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Relatively Diophantine Correct Models

of Arithmetic

BONNIE GOLD*

A model M of Peano arithmetic is called diophantine correct if every poly-
nomial which has a root in M already has a root in N (the standard natural num-
bers). Lipshitz [2] has shown that if M i s a countable nonstandard model of
Peano arithmetic, then M is diophantine correct if and only if for every non-
standard a E M there is an embedding of M onto an initial segment of [0, a] =
{x G M\x < a}. In this paper we extend this result to the case of a countable
model M being diophantine correct relative to a submodel TV (see definition in
Section 1 below).1

1 We are repeatedly going to talk about TV-polynomials p(x), where TV is a
countable model of Peano arithmetic, and about the result of substituting a
sequence of elements a (usually in a larger model M) into p(x), getting p(a).
By an TV-polynomial p(x) we mean a nonstandard polynomial which is coded
by its Gόdel-number r /?(x) n . Notice that TV-polynomials will, in general, have
a nonstandard number of variables, as well as nonstandard sums, products, and
coefficients. When phrases such as "the polynomial p ( x ) " or "p(ά) — b"
appear in formulas the reader is to understand that the formula actually is one
involving the Gόdel numbers of such polynomials. We shall repeatedly use the
fact that the sets of Gόdel numbers of polynomials, and of formulas "p(x) =
y'\ are defined by Σx formulas and, using the results of Matijasevic [3], by TΓI
formulas. We will assume the reader is familiar with the basic model theory and
coding techniques used in the study of nonstandard models of arithmetic (see,
e.g., Pillay [5]).

Let M and TV be models of Peno arithmetic. M is N-diophantine correct
if for every TV-polynomial p(x), if p(x) has a zero in M then it already has one
in TV.

Wilkie [6] has shown that every countable model TV of Peano arithmetic has
an end extensionMsuch that N^Mand such that Msolves a diophantine equa-
tion with coefficients in TV that is not solvable in TV. Hence, every countable non-

*I would like to thank the referee for helping make Proposition 3 less convoluted. I
would like to thank L. Lipshitz for suggesting the problem to me.
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standard model TV has an end extension which is diophantine correct with respect
to standard polynomials but which is not TV-diophantine correct.

On the other hand, by just taking an elementary end extension via the Mac-
Do well Specker theorem one also gets an TV-diophantine correct end extension.

An observation of M. Kaufmann permits us to confine our attention to TV
an initial segment of M.

Proposition 1 (Kaufmann) If N CM are models ofPeano arithmetic and TV
is the initial segment ofM with which TV is cofinah then M is N-diophantine cor-
rect if and only if M is N-diophantine correct.

Proof: ̂  By a theorem of Gaufman's [1], TV is an elementary submodel of TV.
If M is TV-diophantine correct and p(x) is an TV-polynomial with a zero in M,
then TV h (3x)(p(x) = 0), soTVh (lx)(p(x) .= 0). Thusp(x) has a root in TV,
and so Mis TV-diophantine correct.

=» Let p(x) be an TV-polynomial and a a sequence from M such that M |=
p(ά) = 0. Assume Mis TV-diophantine correct. We must find a root of p(x) in
TV. Let b E TV be greater than the Gόdel number of p(x). Let c E TV code the
smallest zeroes of TV-polynomials whose Gόdel numbers are less than b; that is,
if q(x) is an TV-polynomial whose Gόdel number is less than b, then M |=
q((c)r?i) = 0. Then TV |= (for all polynomials q with Gόdel number less than b)
(lz(q(z) = 0) => q((c)tqi) = 0). Notice that this is a Γ^ statement over TV; that
is, it is of the form (Vy)Φ(y) where φ just involves bounded quantifiers.
Hence, since M is TV-diophantine correct, it is true in M. Thus for every M-
(or equivalently, TV-) polynomial q with rqn < b, M \= [(lz)(q(z) = 0) ->
<7((c)r#i) = 0], Hence {c)χp^ is a zero of p(x) in TV. Thus Mis TV-diophantine
correct.

Although the definition of TV-diophantine correct involves all TV-
polynomials, we can restrict our attention to standard polynomials (that is, a
standard number of variables, sums, and products) with coefficients from TV.

Proposition 2 Let TV C M be models of Peano arithmetic. M is TV-
diophantine correct if and only if every standard polynomial q(x) with coeffi-
cients from TV which has a root in M already has a root in TV.

Proof: => obvious.
<= The assertion "x is the value of the polynomial with Gόdel-number y

evaluated at the sequence with Gόdel number z" is a Σx formula. Hence, by the
results of Matijasevic [3], it is equivalent to some formula lϋ(p(x, y, z, u) —
0) where p is a standard polynomial. Hence if q(z) is an TV-polynomial with a
root ά in M, say q(z) has Gόdel number n E TV. Then M |= 3w[/?(0, n, a, u) —
0] (where a is the Gόdel number of α), and thus there is a b E M for which
M\=p(0, n, a, b) = 0. Notice that/?(0, n, z, ΰ) can be thought of as/?i(z, ΰ),
a standard polynomial with coefficients (the n) from TV. Now, P\(z, ΰ) has a
root, {a, b), in M. So by our hypothesis px(z, ΰ) has a root {au bx) in TV.
That is, TVhp(0, n, au bλ) = 0 and thus TV|= 3ϋ(p(0, «, au ΰ) = 0). Hence, ax

is a root of q(z) in TV. Therefore, Mis TV-diophantine correct.
Let TVc Mbe models of Peano arithmetic, and let/be a function from

Minto itself./is an N-embedding if/is a standard homomorphism of Mwhich
keeps TV fixed. Note: we call it an TV-embedding rather than simply an TV-
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homomorphism because any homomorphism of a model of arithmetic is an
embedding (since "α < 6" is existential).

Proposition 3 Let N CM be models of Peano arithmetic, and let fbe a map
from M into itself Then f is an N-embedding if and only if (1) for every N-
sequence from M with Gόdel-number a, f{a) is an N-sequence of the same
length, and (2) if p(x) is an N-polynomial and a is an N-sequence, M |=
pUW) =f(p(a)).
Proof: =» (x)i = y is Σi and hence by Matijasevic [3] is existential; thus it is
preserved by TV-embeddings. Sof(x) is a sequence of the same length as x for
all TV-sequences x. Similarly, "the polynomial coded by x evaluated at the se-
quence coded by y equals z" is Σ! and hence f(p(ά)) —p(f{a)) for all TV-poly-
nomials p(x) and all TV-sequences of the correct length a.

<= Using x2 — x and x2 — 2x it is clear from (2) that /(0) = 0 and then
/ ( I ) = 1. It then follows from (2) that /is a standard homomorphism of M.
Now, let n G TV and let pn(xι.. .xn) = xx + . . . + xn. Then M (=/?(!> ••>!) =
1 + . . . + 1 = Λ ; hence Mh/?(/( l ) , . . . ,/( l)) = / ( l ) + . . . +/(1) = nf(\) =
n=f(p(l,...,l)) =/(/ι). Hence,/keeps TV fixed.

2 We are now ready to state and prove the main theorem.

Theorem Let TV c M be countable models of Peano arithmetic. M is N-
diophantine correct if and only if for every a GM which is bigger than every-
thing in TV there is an N-embedding of M onto an initial segment of [0, a].

Proof: The proof follows the general outline of Lipshitz [2], but details are pro-
vided since the proof there is rather brief and some of the steps are a little dif-
ferent in our case.

<= Assume that M is not TV-diophantine correct. Then there is an TV-
polynomial p(x) which has a root in M but none in TV. Since TV̂  TV, p(x) has
no roots in TV. It follows that there is an a G TVATV(i.e., greater than everything
in TV) such that p(x) has no roots less than a. For, let φ(y) be the formula
(3Jc < y)(p(x) = 0). (Notice that, since p is a nonstandard polynomial this is
actually a formula involving Gόdel numbers.) If p(x) had roots arbitrarily
close to TV in M, φ(x) would be false for all x G TV but true for all x G M\N,
violating induction in M.

Thus there can't be an TV-embedding of M into [0,a], since if a is a
rootof/?(Jc) and/is an TV-embedding, p{f\a)) =f(p(a)) =/(0) = 0 so 7(5)
would be a root of p(x) which would be less than a.

=> Assume Mis TV-diophantine correct, and let a > TV be fixed. We wish
to find an TV-embedding of M onto an initial of segment [0, a]. By Proposition
1, we can assume TV is an initial segment of M, since an TV-embedding is a for-
tiori an TV-embedding. By Proposition 3 it will suffice to find a standard
homomorphism which keeps TV fixed. To do this it will suffice to find a func-
tion onto an initial segment of [0, a] keeping TV fixed such that for every stan-
dard polynomial p(a, x), a constants from M, with coefficients in TV which has
a root in M, p(f(a), x) has a root in that initial segment.

Now, let {Ci}i<ω be a list of M\N, {rf/}/<ω a list of [0,a]\N. Define
f(n) = n for all n G TV. We will define #/, bt (/ > 1) and/(#;) by induction so
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that/(tf/) = bi9 cii exhausts M\N (using odd /'s), and 6, exhausts some initial
segment of [0, a]\N(using even /'s).

Assume au... ,a2J, bu . . . ,62y, a n d / ί ^ ) , . . . ,f(a2J) have been defined
so that di E M\TV, bi E [0, α]\TV, and/(a,) = 6/ for each /; and such that

(**) for every TV-polynomial p(xι,... ,x2J, y) if MY (3 j ) [p(aι ,...9a2J,y) =

0] then MY (3y < a)[p(bu... 9b2j9 y)=0].

Notice that fory = 0, (**) is true, since if p(x) is an TV-polynomial, either: (a)
the roots of p(x) are bounded in TV, say by nOi in which case, since M i s TV-
diophantine correct, p(x) can have no roots in M\TV (consider the polynomial
q(x) which says "/?(*) and x > no"\ Q(x) has no roots in N9 but if p(x) had a
root in M\TV, q(x) would have a root in M, violating TV-diophantine correct-
ness); or (b) the roots of p(x) are unbounded in TV, in which case by induction
in M there are roots of p(x) between TV and a (otherwise the formula χ(y)
which says [y < a and (3Jt > y)(p(x) = 0)] would be true in M for all y E TV
but false for all y E M\N, violating induction in M).

(1) Let a2j+ι be the first of the c, which is not in {au . . . ,a2J}. Let φ{(n)
be (3z < a) [for all polynomials p(y, x) of length <n, if (3x)(p(aι,... 9a2j,
ay+u x) = 0) then (ix < a)(p(bu... ,b2J, z, x) = 0)] . Notice that φ{{n)
is actually a messy statement involving the Godel numbers of the polynom-
ials and sequences involved, and also that if n E TV, all such polynomials are
TV-polynomials. We will show that M h φ[(n) for all n E TV. Fix n E TV. Let
P\>- — >Ps (s Ξ N) be all TV-polynomials of Gόdel-number <« such that M f=
3*(/?(tfi, >tf2y> 02/+1> x) - 0) (This may be an infinite number of polynom-
ials, but is an TV-finite number of them). Then the sum Σp}(y\,... ,y2j+i> X/)

(where the Jc/ involve distinct variables for distinct /?/) is an TV-polynomial q(y,
z). By the definition of them's, MY lz[q(ά, a2J+u z)(=q(au... 9ay9 a2j+ι_9

z)) = 0] . Hence, M Y 32, z[^(α, z, 2) = 0]. By (**)> MN (32, z < a)[q(b9

z9 2) = 0 ] . Hence MN (3z < α ) ί y \ ( 3 ^ < α ) [ p / ( * i , . ,b2j9 z, xi) = 0 ] j .

That is, M f= φ\{n). Since M N φ-j(rϊ) for all « E TV, by induction in M there is
an m E M\TV such that M Y φ{{m). Let Z72yH-i be the z for φ7i(m) and let
f(a2j+ι) — b2j+\. Then (**) is now true for 2/ + 1.

(2) Now let &2/+2 be the first rf/ which does not appear among {b\,...,
&2/+i} but which is less than some one of them; say b2J+2 < bk. (If there is no
such di9 let a2J+2 = 2̂y+i> 2̂7+2 = by+\> a n d continue.) Let φJ

2(n) be (3z < ί/A:)
[for all TV-polynomials p(x\,... ,x2j+2, y) of length <n, if (- 3j? < a) [p(b\,
••',b2J+ι, b2J+2iy) =0] then ^3y[p(au... ,a2J+u z, y) = 0 ] ] .

We shall again show that for all n E TV, M |= φJ

2(n). Let /?i, . . . ,/?r(^ £
TV) be all the TV-polynomials /? of Gόdel-number </? such that M Y (~>3Ĵ  <
α ) [ p ( 5 , &2/+2» ^) = 0] (Again, there are just TV-finitely many.) Then M (=

r r

(3Z < W(Vj < α ) Λ [A(5, Z, J?) gfc 0]. Let θ(w) be (3z < w*)(Y? < « ) Λ
_ /=i _ 1=1

[/?/(w, z, j?) ^=0], where wk is the A:th element of the sequence w; then M Y
r

(9(5). Observe that b~ 0(w) - (Vz < w^)(3j < α) V [P/(w, z, JO = 0]. The

two quantifiers on the right can be coded into a function won [0, v^] so that
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r

M t-iθ ~ 3Q[(Vz < wk)\/ [Pi(W,z, (G)z)=0])Λ(Vz<wk)((G)z<a)].No-
r i—\

tice that (Vz < Wk)\J [Pi(w, z, (ΰ)z) = 0] has just bounded quantifiers, and

so by the results of Matijasevic [3] and the fact that his results can be formal-
ized in Peano arithmetic, there is some TV-polynomial q(w, ΰ, ϋ) such that

r

MY \(yz<wk)\J (A(W, z, Wz) = 0)] - 30(tf(w, δ, v) = 0). Hence, (a)
ι = l r

MY(3z<wk)(Vy<a)/\ (A(W, z, y) Ψ 0)~ -^3u[3v(q(w, U, v) = 0) Λ
/ = 1 r

( v z < wk)((Q)z<a)] and also (b)MN ( 3 z < wk)Vγf\ (Pi(w, z, y) Φθ)~
/ = 1

-i3w3i;(<7(w, «, ϋ) = 0). From (a), since MY θ(b), MY -^3ΰ[3vq(b, u, v) =
0Λ (VZ< wk)((u)z<a)]. So MY -i(3«, v<a)(q(B9 Q, v) =0). Hence, by
(**) M N -i3w, i)((7(^, i/, £) = 0) and therefore, from (b), MY (Ξz < ak)Vy

r

Λ Pi(&> z> y) * ° Thus, M Y φJ

2(n). As this is true for all n EN, by induc-
/ = 1

tion in M there is an m E ΛΛ7Vfor which MYφJ

2(m). Let #2/+2 be the z for

this m, and let/(flf2y+2) = *2y+2
Thus we have built up a map from M onto an initial segment of [0, a]

with the required properties, and the theorem is proved.
The problem of how to generalize the theorem to uncountable models

remains open. Clearly it is not true as it stands for all uncountable models, since
if Λf = N (the standard natural numbers) and M i s a diophantine-correct α^-like
model of Peano arithmetic, there will be no homomorphisms of M onto non-
co!-like initial segments. On the other hand, the proof could be formalized
inside Peano arithmetic and so is true when M i s "countable" from the view of
an uncountable N.

NOTE

1. The referee pointed out that a related result due to Marker and Wilkie appears in [4]:
that if M is a countable model of Peano arithmetic and a £ M, then there is an
embedding of M onto an initial segment of [0, a] iff for every Σi -definable element
m of M, m E α.
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