(F) 1° If for some constants b_{1}, \ldots, b_{n} and some term $f b_{1} \ldots b_{n} \phi\left(f b_{1} \ldots b_{n}\right)$ occurs on a branch B and if (F) has been applied to no occurrence of $f b_{1} \ldots b_{n}$ on B yet, then B splits into ($B, \phi\left(a_{1}\right)$), $\ldots,\left(B, \phi\left(a_{k}\right)\right),(B, \phi(a))$ where a_{1}, \ldots, a_{k} are all constants occurring on B and a is new for B. We say that $f b_{1} \ldots b_{n}$ is associated (by (F)) with a_{1}, \ldots, a_{k}, a on ($\left.B, \phi\left(a_{1}\right)\right), \ldots,\left(B, \phi\left(a_{k}\right)\right),(B, \phi(a))$ respectively.
2° If $f b_{1} \ldots b_{n}$ is associated with b on $B, \phi\left(f b_{1} \ldots b_{n}\right)$ lies on B and $\phi(b)$ does not, then extend B to $(B, \phi(b))$.

It is easy to see that this variant of the method is still sound and complete for unsatisfiability; i.e., we can prove:

Hintikka's Lemma If a branch B is finished and open then there is a model M satisfying all θ on B.

The proof goes more or less as usual: define $|M|=\{a \mid a$ is a constant occurring on $B\}$ and take $M \vDash R a_{1} \ldots a_{\ell}$ iff $R a_{1} \ldots a_{\ell}$ occurs on B and $f^{M}\left(b_{1}\right.$, $\left.\ldots, b_{n}\right)=b$ if $f b_{1} \ldots b_{n}$ is associated on B with b (arbitrary otherwise). Then use induction on the complexity of a formula defined as the number of all occurrences of logical and functional symbols (constants excluded). For instance, if $\phi(b)$ appears on B as a result of an application of (F) to $\phi\left(f b_{1} \ldots b_{n}\right)$ and if $M \vDash \phi(b)$, then obviously $M \vDash \phi\left(f b_{1} \ldots b_{n}\right)$ (by the definition of $\left.f^{M}\right)$. It follows that M is finite if B is.

In order to prove that the method is sound for finite satisfiability we use the notions of good model and good branch from [1] and check that an application of a rule to a formula on a good branch produces at least one good extension of that branch (see Lemma in [1]). Again, the only interesting case is that of (F) and the argument is partly the same as for (new \exists). For if there are $k+$ 1 extensions of B (as described above) and N is good and $N \neq B$ then there are two possibilities. If $f^{N}\left(b_{1}, \ldots, b_{n}\right)=a_{i}$ for some $i=1, \ldots, k$ then $\left(B, \phi\left(a_{i}\right)\right)$ is the extension we need; otherwise choose $e \in N$ such that $f^{N}\left(b_{1}, \ldots, b_{n}\right)=e$; then $N_{e}^{a} \vDash \phi(a)$ and for all $i=1, \ldots, k e \neq a_{i}$ so N_{e}^{a} is good and $(B, \phi(a))$ is a good extension. If there is only one extension and (F) was applied before, then $f^{N}\left(b_{1}, \ldots, b_{n}\right)=b$; hence $N \neq \phi(b)$, i.e., $(B, \phi(b))$ is a good extension.

Given a finite model M of ϕ, choose the branch B of a (finished) tableau for ϕ such that the leftmost good (with respect to M) extension of any initial segment of B is also contained in B. We claim that B is finite. To prove that, first note that on B there can be at most $m(=\operatorname{card}|M|)$ new constants a_{1}, \ldots, a_{m}. For otherwise at some step a_{m+1} would be introduced as a result of an application of either (new \exists) to $\exists x \theta(x)$ or (F) to $\theta\left(f c_{1} \ldots c_{n}\right)$ and in both cases we get extensions $\theta\left(b_{1}\right), \ldots, \theta\left(b_{\ell}\right), \theta\left(a_{m+1}\right)(\ell \geq m)$. The last formula, however, could not lie on B, for then for some $\operatorname{good} N$ and all $i=1, \ldots, \ell N \nexists$
$\theta\left(b_{i}\right)$, which contradicts the assumption that $M \vDash \exists x \theta(x)$ (or $M \vDash \theta\left(f c_{1} \ldots c_{n}\right)$), since among b_{i} 's are the names of all elements of M and B is good.

The existence of the bound on the number of constants on B implies that the rule (\forall) (and $(\neg \exists)$) will be applied on B only finitely many times; i.e., B is finished after some step.

We note an alternative treatment of equality. The following rules ensure that $=$ is always interpreted as a congruence:
(i) Extend B by $a=a$ where a is the first constant (on B) to which this was not applied before.
(ii) If $a_{1}=b_{1}, \ldots, a_{k}=b_{k}$ appear on B together with $\phi\left(a_{1}, \ldots, a_{k}\right)$, where ϕ is atomic or a negation of an atomic sentence, then extend B by $\phi\left(b_{1}, \ldots, b_{k}\right)$.
(iii) Suppose that the following conditions hold for some $a_{1}, \ldots, a_{k}, b_{1}$, \ldots, b_{k} and f (on B):
(a) $a_{1}=b_{1}, \ldots, a_{k}=b_{k}$ all appear on B
(b) $f a_{1} \ldots a_{k}$ is associated with a (by (F))
(c) $f b_{1} \ldots b_{k}$ is associated with b (by (F)).

Then extend B by $a=b$.

REFERENCES

[1] Boolos G., "Trees and finite satisfiability: Proof of a conjecture of Burgess," Notre Dame Journal of Formal Logic, vol. 25 (1984), pp. 193-197.
[2] Bell, J. L. and M. Machover, A Course in Mathematical Logic, North Holland, Amsterdam, 1977.

Matematički Institut

Knez Mihailova 35
11000 Beograd
Yugoslavia

