Notre Dame Journal of Formal Logic Volume 28, Number 2, April 1987

Maximal *p*-Subgroups and the Axiom of Choice

PAUL E. HOWARD and MARY YORKE*

According to Sylow's well-known theorem, if p is a prime any finite group G has a Sylow p-subgroup, that is, a subgroup of order p^k where p^k is the highest power of p which divides the order of G.

The notion of Sylow *p*-subgroups has been generalized to infinite groups (see, for example, [5], p. 58; [2], Sections 54 and 85; and [6], Chapter 6) by the following:

Definition A Sylow *p*-subgroup of G is a maximal *p*-subgroup of G.

With this definition, the generalization of the Sylow theorem (ST) to infinite groups, i.e.,

ST If p is a prime, every group has a Sylow p-subgroup

is an easy consequence of Zorn's lemma.

We show in Section 2 that ST is actually equivalent to Zorn's lemma by showing ST implies the axiom of choice.

Section 3 contains a weakened version of ST, and its relationship to the axiom of choice for sets of finite sets is studied.

1 Definitions and preliminary results We will follow the usual convention of denoting a group (G, \circ) by G when the choice of notation for the operation on the group does not concern us. If y is a set, we will denote by S_y the symmetric group on y. If σ , $\tau \in S_y$, $\sigma \circ \tau$ is the permutation defined by $(\sigma \circ \tau)(t) = \sigma(\tau(t))$.

If $t_1, t_2, \ldots, t_n \in y$, $(t_1; \ldots; t_n)$ denotes the cycle σ defined by

$$\sigma(t_i) = \begin{cases} t_{i+1} & \text{if } 1 \le i < n \\ t_1 & \text{if } i = n, \end{cases}$$

and $\sigma(t) = t$ otherwise.

Received April 22, 1985; revised September 4, 1985

^{*}The results of this paper were presented at the 817th meeting of the American Mathematical Society and appeared in the Abstracts of the American Mathematical Society number 84T-03-404.

(The notation (t_1, \ldots, t_n) is reserved for the sequence of length *n*.) If $\{G_y: y \in Y\}$ is a set of groups, $\pi_{y \in Y} G_y$ will denote the weak direct product of the groups $G_y, y \in Y$. For each $y_0 \in Y$, we denote by P_{y_0} the projection map of $\pi_{y \in Y} G_y$ onto G_{y_0} .

If G is a group and p is a prime, a p-subgroup of G is a subgroup of G each of whose elements has order a power of p.

The following two theorems will be used in Sections 2 and 3:

Theorem 1.1 If H is a maximal p-subgroup of $\pi_{y \in Y}G_y$, then $P_y(H)$ is a maximal p-subgroup of G_y for each $y \in Y$.

Theorem 1.2 If H_y is a maximal p-subgroup of G_y for each $y \in Y$, then $\pi_{y \in Y} H_y$ is a maximal p-subgroup of $\pi_{y \in Y} G_y$.

We omit the proofs, which are straightforward and do not use the axiom of choice.

We will use the following abbreviations:

- S(p): Every group has a maximal *p*-subgroup.
 - S: $(\forall p)$ (p is a prime $\rightarrow S(p)$).
- SPF(p): If $\{G_y: y \in Y\}$ is a set of finite groups, then $\pi_{y \in Y}G_y$ has a maximal p-subgroup.
 - SPF: $(\forall p)$ (p a prime $\rightarrow SPF(p)$).
- SPS(p): If Y is a set of nonempty, finite sets, then $\pi_{y \in Y} S_y$ has a maximal p-subgroup, where S_y is the symmetric group on y.
 - SPS: $(\forall p)$ (p a prime $\rightarrow SPS(p)$).

We will also use the notation:

AC: The axiom of choice.

- AC_{fin} : If Y is a set of nonempty, finite sets, then Y has a choice function.
- AC_n : If Y is a set of *n*-element sets, then Y has a choice function.

And finally, if K is an infinite subset of the natural numbers,

AC_K: If Y is a set such that $(\forall y \in Y)(|y| \in K)$ then Y has a choice function.

2 S and AC In this section we will denote the finite sequence $\tilde{t} = (t_1, \ldots, t_n)$ by $t_1 \ldots t_n$ and $L(\tilde{t})$ will denote the length of \tilde{t} . Further t^q will denote the finite sequence (t, t, \ldots, t) of length q.

Our goal is to prove

Theorem 2.1 If p is any prime, then S(p) implies AC.

Proof: Let Y be a set of nonempty sets. For each $y \in Y$, let $(G_y, *)$ be the group defined as follows: G_y is the set of all finite sequences of elements of y such that no element of y occurs p consecutive times, that is, $G_y = \{t_1 \dots t_n: t_j \in y \text{ for } 1 \le j \le n \text{ and } (\forall k \le n - p + 1) \ (t_k \ne t_{k+1} \text{ or } t_{k+1} \ne t_{k+2} \text{ or } \dots \text{ or } t_{k+p-2} \ne t_{k+p-1})\}$.* is concatenation of sequences followed by deletions of subsequences of p consecutive, identical elements of y; that is, if $\tilde{t} = t_1 \dots t_n$ and $\tilde{s} = s_1 \dots s_k$ then $\tilde{t}^* \tilde{s} = t_1 \dots t_j s_m \dots s_k$ where

(1) for some natural numbers i and d_1, d_2, \ldots, d_i

$$t_{j+1} \dots t_n = r_1^{d_1} \dots r_i^{d_i}$$
 and
 $s_1 \dots s_{m-1} = r_i^{p-d_i} r_{i-1}^{p-d_{i-1}} \dots r_1^{p-d_1}$

and

(2) $t_1 \ldots t_j s_m \ldots s_k \in G_v$ $(t_1 \ldots t_j \text{ or } s_m \ldots s_k \text{ may be the empty sequence}).$

We note

(3) $L(\tilde{t}^*\tilde{s}) < L(\tilde{t}) + L(\tilde{s})$ implies $t_n = s_1$.

 $((G_y, *)$ is isomorphic to the group with the generators $\{t: t \in y\}$ and relations $\{t^p = 1: t \in y\}$, but the description given above is most convenient for our purposes.)

We now apply S(p) to obtain a maximal *p*-subgroup *H* of $\pi_{y \in Y} G_y$. By Theorem 1.1, $P_y(H)$ is a maximal *p*-subgroup of G_y , for each $y \in Y$. Clearly $P_y(H) \neq \{1_y\}$ (1_y is the identity of G_y), since the sequence *t* (of length 1) for each $t \in y$ has order *p*.

Lemma 2.2 If $\vec{t} = t_1 \dots t_n$ is in $P_{\nu}(H)$, n > 0, then $t_1 = t_n$.

Proof: Since $P_y(H)$ is a *p*-subgroup of G_y , $\tilde{t}^k = \underbrace{\tilde{t}^* \tilde{t}^* \tilde{t}}_{k} * \ldots * \tilde{t}_{k} = 1_y$ for some k factors

finite k. If $t_1 \neq t_n$ then clearly the length of \vec{t}^k will be $k(L(\vec{t})) > 0 = L(1_y)$ a contradiction.

Lemma 2.3 If $\vec{t} = t_1 \dots t_n$ and $\vec{s} = s_1 \dots s_k$ are in $P_y(H)$ then $t_1 = s_1$.

Proof: Since $P_y(H)$ is a subgroup of G_y , $\hat{t}, \hat{s} \in P_y(H)$ implies $\hat{t}^*\hat{s} \in P_y(H)$. We consider two cases: *Case 1.* $L(\hat{t}^*\hat{s}) = L(\hat{t}) + L(\hat{s})$. In this case, $\hat{t}^*\hat{s} = t_1 \dots t_n s_1 \dots s_k$ and by Lemma 2.2, $t_1 = s_k = s_1$. *Case 2.* $L(\hat{t}^*\hat{s}) < L(\hat{t}) + L(\hat{s})$.

By (3) $t_n = s_1$, then by Lemma 2.2, $t_1 = s_1$. This completes the proof of Lemma 2.3. We now define a choice function f for Y as follows:

For each $y \in Y$, f(y) = the unique element t of y such that $t_1 \dots t_n \in P_y(H) \Rightarrow t_1 = t$.

3 SPF, SPS and AC_{fin} Clearly SPF implies SPS and, for any prime p, SPF(p) implies SPS(p). The fact that SPF(p) and SPS(p) are equivalent will follow from the next two theorems.

Theorem 3.1 If p is a prime and $K = \{r \in \omega : gcd(r, p) = 1\}$ then $SPS(p) \Rightarrow AC_K$.

Proof: Our proof will use the following:

Lemma 3.2 If p is a prime and H is a p-subgroup of S_n (the symmetric group on $\{1, 2, ..., n\}$) and if $\sigma = (s_1; ...; s_p)$ and $\tau = (t_1; ...; t_p)$ are p cycles in H, then either

$$\{s_1,\ldots,s_p\}=\{t_1,\ldots,t_p\}$$

or

$$\{s_1,\ldots,s_p\}\cap\{t_1,\ldots,t_p\}=\emptyset.$$

Proof: Suppose the lemma is false and that $\sigma = (s_1; \ldots; s_p)$ and $\tau = (t_1; \ldots; t_p)$ are two p cycles such that $\sigma, \tau \in H$,

$$(4) \quad \{s_1,\ldots,s_p\} \cap \{t_1,\ldots,t_p\} \neq \emptyset$$

and

(5) $\{s_1, \ldots, s_p\} \neq \{t_1, \ldots, t_p\}.$

By (4) we may assume $s_1 = t_1$ and by (5) we assume $t_2 \notin \{s_1, \ldots, s_p\}$ (replacing τ by a suitable power of τ if necessary). If $\{s_1, \ldots, s_p\} \cap \{t_1, \ldots, t_p\} = t_1$ then $\tau \circ \sigma = (t_1; s_2; \ldots; s_p) \circ (t_1; \ldots; t_p) = (t_1; t_2; \ldots; t_p; s_2; \ldots; s_p) \in H$, contradicting our assumption that H is a p-group.

We therefore assume $t_k \in \{s_1, \ldots, s_p\}$ for some $k, 2 < k \le p$; say $t_k = s_m$ and that $t_j \notin \{s_1, \ldots, s_p\}$ for $2 \le j < k$. Then since $\sigma^{p-m}(s_m) = s_p, \sigma^{p-m} \circ \tau \circ \sigma = (s_m; s_p; \ldots)(s_1; t_2; \ldots t_{k-1}; s_m; t_{k+1}; \ldots t_p)(s_1; \ldots; s_p) = (s_p; t_2; t_3; \ldots; t_{k-1}) \circ$ (some other disjoint cycles) $\in H$. But the cycle $(s_p; t_2; t_3; \ldots; t_{k-1})$ has length greater than 1 and less than p, again contradicting our assumption that H is a p-group. This proves Lemma 3.2.

For each finite set y and p-subgroup H of S_y we define the relation R(y, H) (also denoted by R_y if H is fixed) by $t_1R_yt_2$ if and only if $\sigma(t_1) = t_2$ for some p-cycle, $\sigma \in H$.

As a consequence of Lemma 3.2 we have

Lemma 3.3 If H is a p-subgroup of S_y then R(y, H) is an equivalence relation on y.

We also have

Lemma 3.4 If *H* is a Sylow *p*-subgroup of S_y and |y| = kp + r where *k* and *r* are natural numbers $0 \le r < p$ then R(y, H) has *k* equivalence classes of cardinality *p* and *r* equivalence classes of cardinality 1.

Proof: It suffices to prove the lemma for $y = \{1, 2, ..., n\}$ where $n = k \cdot p + r$, $0 \le r < p$. Let K be the subgroup of S_y generated by the cycles $\sigma_1 = (1; 2; ...; p), \sigma_2 = (p + 1; p + 2; ...2p), ..., \sigma_k = ((k - 1)p + 1; (k - 1)p + 2; ...; kp)$. Clearly K is a *p*-subgroup, therefore K is contained in a Sylow-*p* subgroup H_0 of S_y . By Lemma 3.2 the conclusion of Lemma 3.4 holds for H_0 . Using the fact that all Sylow-*p* subgroups of S_y are conjugate in S_y ([2], p. 59), the conclusion of Lemma 3.4 for every Sylow *p*-subgroup of S_y follows.

To complete the proof of Theorem 3.1 let Y' be a set such that $(\forall y \in Y')(|y| \in K)$. If $y \in Y'$, then there is a least positive integer n_y such that $|y| \cdot n_y \equiv 1 \mod p$.

Let $Y = \{y \times n_y : y \in Y' \text{ and } n_y = \{0, 1, \dots, n_y - 1\}$ is the least positive integer such that $|y| \cdot n_y \equiv 1 \mod p\}$.

We will use SPS(p) to construct a choice function for Y which will give a choice function for Y' (see [4]). Let $G = \pi_{y \in Y} S_y$. By SPS(p), G has a maximal p-subgroup H. By Theorem 1.1, $P_y(H)$ is a Sylow p-subgroup of S_y for each $y \in Y$. By Lemma 3.4, $R(y, P_y(H))$ has exactly one equivalence class of cardinality 1. Therefore if we define for each $y \in Y$

f(y) = the element of the unique equivalence class of $R(y, P_y(H))$ with cardinality 1

we get a choice function for Y.

This completes the proof of Theorem 3.1.

Theorem 3.5 If p is a prime and $K = \{r \in \omega : r \equiv 1 \mod p\}$, then AC_K implies SPF(p).

Proof: Let $\{G_y: y \in Y\}$ be a set of finite groups. For each $y \in Y$, let W(y) be the set of Sylow *p*-subgroups of G_y . By [5], p. 59, Theorem 4.9, $|W(y)| \equiv 1$ mod *p* and, therefore, by AC_K , $\{W(y): y \in Y\}$ has a choice function *f*. By Theorem 1.2, $\pi_{y \in Y} f(W(y))$ is a maximal *p*-subgroup of $\pi_{y \in Y} G_y$.

Corollary 3.6 Let p be a prime and let $K_1 = \{r \in \omega : gcd(r, p) = 1\}$ and $K_2 = \{r \in \omega : r \equiv 1 \mod p\}$. Then the following are equivalent:

(i) SPS(p)(ii) AC_{K_1} (iii) AC_{K_2} (iv) SPF(p).

Corollary 3.7 If $p_1 \neq p_2$ are primes, then $SPS(p_1)$ and $SPS(p_2)$ imply AC_{fin} .

(This follows from Theorem 3.1.) We now strengthen Corollary 3.7 to

Theorem 3.8 If p is a prime then AC_p and SPS(p) imply AC_{fin} .

Proof: Let Y be a set of nonempty finite sets. Define by induction

 $\begin{array}{l} Y_0 = Y \\ Y_{n+1} = \{z: \ (\exists y \in Y_n) (z \subseteq y)\} \cup \{w: \ (\exists y \in Y_n) \ (w \ \text{is a partition of } y)\}. \end{array}$

Let $Y' = \bigcup_{n \in \omega} Y_n$, then Y' has the properties

- (6) If $y \in Y'$ and $z \subseteq y$, then $z \in Y'$
- (7) If $y \in Y'$ and w is a partition of y, then $w \in Y'$.

We will use AC_p and SPS(p) to construct a choice function for Y' and therefore, since $Y \subseteq Y'$, a choice function for Y.

First note that by Theorem 3.1, AC_p and SPS(p) give us a choice function f_0 for $\{y \in Y': |y| \le p\}$. Now a direct application of SPS(p) gives us a maximal *p*-subgroup *H* of $\pi_{y \in Y'}S_y$. Define a choice function *f* on *Y'* by induction as follows:

If $y \in Y'$ and $|y| \le p$, $f(y) = f_0(y)$. Suppose now that $y \in Y'$, |y| = n > p and that f(y') has been defined for every $y' \in Y$ such that |y'| < n. By Theorem 1.1, $P_y(H)$ is a maximal *p*-subgroup of S_y . Since |y| > p, Lemma 3.4 implies that $R(y, P_y(H))$ has more than 1 and fewer than *n*-equivalence classes. By the Induction assumption and (7), f(w) is defined and $f(w) \subseteq y$ where w = p.

 $\{c: c \text{ is an } R_y \text{ equivalence class}\}$ and therefore by (6) f(f(w)) is defined and $f(f(w)) \in y$. We define f(y) = f(f(w)).

This completes the proof of Theorem 3.8.

Using Theorem 1.2 it is easy to see that $AC_{fin} \Rightarrow SPF$. We therefore have

Corollary 3.9 If p_1 and p_2 are primes, and $p_1 \neq p_2$, then the following are equivalent

(i) AC_{fin}

(ii) $SPS(p_1) \wedge SPS(p_2)$

(iii) AC_{p_1} and $SPS(p_1)$

(iv) SPF

(v) *SPS*.

That Theorem 3.1 and Corollary 3.6 are, in some sense, the best possible results, is shown by the following.

Theorem 3.10 If p is a prime $SPS(p) \neq AC_p$.

Proof: We show that no proof of AC_p from SPS(p) is possible in ZFU (Zermelo-Frankel set theory weakened to permit the existence of urelements) by constructing a permutation model of ZFU in which SPS(p) is true and AC_p is false. We refer the reader to [1] for elementary facts about permutation models.

Finally we will indicate how the independence result can be transferred to ZF.

Let M' be a model of ZFU + AC and suppose the set of urelements $\cup = \bigcup_{n \in \omega} A_n$ where $A_i \cap A_j = \emptyset$ if $i \neq j$ and $|A_i| = p$ for $i \in \omega$. Let ψ_i be a (fixed) permutation of A_i which is a p cycle. Let $G = \{\phi: \phi \text{ is a permutation of } \cup \text{ and } (\forall i \in \omega)(\phi | A_i = \psi_i^n \text{ for some integer } n) \text{ and } (\exists k \in \omega)(\forall j > k)(\forall t \in A_j)(\phi(t) = t)\}$ ($\phi | A_i$ denotes the restriction of ϕ to A_i). Clearly $\phi \in G \Rightarrow \phi^p = 1$.

Note that $\phi \in G$ can be extended uniquely to all of M' by ϵ -induction. The extension is also denoted by ϕ . If $E \subseteq \bigcup$, let fix $(E) = \{\phi \in G: (\forall t \in E)(\phi(t) = t)\}$ and let F be the filter of subgroups of G generated by $\{fix(E): E \subseteq \bigcup$ and E is finite $\}$. If $x \in M'$ and there is some finite $E \subseteq \bigcup$ such that $\phi \in fix(E) \Rightarrow \phi(x) = x$ we say E is a (finite) support of x.

Let *M* be the permutation model determined by *F* and *G*, that is, *M* consists of those elements $x \in M'$ such that x and each element of the transitive closure of x have finite support.

Claim 1 AC_p is false in M.

For $Y = \{A_n : n \in \omega\}$ is a set of *p*-element sets in *M* (with support \emptyset). Suppose *f* is a choice function for *Y* in *M* with finite support *E*. Since *E* is finite, there is some $A_n \in Y$ such that $A_n \cap E = \phi$ and therefore ϕ defined by

$$\phi(t) = \begin{cases} \psi_n(t) \ t \in A_n \\ t \text{ otherwise} \end{cases}$$

is in fix (E). ϕ fixes Y and A_n but $\phi(f(A_n)) \neq f(A_n)$ since $f(A_n) \in A_n$. Therefore E is not a support of f.

The proof of Theorem 3.10 is completed by showing

Claim 2 SPS(p) is true in M.

Let Y be a collection of finite sets in M and let $W = \pi_{y \in Y} S_y$. We show W has a maximal p-subgroup in M. Suppose Y has finite support E. For each $y \in Y$ let OB(y) be the fix (E) orbit of y, i.e., $OB(y) = \{\phi(y) : \phi \in fix(E)\} \subseteq Y$.

Let *F* be a choice function for $\{OB(y): y \in Y\}$ (*F* is in *M'* but not necessarily in *M*). Let $X = \{F(OB(y)): y \in Y\}$ and for each $y \in X$, let L(y) be a Sylow *p*-subgroup of S_y containing the *p*-subgroup $\{\phi | y: \phi \in fix (E) \text{ and } \phi(y) = y\}$.

Lemma 3.11 If $y \in X$ and ϕ , $\psi \in fix(E)$ and $\phi(y) = \psi(y)$, then $\phi(L(y)) = \psi(L(y))$.

Proof: Assume the hypotheses, then $\psi^{-1}(\phi(y)) = y$ and $\psi^{-1} \circ \phi \in fix(E)$; hence $\psi^{-1} \circ \phi | y \in L(y)$; therefore $(\psi^{-1} \circ \phi)(L(y)) = ((\psi^{-1} \circ \phi | y)L(y)((\psi^{-1} \circ \phi | y)^{-1})) = L(y)$. So $\phi(L(y)) = \psi(L(y))$, proving the lemma. (We have used the fact that if η and σ are permutations, then $\eta(\sigma) = \eta \circ \sigma \circ \eta^{-1}$.)

Hence $T = \{\phi((y, L(y))): y \in X \text{ and } \phi \in fix (E)\}$ is a function in M with domain Y and for each $y \in Y$, T(y) is a Sylow p-subgroup of S_y . Therefore by Theorem 1.2, $\pi_{y \in Y}T(y)$ is maximal p-subgroup of $\pi_{y \in Y}S_y$ in M proving Claim 2.

To transfer the result to Zermelo-Frankel set theory we note that by Corollary 3.6, AC_K holds in M where $K = \{r \in \omega : gcd(r, p) = 1\}$. By an argument almost identical to the one in [1], p. 109, we can construct a model N of ZF from M in which AC_p fails and AC_K holds. Therefore by Corollary 3.6 SPS(p) holds in N.

As a final remark, we note that several negative results can be obtained using the theorem of Levy [3]:

$$ZFU \not\models (\forall n \in \omega) (AC_n) \to AC_{fin}.$$

Let p be a prime. By Corollary 3.9, AC_p and $SPS(p) \rightarrow AC_{fin}$. Therefore

 $ZFU \not\models (\forall n \in \omega)(AC_n) \rightarrow SPS(p).$

Using Corollary 3.6, we also obtain

$$ZFU \not\models (\forall n \in \omega) (AC_n) \rightarrow AC_{K_1}$$

and

$$ZFU \models (\forall n \in \omega) (AC_n) \to AC_{K_2}.$$

REFERENCES

- [1] Jech, T., *The Axiom of Choice*, North-Holland Publishing Company, Amsterdam, 1973.
- [2] Kurosh, A. G., *The Theory of Groups*, trans. K. A. Hirsch, Chelsea Publishing Company, New York, 1955.
- [3] Levy, A., "Axioms of multiple choice," *Fundamenta Mathematica*, vol. 50 (1962), pp. 475–483.

- [4] Mostowski, A., "Axiom of choice for finite sets," *Fundamenta Mathematica*, vol. 33 (1945), pp. 137-168.
- [6] Rotman, J., An Introduction to the Theory of Groups, Allyn and Bacon Publishing Company, Newton, Massachusetts, 1984.
- [6] Shenkman, E., *Group Theory*, Robert E. Krieger Publishing Company, New York, 1975.
- [7] Scott, W. R., Group Theory, Prentice Hall, Englewood Cliffs, New Jersey, 1964.

Department of Mathematics Eastern Michigan University Ypsilanti, Michigan 48197