Cantor-Bendixson Spectra of ω -Stable Theories

CARLO TOFFALORI*

1 Introduction In the following, we shall mean by theory a first-order, countable, complete, quantifier-eliminable theory.

The idea of classifying ω -stable theories by the analysis of the Boolean algebras of the definable subsets of their countable models arises from [3] and is based on the remark that a theory T is ω -stable if and only if, for every countable model M of T, the Boolean algebra B(M) of the definable subsets of M is superatomic. In fact, it is well-known that, for every Boolean algebra B, an ascending chain $\{I_{\nu}(B): \nu \text{ ordinal}\}$ of ideals of B can be defined in this way:

- 1. $I_0(B) = \{0\}$
- 2. $I_1(B)$ is the ideal of finite elements of B
- 3. for every ordinal ν , $I_{\nu+1}(B)$ is the preimage in B of $I_1(B/I_{\nu}(B))$ in the canonical homomorphism of B onto $B/I_{\nu}(B)$
- 4. for every limit ordinal λ , $I_{\lambda}(B) = \bigcup_{\nu < \lambda} I_{\nu}(B)$.

In particular, when B is superatomic, there is an ordinal μ such that $I_{\mu}(B) = B$; let μ be the least ordinal with this property, then μ is a successor ordinal, and we may define:

 α_B = predecessor of μ = least ordinal ν such that $I_{\nu}(B) \neq B$ d_B = number of atoms in $B/_{I_{\alpha_B}(B)}$.

We have the following:

- (i) $\alpha_B < \omega_1$ if *B* is countable
- (ii) $d_B < \omega$
- (iii) for every ordered pair (α, d) with $1 \le \alpha < \omega_1, 1 \le d < \omega$, there is a countable superatomic Boolean algebra B such that $(\alpha, d) = (\alpha_B, d_B)$

^{*}I would like to thank Gregory Cherlin for his valuable contribution of ideas, suggestions, and patience, and the referee for his useful advice.

(iv) for every countable superatomic Boolean algebras B_1 , B_2 , $B_1 \cong B_2$ if and only if $(\alpha_{B_1}, d_{B_1}) = (\alpha_{B_2}, d_{B_2})$.

(See [2].)

Then, for every ω -stable theory T and for every countable model M of T, we set $(\alpha_M, d_M) = (\alpha_{B(M)}, d_{B(M)})$, and we say that:

- α_M is the Cantor-Bendixson rank (CB-rank) of M
- d_M is the Cantor-Bendixson degree (CB-degree) of M
- (α_M, d_M) is the Cantor-Bendixson type (CB-type) of M.

We also define the Cantor-Bendixson spectrum of T (CB-Spec T) in the following way

CB-Spec T = {
$$(\alpha_M, d_M)$$
: $M \models T, |M| = \aleph_0$ }.

CB-Spec T can be ordered lexicographically, and has a minimal pair corresponding to the prime model M_0 of T, and a maximal pair corresponding to the countable saturated model \overline{M} of T. Moreover, $\alpha_{\overline{M}}$ coincides with the Morley rank α_T of T, and $d_{\overline{M}}$ coincides with the Morley degree d_T of T (see [1]). The analysis of CB-Spec T gives a measure of complexity of T: for instance, |CB-Spec T| = 1 means T is pseudo- \aleph_0 -categorical [4], CB-Spec $T = \{(1, 1)\}$ means T is strongly minimal.

Then we can classify ω -stable theories by the following equivalence relation ~: if T_1 , T_2 are ω -stable theories, we set $T_1 \sim T_2$ if and only if CB- Spec $T_1 = \text{CB-Spec } T_2$. Every ~-class defines a subset of $(\omega_1 - \{0\}) \times (\omega - \{0\})$. Put for simplicity $\omega_1^* = \omega_1 - \{0\}, \, \omega^* = \omega - \{0\}$ and, for $X \subset \omega_1^* \times \omega^*$, define X a CB-set (Canton-Bendixson set) if there is an ω -stable theory T such that X = CB-Spec T. Our problem is to study the characterization of CB-sets. Of course, there are several subsets X of $\omega_1^* \times \omega^*$ which are not CB-sets; some restrictions are already provided by Lemmas 1.1 and 1.2 below, but stronger conditions must be satisfied by X when, for instance, $(1, 1) \in X$ (see [5]). This paper is a natural complement of [5]; in fact, our main goal is to provide a lot of general examples of CB-sets. More precisely, the program of this work is the following: Section 2 ("the bricks") is devoted to some basic examples of CB-sets; in Section 3 ("the project") we shall explain a simple project for combining these examples to construct more complicated CB-sets; this "construction" will be made in Section 4.

These results, together with those of [5], are a first step to a complete classification of the subsets $X \subset \omega_1^* \times \omega^*$ which are CB-sets.

Although this general problem seems to be very difficult, we may conjecture that, if the minimal rank of X is $\alpha \ge 3$, then some simple conditions should let X be a CB-set; but if the minimal rank is $\alpha < 3$, then deeper conditions must be satisfied by X. However, this will be the matter of some forthcoming notes.

Lemma 1.1 Let $X \subset \omega_1^* \times \omega^*$ be a CB-set. Then X is countable and admits a maximal element.

Proof: See the previous remarks.

Lemma 1.2 If $(1, d) \in CB$ -Spec T for an ω -stable theory T, then $d_T \leq d$.

Proof: Let $M \models T$, $|M| = \aleph_0$, $(\alpha_M, d_M) = (1, d)$. By the finite equivalence relation theorem [6], there is a 0-definable equivalence relation E on M admitting a finite number of equivalence classes, and, in particular, exactly d_T classes E_1, \ldots, E_{d_T} with Morley rank α_T . It follows that, for every $i = 1, \ldots, d_T$, E_i is an infinite definable subset of M, so $B(M)/_{I_1(B(M))}$ has at least d_T atoms. Consequently, $d \ge d_T$.

Remark: It is not generally true that, if $(\alpha, d) \in CB$ -Spec T for $\alpha > 1$, then $d_T \leq d$. Counterexamples are implicit in the following.

A remark which will be useful is the following:

Lemma 1.3 If $(\alpha, d) \in \omega_1^* \times \omega^*$, $\{(\alpha, d)\}$ is a CB-set.

Proof: See [4]: it suffices to consider the pseudo- \aleph_0 -categorical ω -stable theory T such that, for every countable $M \models T$, $(\alpha_M, d_M) = (\alpha, d)$.

2 The bricks

2.1 The structures $M(\alpha, i)$ For all $\alpha \in \omega_1^*$, $i \in \omega^*$, we construct a structure $M(\alpha, i)$, admitting an equivalence relation E_{ν} for every ν with $1 \le \nu < \alpha$, in the following way:

- M(1, i): *i* elements, no structure
- M(α + 1, i): i classes of the new equivalence relation E_α, every class isomorphic to M(α, i)
- $M(\delta, i)$ for δ limit: fix a strictly increasing sequence $(\delta_n: n \in \omega)$ such that $\lim \delta_n = \delta$, set

$$M(\delta, i) = M(\delta_i, i)$$

 $E_{\nu} = (M(\delta, i))^2$ for every ν with $\delta_i \le \nu < \delta$.

Some examples will explain the previous definitions.

 $M(\omega, 3) = M(3, 3) \ (E_n = (M(\omega, 3))^2 \text{ for } n \ge 3).$

2.2 The structures $M_1(\delta)$ (δ limit) For all limit ordinals δ , we consider the following structure $M_1(\delta)$:

- domain: $\bigcup_{n\in\omega^*} M(\delta, n)$
- an equivalence relation E_{ν} for every ν with $1 \leq \nu < \delta$.

Example: $M_1(\omega) = \bigcup_{n \in \omega^*} M(\omega, n) = \bigcup_{n \ge 1} M(n, n)$

Proposition For every limit ordinal δ , $M_1(\delta)$ is ω -stable and CB-Spec $Th(M_1(\delta)) = \{(1, 1), (\delta, 1)\}.$

Proof: It is obvious that $M_1(\delta)$ has CB-type (1, 1). Let M be a countable model of $Th(M_1(\delta)), M \supseteq M_1(\delta), a \in M - M_1(\delta)$, then:

- $a|_{E_1}$ is infinite,
- for every μ , ν with $1 \le \mu < \nu < \delta$, $a|_{E_{\nu}}$ contains infinitely many distinct E_{μ} -subclasses.

It follows that M has CB type $(\delta, 1)$.

2.3 The structures $M_1^*(\alpha)$ For all ordinals α , we consider the following structure $M_1^*(\alpha)$:

- domain $\bigcup_{n\in\omega^*} M(\alpha+1, n)$
- equivalence relations $E_{\nu}(1 \le \nu \le \alpha)$.

Examples:

$$M_{1}^{*}(1) = \bigcup_{n \in \omega^{*}}^{\bullet} M(2, n) \quad \therefore \quad E_{1} \stackrel{\vdots}{\underset{i \to \cdots}{\overset{i \to \cdots}{\underset{i \to \cdots}{\overset{i \to \cdots}{\underset{i \to \cdots}{\overset{i \to \cdots}{\underset{i \to \cdots}}}}}}}}}}}}}}}}}}}}}}$$

Proposition For every ordinal α , $M_1^*(\alpha)$ is ω -stable and CB-Spec $Th(M_1^*(\alpha)) = \{(1, 1)\} \cup \{(\alpha, n) : n \in \omega^*\} \cup \{(\alpha + 1, 1)\}.$

Proof: Obviously $M_1^*(\alpha)$ has CB-type (1, 1). Let M be a countable model of $Th(M_1^*(\alpha)), M \supseteq M_1^*(\alpha), a \in M - M_1^*(\alpha)$, then:

- $a|_{E_1}$ is infinite
- for every μ , ν such that $1 \le \mu < \nu \le \alpha$, $a|_{E_{\nu}}$ contains infinitely many disjoint E_{μ} -subclasses.

It follows that *M* has CB-type:

- (α, n) if M admits exactly n infinite E_{α} -classes
- $(\alpha + 1, 1)$ if M admits infinitely many infinite E_{α} -classes.

2.4 The structures $M_1(\alpha + 1)$ For all ordinals α , add to the previous structure $M_1^*(\alpha)$ an automorphism f, as the following examples describe:

We have:

Proposition For every ordinal α , $M_1(\alpha + 1)$ is ω -stable and CB-Spec $Th(M_1(\alpha + 1)) = \{(1, 1), (\alpha + 1, 1)\}.$

Proof: It follows from 2.3 and the definition of *f*.

We are going now to construct more complicated examples.

2.5 The structure P_0 First, we consider a structure P_0 having domain $\{c_{i,j}: 1 \le j \le i < \omega\}$ and a unary function s such that

$$s(c_{i,j}) = \begin{cases} c_{i,j+1} & \text{if } j < i, \\ c_{i,1} & \text{if } j = i. \end{cases}$$

Graphically,

It is easy to see that $Th(P_0)$ is strongly minimal. Notice that P_0 is the prime model of $Th(P_0)$.

2.6 The structures $M'_1(\alpha + 1)(\alpha \ge 1)$ For every ordinal $\alpha \ge 1$, let $M'_1(\alpha + 1)$ be the disjoint union of $M^*_1(\alpha)$ and P_0 , together with a function $\pi: M^*_1(\alpha) \to P_0$ such that, for every $1 \le j \le n < \omega$, $\pi^{-1}(c_{n,j})$ is an E_{α} -class of $M(\alpha + 1, n)$. The language of this structure will also have predicates Q, P for $M^*_1(\alpha)$, P_0 , respectively, and constants for all elements. Note that $M'_1(\alpha + 1)$ is essentially just $M_1(\alpha + 1) \cup M_1(\alpha + 1)/E_{\alpha}$, together with a P_0 -structure on the quotient set $M_1(\alpha + 1)/E_{\alpha}$.

Examples:

It is easy to see that $Th(M'_1(\alpha + 1))$ is ω -stable and that $M'_1(\alpha + 1)$ has CB-type (1, 2), while, if M is a countable model of $Th(M'_1(\alpha + 1))$ and $M \ge M'_1(\alpha + 1)$, then M has CB-type $(\alpha + 1, 1)$. Then we have:

Proposition For every $\alpha \ge 1$, $M'_1(\alpha + 1)$ is ω -stable and CB-Spec $Th(M'_1(\alpha + 1)) = \{(1, 2,), (\alpha + 1, 1)\}.$

2.7 The structures $M'_1(\delta)$ (δ limit) Let δ be a limit ordinal. Fix a strictly increasing sequence $(\delta_n: n \in \omega)$ such that $\delta = \lim_n \delta_n$, and let $M'_1(\delta)$ be the $\bigcup_{n \in \omega} M'_1(\delta_m + 1)$, where we identify the P_0 's of each $M'_1(\delta_n + 1)$. The language of this structure will also have

- a predicate P for P_0
- for every *n*, a predicate Q_n for $M_1^*(\delta_n)$ (the Q-part of $M_1(\delta_n + 1)$)
- for every *n*, a function symbol π_n for the projection map of $M_1^*(\delta_n)$ onto P_0

(for each *n*, distinguish by symbols $E_{n,\nu}$, $1 \le \nu \le \delta_n$, the equivalence relations on $M_1^*(\delta_n)$).

Example: $M'_1(\omega)$, $\omega = \lim n$. We have

It is easy to see:

Proposition For every limit ordinal δ , $M'_1(\delta)$ is ω -stable and CB-Spec $Th(M'_1(\delta)) = \{(2, 1), (\delta, 1)\}.$

In fact, CB-type $M'_1(\delta) = (2, 1)$, while, if M is a countable model of $Th(M'_1(\delta))$ and $M \ge M'_1(\delta)$, then M has CB-type $(\delta, 1)$.

2.8 The structures $M(\alpha)$ ($\alpha \ge 1$) Finally, let $M(\alpha)$ be the structure whose domain is $P_{01} \stackrel{.}{\cup} P_{02} \stackrel{.}{\cup} \stackrel{.}{Q}(\alpha)$ where $P_{01}, P_{02} \simeq P_0$ and two projection maps π_1 : $Q(\alpha) \to P_{01}, \pi_2: Q(\alpha) \to P_{02}$ are given such that, when $c_{i,j}^1 \in P_{01}$ and $c_{h,k}^2 \in Q_{01}$ P_{02} , then

$$\pi_1^{-1}(c_{i,i}^1) \cap \pi_2^{-1}(c_{h,k}^2) \simeq M(\alpha, \min(i, h)).$$

The language for this structure will have

- relation symbols P_1 , P_2 , Q for P_{01} , P_{02} , $Q(\alpha)$, respectively
- function symbols for π_1, π_2
- constants for all the elements of $M(\alpha)$.

together with the symbols for P_{0i} (j = 1, 2, see 2.5) and for the equivalence relations E_{ν} $(1 \le \nu \le \alpha)$.

Graphically

Of course $M(\alpha)$ is the prime model of $Th(M(\alpha))$. Furthermore it is straightforward to see that, for any countable model M of $Th(M(\alpha))$,

- if $P_{01} = P_1^M$ or $P_{02} = P_2^M$ (in particular, if $M = M(\alpha)$), then M has CBtype (2, 1), • if $P_{01} \neq P_1^M$ and $P_{02} \neq P_2^M$, then M has CB-type ($\alpha + 2, 1$).

Then we have

For every ordinal $\alpha \geq 1$, $M(\alpha)$ is ω -stable and CB-Spec **Proposition** $Th(M(\alpha)) = \{(2, 1), (\alpha + 2, 1)\}.$

We conclude Section 2 recalling that the following are CB-sets (see 2.1-3):

- {(1, 1), $(\alpha, 1)$ } for every ordinal $\alpha \ge 1$
- $\{(1, 1)\} \cup \{(\alpha, n): n \in \omega^*\} \cup \{(\alpha + 1, 1)\}$ for every ordinal $\alpha \ge 1$.

3 The project We propose here a simple project to construct new CB-sets. Let $\{T_i: i \in I\}$ be a countable family of ω -stable theories. We define a theory $T = \bigcup_{i \in I}^{\bullet} T_i$ in this way:

- $L(T) = \bigcup_{i \in I} L(T_i) \cup \{U_i : i \in I\}$ where, for every $i \in I$, U_i is a 1-ary
- relation symbol $M \models T$ if and only if $M = \bigcup_{i \in I}^{\bullet} M_i \stackrel{\circ}{\cup} M_{\infty}$ where $M_i = U_i^M$ is a model of T_i for every $i \in I$, while $M_{\infty} = \emptyset$ if I is finite, $M_{\infty} = M \bigcup_{i \in I}^{\bullet} M_i$.

T is ω -stable. Furthermore, CB-Spec T can be easily determined because, for every countable model M of T, the algebra B(M) is isomorphic to the weak direct product of the Boolean algebras $B(M_i)$ $(i \in I)$,

$$B(M) \cong w \underset{i \in I}{X} B(M_i)$$

(see [2]).

As an application, suppose I finite, $I = \{1, \ldots, d\}$, $T_1 = \ldots = T_d$. Consider the theory $T = \bigcup_{1 \le i \le d} T_i$ defined as above, add to L(T) new 1-ary functional symbols $h_{i,j}$ for $1 \le i, j \le d$ and in the enlarged language get a new theory T' adding to T axioms stating that M is a model of T' if and only if $M = \bigcup_{1 \le i \le d} M_i$, where $M_1, \ldots, M_d \models T_1$ and, for every i, j with $1 \le i, j \le d$, $h_{i,j}$ is an isomorphism of M_i onto M_j , $h_{i,i} = id$, $h_{j,i} = h_{i,j}^{-1}$, $h_{i,j} \cdot h_{k,i} = h_{k,j}$. (We set for simplicity in this case $M = dM_1$.) T' is an ω -stable theory. Looking at the examples in Section 1, we put:

- $M_d(\alpha) = dM_1(\alpha)$: so CB-Spec $Th(M_d(\alpha)) = \{(1, d), (\alpha, d)\}$
- $M'_d(\alpha + 1) = dM'_1(\alpha + 1)$: CB-Spec $Th(M'_d(\alpha + 1)) = \{(1, 2d), (\alpha + 1, d)\}$
- $M'_d(\delta) = dM'_1(\delta)$ [δ a limit ordinal]: CB-Spec $Th(M'_d(\delta)) = \{(2, d), (\delta, d)\}$
- $M_d^*(\alpha) = dM_1^*(\alpha)$: so, CB-Spec $Th(M_d^*(\alpha)) = \{(1, d)\} \cup \{(\alpha, nd): n \in \omega^*\} \cup \{(\alpha + 1, d)\}.$

We will also denote by $M_d^1(\alpha)$ a countable ω -stable pseudo- \aleph_0 -categorical structure whose theory has got CB spectrum $\{(\alpha, d)\}$ (see Lemma 1.3).

4 Some constructions Recall $\omega^* = \omega - \{0\}$, $\omega_1^* = \omega_1 - \{0\}$. If $X \subset \omega_1^* \times \omega^*$, we shall set:

- $X(\alpha) = \{ d \in \omega^* : (\alpha, d) \in X \}$ for every $\alpha \in \omega_1^*$
- $X^* = \{ \alpha \in \omega_1^* \colon X(\alpha) \neq \emptyset \}.$

We shall also use the following abbreviation: for α_i , α ordinals $\alpha_i \uparrow \alpha$ if and only if $\{\alpha_i : i \in N\}$ is a strictly increasing sequence such that $\lim \alpha_i = \alpha$.

Our main results are Theorems 4–6,7 and concern the sets X such that min $X^* \ge 3$.

We show now some results related to the case: $X(2) \neq \emptyset$.

Theorem 4.1 Let $X \subset \omega_1^* \times \omega^*$ be an infinite set such that:

(a) if $\alpha \in X^*$, $\alpha \ge 2$

(b) for every $\alpha \in \omega_1^*$, $|X(\alpha)| \le 1$

(c) if $\alpha_i \uparrow \alpha$ and $\alpha_i \in X^*$ for every $i \in N$, then $(\alpha, 1) \in X$. Then X is a CB-set.

Example 1: For every λ such that $\omega \le \lambda < \omega_1$, $\{(\alpha, 1): 2 \le \alpha \le \lambda\}$ is a CB-set.

Example 2: $\{(n, n): n \in \omega, n \ge 2\} \cup \{(\omega, 1)\}$ is a CB-set.

Proof: Letting (α_0, d_0) be the minimal element of X, we define a partition $X = X_0 \cup X_1 \cup X_2$ of X in the following way:

- $X_0 = \{(\alpha_0, d_0)\}$
- $X_1^* = \{ \alpha \in X^* : \exists \beta \in X^*, \beta < \alpha,] \beta, \alpha [\cap X^* = \emptyset \}, X_1 = \{ (\alpha, d) \in X : \alpha \in X_1^* \}$
- $X_2^* = \{ \alpha \in X^* : \exists \alpha_i \in X_1^*, \, \alpha_i \uparrow \alpha \}, \, X_2 = \{ (\alpha, 1) : \alpha \in X_2^* \}.$

We set
$$M(X_1) = \bigcup_{(\alpha,d) \in X_1} M_d(\alpha)$$
, and
 $M(X) = \begin{cases} M(X_1) & \text{if } (\alpha_0, d_0 = (2, 1)) \\ M(X_1) & \bigcup M_{d_0-1}^1(2) & \text{if } \alpha_0 = 2, d_0 > 1 \\ M(X_1) & \bigcup M_{d_0}^1(\alpha_0) & \text{if } \alpha_0 > 2. \end{cases}$

M(X) is ω -stable. We claim that CB-Spec Th(M(X)) = X. For simplicity, we assume $(\alpha_0, d_0) = (2, 1)$. The proof can be easily modified to cover the remaining cases. Notice that the pseudo- \aleph_0 -categorical ω -stable structure $M_{d_0-1}^1(2)$ $[M_{d_0}^1(\alpha_0)]$ lets (α_0, d_0) be the minimal pair of CB-Spec Th(M(X)). First we show that, for every $(\bar{\alpha}, \bar{d}) \in X$, there is $M \equiv M(X)$, $|M| = \aleph_0$ such that M has got CB-type $(\bar{\alpha}, \bar{d})$. Notice that we may suppose

$$M = \bigcup_{(\alpha,d)\in X_1} M_{\alpha,d}(\dot{\cup}M_{\infty})$$

where $M_{\alpha,d} \equiv M_d(\alpha)$, $|M_{\alpha,d}| = \aleph_0$ for every $(\alpha, d) \in X_1$. So we have:

- (ᾱ, d̄) = (2, 1): for every (α, d) ∈ X, assume that the CB-type of M_{α,d} is (1, d) so M has got CB-type (2, 1)
- (ā, d̄) ∈ X₁: take the following choice of M_{α,d}: M_{α,d} has CB-type (α, d) when (α, d) = (ā, d̄), (1, d) otherwise; recall ā > α₀ = 2, so the CB-type of M is (ā, d̄)
- $(\bar{\alpha}, \bar{d}) \in X_2$, so $\bar{d} = 1$: let $\{\alpha_i : i \in \mathbb{N}\}$ be a sequence of elements in X_1^* such that $\alpha_i \uparrow \alpha$, assume $M_{\alpha,d}$ has CB-type (α, d) when there is $i \in \mathbb{N}$ such that $\alpha = \alpha_i$, (1, d) otherwise. In this case, the CB-type of M is $(\bar{\alpha}, 1)$.

Conversely, let $M \equiv M(X)$, $|M| = \aleph_0$, we will show that the CB-type of M belongs to X. Define $Y = \{\alpha \in X_1^* : M_{\alpha,d} \text{ has CB-rank } \alpha\}$. We can distinguish the following cases:

- $Y = \emptyset$; then *M* has CB-type (2, 1)
- Y ≠ Ø, there is max Y = α: let X(α) = d, then M has CB-type (α, d) ∈ X₁
- $Y \neq \emptyset$, but admits no maximal element: let $\alpha = \sup Y$, then $\alpha \in X_2^*$, $(\alpha, 1) \in X_2$, and we see $(\alpha, 1)$ is the CB-type of M.

The second step is to consider the finite disjoint unions of the theories given in Theorem 4.1. So we get:

Theorem 4.2 Let $X \subset \omega_1^* \times \omega^*$ be an infinite set, (α_0, d_0) be the minimal element of X, and N be a positive integer. Suppose: (a) if $\alpha \in X^*$, $\alpha \ge 2$ (b) $X(\alpha_0) = \{d_0\}$, where $d_0 \ge N$ if $\alpha_0 = 2$ (c) if $\alpha \in X^* - \{\alpha_0\}$, there are a positive integer $N_{\alpha} \leq N$, and $d_1^{\alpha}, \ldots, d_{N_{\alpha}}^{\alpha} \in X(\alpha)$ (not necessarily distinct) such that $X(\alpha) = \left\{\sum_{i=1}^{N_{\alpha}} \epsilon_i d_i^{\alpha}: \epsilon_i = 0, 1, \sum_{i=1}^{N_{\alpha}} \epsilon_i \geq 1\right\}$ (d) if $\alpha_i \uparrow \alpha$ and $\alpha_i \in X^*$ for every $i \in \mathbb{N}$, then $N_{\alpha} = N$, $d_1^{\alpha} = \ldots = d_{N_{\alpha}}^{\alpha} = 1$. Then, X is a CB-set.

Example 3: $\{(2, n)\} \cup \{(\alpha, 1), \dots, (\alpha, n): 3 \le \alpha \le \lambda\}$ is a CB-set for every λ such that $\omega \le \lambda < \omega_1$.

Proof: Notice that, for every $\alpha \in \omega_1^*$, $|X(\alpha)| < 2^N$. As above, we set

$$X_{0} = \{(\alpha_{0}, d_{0})\}$$

$$X_{1}^{*} = \{\alpha \in X^{*} : \exists \beta < \alpha, \beta \in X^{*},] \beta, \alpha [\cap X^{*} = \emptyset\}$$

$$X_{2}^{*} = \{\alpha \in X^{*} : \exists \alpha_{i} \in X^{*}, \alpha_{i} \uparrow \alpha\}$$

so that $X^* = X_0^* \cup X_1^* \cup X_2^*$. We define now:

- $\overline{X}_0, \overline{X}_1, \ldots, \overline{X}_{N-1} \subset \omega_1^* \times \omega^*$
- for every $\alpha \in X^*$, an integer $P(\alpha)$ such that $0 \le P(\alpha) < N$.

We proceed in the following way:

- $\alpha = \alpha_0 = 2$: $P(\alpha_0) = 0$; $(2, d_0 N + 1) \in \overline{X}_0$, $(2, 1) \in \overline{X}_j$ if j > 0
- $\alpha = \alpha_0 > 2$: $P(\alpha_0) = 0$; $(\alpha_0, d_0) \in \overline{X}_0$, $(2, 1) \in \overline{X}_j$ if j > 0
- $\alpha \in X_1^*$: let $\beta \in X^*$, $\beta < \alpha$, $]\beta$, $\alpha [\cap X^* = \emptyset$, and set $P(\alpha) \equiv P(\beta) + 1 \pmod{N}$; $(\alpha, d_1^{\alpha}) \in \overline{X}_{P(\alpha)}, (\alpha, d_2^{\alpha}) \in \overline{X}_{P(\alpha)+1}, \dots, (\alpha, d_{N_{\alpha}}^{\alpha}) \in \overline{X}_{P(\alpha)+N_{\alpha}-1}$ (we put $\overline{X}_r = \overline{X}_s$ when $r \equiv s \pmod{N}$)
- $\alpha \in X_2^*$: $P(\alpha) = 0$, $(\alpha, 1) \in \overline{X_j}$ for every $j = 0, 1, \dots, N-1$
- let $\overline{X}_0, \ldots, \overline{X}_{N-1}$ contain no more elements.

Notice that, for every $j = 0, 1, ..., N - 1, \overline{X_j}$ satisfies the hypotheses of Theorem 4.1, so there is an ω -stable structure M_j such that $\overline{X_j} = \text{CB-Spec } Th(M_j)$. Let $M = M_0 \cup ... \cup M_{N-1}$, then M is ω -stable and we claim X = CB-Spec Th(M).

i. $X \subset CB$ Spec Th(M).

It suffices to show that, for every $(\alpha, d) \in X$, there is $M' \equiv M$, $|M'| = \aleph_0$ such that M' has got CB-type (α, d) . We notice that $M' = M'_0 \cup ... \cup M'_{N-1}$ where $M'_j \equiv M_j$, $|M'_j| = \aleph_0$ (so that the CB-type of M'_j belongs to \overline{X}_j) for every j = 0, 1, ..., N - 1.

- $(\alpha, d) = (\alpha_0, d_0)$: take M'_0 having CB-type $(2, d_0 N + 1)$ if $\alpha_0 = 2$, (α_0, d_0) if $\alpha_0 > 2$, M'_j having CB-type (2,1) if j > 0, so M' has CB-type (α_0, d_0) N_{α}
- $\alpha \in X_1^*$, $d = \sum_{i=1}^{N_{\alpha}} \epsilon_i d_i^{\alpha}$: let M_j have CB-type (α, d_i^{α}) if $j = P(\alpha) + i 1$ and $\epsilon_i = 1$, M_j have minimal CB-type otherwise, then M' has CB-type (α, d)
- $\alpha \in X_2^*$ (so that $P(\alpha) = 0$): assume M'_j has CB-type $(\alpha, 1)$ if $0 \le j < d$, (2, 1) if $d \le j < N$, then M' has CB-type (α, d) .

ii. Conversely, we show that, if $M' \equiv M$ and $|M'| = \aleph_0$, the CB-type of M' belongs to X. We have already seen that, if the CB-type of M'_j is the minimal one for every j, then (α_0, d_0) is the CB-type of M'. If this is not the case, let α be the maximal CB-rank of M'_j 's $(0 \leq j < N)$, and put for $1 \leq i \leq N_{\alpha}$

$$\epsilon_i = \begin{cases} 1 & \text{if } (\alpha, d_i^{\alpha}) \text{ is the CB-type of } M'_{P(\alpha)+i-1}, \\ 0 & \text{otherwise;} \end{cases}$$

then M' has got CB-type $\left(\alpha, \sum_{i=1}^{N_{\alpha}} \epsilon_i d_i^{\alpha}\right) \in X.$

Remark: Of course, we can modify the previous proofs to get finite CB-sets. For instance, we have:

• if
$$n, d_0, d_1, \ldots, d_n \in \omega^*$$
, $\alpha_0, \alpha_1, \ldots, \alpha_n \in \omega_1^*$, $\left(1, \sum_{i=1}^n d_i\right) \le (\alpha_0, d_0) < (\alpha_1, d_1), 1 < \alpha_1 < \ldots < \alpha_n$, then $\{(\alpha_j, d_j): 0 \le j \le n\}$ is a CB-set

let
$$n \in \omega^*$$
, $X \subset \omega_1^* \times \omega^*$, $X^* = \{\alpha_0, \alpha_1, \dots, \alpha_n\}$, where $1 \le \alpha_0 \le \alpha_1$,
 $1 < \alpha_1 < \dots < \alpha_n$; if $\alpha_0 < \alpha_1$, suppose that, for every $i \ge 1$, there are
 $d_1^i, \dots, d_{N_i}^i \in \omega^*$ - not necessarily distinct - such that $X(\alpha_i) = \left\{\sum_{j=1}^{N_i} \epsilon_j d_j^j; \epsilon_j = 0, 1, \sum_{j=1}^{N_i} \epsilon_j > 0\right\}$, while $X(\alpha_0) = \{(\alpha_0, d_0)\}$ where $d_0 \ge \sum_{i=1}^N \sum_{j=1}^{N_i} d_j^j$
if $\alpha_0 = 1$; if $\alpha_0 = \alpha_1$, suppose that, for every $i \ge 2$, there are $d_1^i, \dots, d_{N_i}^i \in \omega^*$ such that $X(\alpha_i) = \left\{\sum_{j=1}^{N_i} \epsilon_j d_j^j; \epsilon_j = 0, 1, \sum_{j=1}^{N_i} \epsilon_j > 0\right\}$, while,
looking at $X(\alpha_1)$, there are $d_0, d_1^1, \dots, d_{N_1}^1 \in \omega^*$ such that $X(\alpha_1) = \left\{d_0 + \sum_{j=1}^{N_i} \epsilon_j d_j^1; \epsilon_j = 0, 1\right\}$; then X is a CB-set.

(The previous results can be obtained as corollaries of the following Lemmas 4.3 and 4.4.)

Example 4: For every λ such that $2 \le \lambda < \omega$, $\{(\alpha, 1): 2 \le \alpha \le \lambda\}$ is a CB-set.

Example 5: $\{(1, n(\alpha - 1))\} \cup \{(\nu, 1), \dots, (\nu, n): 2 \le \nu \le \alpha\}$ is a CB-set for every α such that $2 \le \alpha < \omega$.

Lemma 4.3 Let X_1, \ldots, X_n be CB-sets, $(\alpha_j, d_j) = \min X_j, X(\alpha_j) = \{d_j\}, X'_j = X_j - \{(\alpha_j, d_j)\}$ for $1 \le j \le n$. Put $\alpha_0 = \max\{\alpha_1, \ldots, \alpha_n\}, d_0 = \sum_{\alpha_j = \alpha_0} d_j$ and suppose $\alpha_0 < (X'_1)^* < \ldots < (X'_n)^*$. Then $X'_1 \cup \ldots \cup X'_n \cup \{(\alpha_0, d_0)\}$ is a CB-set.

Proof: Let M_j be a countable ω -stable structure such that $X_j = \text{CB-Spec}$ $Th(M_j) \ (1 \le j \le n)$; put $M = \bigcup_{\substack{1 \le j \le n \\ 0 \le j \le n}} M_j$, then it is easy to deduce that CB-Spec $Th(M) = X'_1 \cup \ldots \cup X'_n \cup \{(\alpha_0, d_0)\}$. In a similar way, we can deduce that, for every $(\alpha, d) \in \omega_1^* \times \omega^*$ such that $(\alpha_0, d_0) \le (\alpha, d)$ and $\alpha < (X'_1)^*, X'_1$ $\cup \ldots \cup X'_n \cup \{(\alpha, d)\}$ is a CB-set. Lemma 4.4 Let X_1, \ldots, X_n ; $\alpha_0, \alpha_1, \ldots, \alpha_n$; d_0, d_1, \ldots, d_n be as above. Suppose now $\alpha_0 < (X'_1)^* \leq \ldots \leq (X'_n)^*$ and define, for $1 \leq i < j \leq n$,

$$\delta(X_i, X_j) = \left\{ \left(\alpha, \sum_{i \le k \le j} \epsilon_k d_k \right) : \alpha \in \bigcap_{i \le k \le j} (X'_k)^*, \\ d_k \in X_k(\alpha), \, \epsilon_k = 0, \, 1, \, \sum_{i \le k \le j} \epsilon_k \ge 2 \right\}.$$

Then $X = X'_1 \cup \ldots \cup X'_n \cup \left(\bigcup_{1 \le i \le n} \delta(X_i, X_j)\right) \cup \{(\alpha_0, d_0)\}$ is a CB-set.

Proof: Define $M_j (1 \le j \le n)$, M as above; let $M' \equiv M$, $|M'| = \aleph_0$, so that $M' = \bigcup_{\substack{1 \le j \le n \\ j \le n}} M'_j$ where $M'_j \equiv M_j$, $|M'_j| = \aleph_0$. If M'_j has CB-type (α_j, d_j) for every j, M' has CB-type (α_0 , d_0). Otherwise, let j be the maximal index such that M'_i has CB-type $(\alpha, d) \in X'_i$: if, for every i < j, the CB-rank of M'_i is less than α , M' has CB-type (α, d) ; if there is i < j such that M'_i has CB-rank α

(and *i* is the minimal index with this property), *M'* has CB-type $\left(\alpha, \sum_{i=k-i} \epsilon_k d_k\right)$,

where

$$\epsilon_k = \begin{cases} 1 & \text{if the CB-rank of } M'_k \text{ is } \alpha \\ 0 & \text{otherwise} \end{cases}$$

so $\left(\alpha, \sum_{i \le k \le i} \epsilon_k d_k\right) \in \delta(X_i, X_j)$. Conversely, every element of X is the CB-type of a suitable structure $M' \equiv M$, $|M'| = \aleph_0$.

Looking now at the CB-sets X such that, for some $\alpha \in X^*$, $X(\alpha)$ is infinite, we prove the following.

Let $X \subset \omega_1^* \times \omega^*$, X^* infinite, and put $\alpha_0 = \min X^*$. Suppose: Theorem 4.5 (a) if $\alpha \in X^*$, $\alpha \ge 2$

- (b) for every $\alpha \in X^*$, either $X(\alpha) = \omega^*$ or $X(\alpha) = \{1\}$
- (c) when $X(\alpha) = \omega^*$, $X(\alpha + 1) \neq \emptyset$
- (d) if $X(\alpha + 1) = \{1\}$ and $\alpha + 1 > \alpha_0, X(\alpha) = \omega^*$
- (e) if $\alpha_i \in X^*$ for every $i \in N$ and $\alpha_i \uparrow \alpha, \alpha \in X^*$
- (f) if $X(\alpha) = \{1\}$ and α is a limit ordinal and $\alpha > \alpha_0$, there is a sequence $\{\alpha_i \in X^* : i \in N\}$ such that $\alpha_i \uparrow \alpha$.

Then X is a CB-set.

Example 6: $\{(\alpha, d): 2 \le \alpha < \lambda, d \in \omega^*\} \cup \{\lambda, 1\}$ for $\omega \le \lambda < \omega_1$.

Example 7: $\{(2n, d): n, d \in \omega^*\} \cup \{(2n + 1, 1): n \in \omega^*\} \cup \{(\omega, 1)\}.$

Example 8: $\{(2n, 1): n \in \omega^*\} \cup \{(2n + 1, d): n, d \in \omega^*\} \cup \{(\omega, 1)\}.$

Proof: We put $X_0^* = \{\alpha_0\}, \overline{X}^* = \{\alpha \in X^* \colon X(\alpha) = \omega^*\}, X_1^* = \overline{X}^* \cup (\overline{X}^* + \alpha)$ 1). If $\alpha \in X^* - (X_0^* \cup X_1^*)$, then $X(\alpha) = \{1\}$, and α is a limit ordinal, so that there is a sequence $\{\alpha_i: i \in N\} \subset X^*$ such that $\alpha_i \uparrow \alpha$. We set $X_2^* = \{\alpha \in X_2^* \}$ $X^* - (X_0^* \cup X_1^*): \exists \alpha_0 < \alpha_1 < \alpha_2 < \dots$ all in X_1^* such that $\alpha_i \uparrow \alpha_i$, notice that $X^* = X_0^* \cup X_1^* \cup X_2^*$, and X_1^*, X^* are infinite. Case 1. $X(\alpha_0) = \{1\}$. We first suppose $\alpha_0 = 2$, and we define

$$M = \bigcup_{\alpha \in \overline{X}^*} M_1^*(\alpha)$$

(notice that $\alpha_0 \notin \overline{X}^*$). Then, Th(M) is ω -stable, and we claim X = CB-SpecTh(M). Recall that, for every countable model M' of Th(M),

$$M' = \bigcup_{\alpha \in \overline{X}^*} M_\alpha(\dot{\cup} M_\infty)$$

where $|M_{\alpha}| = \aleph_0$, $M_{\alpha} \equiv M_1^*(\alpha)$ for every α . We first show $X \subset CB$ -Spec Th(M).

- (2, 1) is the CB-type of M' if M_{α} has CB-type (1, 1) for every $\alpha \in \overline{X}^*$
- if α ∈ X̄*, (α, n) is the CB-type of M' when, for every β ∈ X̄*, M_β has CB-type (α, n) for β = α, (1, 1) otherwise
- if $\alpha \in X_1^* \overline{X}^*$, there exists $\nu \in \overline{X}^*$ such that $\alpha = \nu + 1$: suppose M_{ν} has CB-type ($\nu + 1$, 1), while M_{β} has CB-type (1, 1) for every $\beta \in \overline{X}^* \{\nu\}$: then M' has CB-type (α , 1)
- if α ∈ X₂^{*}, there is a sequence {α_i ∈ X₁^{*}: i ∈ N} such that α_i ↑ α; we can suppose α_i ∈ X^{*} for every i; for every β ∈ X̄^{*}, let M_β have CB-type (α_i, 1) if there is i ∈ N such that β = α_i, (1, 1) otherwise; we get a model M' of Th(M), such that the CB-type of M' is (α, 1).

Conversely, CB-Spec $Th(M) \subset X$: let $M' \equiv M$, $|M'| = \aleph_0$, put $Y = \{\alpha \in \overline{X}^*$: the CB-rank of M_{α} is higher than 1}. We distinguish the following cases:

- $Y = \emptyset$: then M' has CB-type (2, 1) $\in X$
- Y ≠ Ø, there exists α = max Y: in this case, if M_α has CB-type (α, n) but α = ν + 1 for a suitable ν ∈ X̄* and M_ν has CB-type (ν + 1, 1), M' has CB-type (α, n + 1) ∈ X; otherwise the CB-type of M' coincides with the CB-type of M_α, in particular belongs to X
- Y ≠ Ø, Y admits no maximal element: let α = sup Y, then M' has CB-type (α, 1). Furthermore there is a sequence {α_i: i ∈ N} ⊂ Y such that α_i ↑ α, so (α, 1) ∈ X.

When $\alpha_0 > 2$, we consider $M \cup M_1^1(\alpha_0)$ instead of M.

Case 2. $X(\alpha_0) = \omega^*$. Follow the same procedure as above, recalling that $\alpha_0 \in \overline{X^*}$ in this case.

A more general version of Theorem 4.5 can be given starting from the structure $M_d^*(\alpha)$ ($d \in \omega^*$) instead of $M_1^*(\alpha)$.

Remark: We have also that, if $X \subset \omega_1^* \times \omega^*$ and $X^* = \{1, \alpha_i, \alpha_i + 1: 1 \le i \le m\}$ where $1 < \alpha_1 < \ldots < \alpha_m$, $X(\alpha_i) = \{(\alpha_i, n): n \in \omega^*\}$ for $1 \le i \le m$, $X(\alpha_i + 1) = \{(\alpha_i + 1, 1)\}$ when $\alpha_i + 1 < \alpha_{i+1}$ or i = m, $X(1) = \{m\}$, then X is a CB-set. In fact, we can apply Lemma 4.4 when $(\alpha_0, d_0) = (1, m)$ and, for $1 \le i \le m$, $X_i = \{(1, 1)\} \cup \{(\alpha_i, n): n \in \omega^*\} \cup \{(\alpha_i + 1, 1)\}$, so that, for $1 \le i < m$,

$$\delta(X_i, X_{i+1}) = \begin{cases} \emptyset & \text{if } \alpha_{i+1} > \alpha_i + 1\\ \{(\alpha_{i+1}, n) \colon n \ge 2\} \subset X_{i+1} \text{ otherwise,} \end{cases}$$

while, if j > i + 1,

$$\delta(X_i, X_i) = \emptyset.$$

Notice that we can assume the minimal element of X is (α_0, d_0) for every (α_0, d_0) such that $(1, m) \le (\alpha_0, d_0) \le (\alpha_1, 1)$.

Example 9: $\{(\alpha, d): 2 \le \alpha < \lambda, d \in \omega^*\} \cup \{(\lambda, 1)\}$ (for $2 < \lambda < \omega$) is a CB-set.

We are going now to the main results of this paper: we follow a more complicated line of thought to construct more complicated CB-sets, assuming in particular Examples 2.5–8 as basic structures.

Theorem 4.6 Let $X \subset \omega_1^* \times \omega^*$ with maximal element $(\lambda + 3, 1)$ and such that: (a) $X(\lambda + 2) = \omega^*$ (b) if $\alpha \in X^*$, $\alpha \ge 3$. Then, X is a CB-set.

Proof: We may limit our examination to the case $\lambda > 1$. First we assume that (3, 1) is the minimal element of X. We set $Y' = X - \{(\lambda + 3, 1)\}$ and we define $Y \subset \omega_1^* \times \omega^*$ in the following way: $Y^* - \{3\} = (Y')^* - \{3\}, Y(\nu) = Y'(\nu)$ if $\nu \in (Y')^* - \{3\}, Y(3) = \{d - 1: d \in Y'(3), d > 1\}$. Notice that (a) implies Y is infinite. We consider now the theory T whose models are the following structures:

$$M = \left(\bigcup_{(\alpha,d)\in Y}^{\bullet} M_{\alpha,d}\right) \dot{\cup} \left(\bigcup_{\substack{(\alpha,d),(\beta,e)\in Y\\(\alpha,d)<(\beta,e)}}^{\bullet} M_{\alpha,d;\beta,e}\right) (\dot{\cup} M_{\infty})$$

where $M_{\alpha,d} \equiv M'_d(\alpha)$, $M_{\alpha,d;\beta,e} \equiv M(\lambda)$ and, for every (α, d) , $(\beta, e) \in Y$ such that $(\alpha, d) < (\beta, e)$, two isomorphisms

$$\begin{array}{l} h_{\alpha,d;\beta,e}^{(1)} \colon P^{M_{\alpha,d}} \to P_1^{M_{\alpha,d;\beta,e}} \\ h_{\alpha,d;\beta,e}^{(2)} \colon P^{M_{\beta,e}} \to P_2^{M_{\alpha,d;\beta,e}} \end{array}$$

are given. (Remember that $M_{\alpha,d} = M_1 \cup \ldots \cup M_d$ where $M_1 \cong \ldots \cong M_d$, $M_1, \ldots, M_d \equiv M'_1(\alpha)$, so we mean by $P^{M_{\alpha,d}} P^{M_1}$, for example; similarly for $P^{M_{\beta,e}}$). T is ω -stable; furthermore, if $M \models T$ and $|M| = \aleph_0$, then, for every $(\alpha, d), (\beta, e) \in Y, (\alpha, d) < (\beta, e)$, the CB-type of $M_{\alpha,d;\beta,e}$ is

- (2,1) when either $M_{\alpha,d}$ or $M_{\beta,e}$ has minimal CB-type
- $(\lambda + 2, 1)$ otherwise.

We claim X = CB-Spec T. First suppose $M \models T$, $|M| = \aleph_0$, we prove that the CB-type of M belongs to X. We can distinguish the following cases:

- for every $(\alpha, d) \in Y$, $M_{\alpha,d}$ admits minimal CB-type: M has CB-type (3,1)
- there is one and only one element (α, d) ∈ Y such that the CB-type of M_{α,d} is (α, d): if α = 3, M has CB-type (3, d + 1); if α > 3, M has CB-type (α, d); in both cases, the CB-type of M belongs to X
- there is a finite number n ≥ 2 of elements (α, d) ∈ Y such that M_{α,d} has CB-type (α, d): M has CB-rank λ + 2, and its CB-degree equals the

272

sum between $\sum_{1 \le i < n} i$ and, in case, all the CB-degrees d corresponding to the CB-rank $\alpha = \lambda + 2$

there are infinitely many pairs (α, d) ∈ Y such that M_{α,d} has got CB-type (α, d): then M has CB-type (λ + 3, 1).

Conversely, it is straightforward to see that, for every $(\alpha, d) \in X$, there is a countable model M of T such that the CB-type of M is (α, d) .

Let now, more generally, (α_0, d_0) be the minimal element of X, $(\alpha_0, d_0) > (3, 1)$.

- $\alpha_0 > 3$: we define $X_0 \subset \omega_1^* \times \omega^*$ in the following way: $X_0^* \{\alpha_0, 3\} = X^* \{\alpha_0, 3\}$; $X_0(\alpha_0) = \{d d_0: d \in X(\alpha_0), d > d_0\}$, $X_0(3) = \{1\}$, $X_0(\nu) = X(\nu)$ if $\nu \in X^* \{\alpha_0\}$. Let T_0 be the ω -stable theory such that $X_0 = \text{CB-Spec } T_0$, choose a model M_0 of T_0 and consider the theory T of $M_0 \cup M_{d_0}^1(\alpha_0)$: T is ω -stable, and CB-Spec T = X.
- $\alpha_0 = 3, d_0 > 1$: we define $X_0 \subset \omega_1^* \times \omega^*$ in the following way: $X_0^* = X^*, X_0(3) = \{d d_0 + 1: d \in X(3)\}, X_0(\nu) = X(\nu)$ if $\nu > 3$; let T_0 be the ω -stable theory whose CB-spectrum is X_0 , choose $M_0 \models T_0$, and consider the theory T of $M_0 \cup M_{d_0-1}^1$ (3): T is ω -stable and CB-Spec T = X.

Remark: A similar proof shows the following is a CB-set:

 $X \subset \omega_1^* \times \omega^*$, X admits a maximal element ($\lambda + 3$, 1), and

a. $X(\lambda + 2) = \left\{ \sum_{1 \le k \le n} k: n \in \omega^* \right\}$ b. $\{(\alpha, d) \in X: \alpha < \lambda + 2\}$ is infinite c. if $\alpha \in X^*, \alpha \ge 3$.

Similarly we have:

Theorem 4.7 Let $X \subset \omega_1^* \times \omega^*$ admit as maximal element $(\lambda, 1)$ where λ is a limit ordinal and: (a) $\{\alpha: X(\alpha + 2) \neq \emptyset\}$ is cofinal in λ (b) for ever $\alpha \in X^*$, $\alpha \ge 3$. Then X is a CB-set.

Proof: First we assume that (3, 1) is the minimal element of X. We set $Y' = X - \{(\lambda, 1)\}$ and we define $Y \subset \omega_1^* \times \omega^*$ as above: $Y^* - \{3\} = (Y')^* - \{3\}$, $Y(\nu) = Y'(\nu)$ if $\nu \in (Y')^* - \{3\}$, $Y(3) = \{d - 1: d \in Y'(3), d > 1\}$. Notice that (a) implies Y is infinite. However, $Z = \{((\alpha, d), (\beta, e)) \in Y^2: (\alpha, d) < (\beta, e)\}$ is a countable set, so we give some enumeration $\{((\alpha_n, d_n), (\beta_n, e_n)): n \in N\}$ to Z, and we take at the same time a sequence $\{\lambda_n: n \in N\}$ of ordinals such that $\lambda_n \uparrow \lambda$. We consider the following function ϕ having domain Z:

- $\phi((\alpha_0, d_0), (\beta_0, e_0)) = (\gamma_0, g_0)$ where $\gamma_0 = \min\{\gamma: X(\gamma + 2) \neq \emptyset, \beta_0 < \gamma\}$ and $g_0 = \min X(\gamma_0 + 2)$
- $\phi((\alpha_{n+1}, d_{n+1}), (\beta_{n+1}, e_{n+1})) = (\gamma_{n+1}, g_{n+1})$, where $\gamma_{n+1} = \min\{\gamma: X(\gamma+2) \neq \emptyset, \beta_{n+1}, \gamma_n, \lambda_n < \gamma\}$, and $g_{n+1} = \min X(\gamma_{n+1}+2)$.

Let T be the ω -stable theory whose models are the structures

$$M = \left(\bigcup_{(\alpha,d)\in Y} M_{\alpha,d}\right) \bigcup \left(\bigcup_{((\alpha,d),(\beta,e))\in Z} M_{\alpha,d;\beta,e}\right) [\bigcup M_{\infty}].$$

M is defined as above, in particular, for every $((\alpha, d), (\beta, e)) \in Z$, $M_{\alpha,d;\beta,e} \equiv gM(\gamma)$ where $(\gamma, g) = \phi((\alpha, d), (\beta, e))$, so that the CB-type of $M_{\alpha,d;\beta,e}$ is:

- (2, g) if either $M_{\alpha,d}$ or $M_{\beta,e}$ has minimal CB-type
- $(\gamma + 2, g)$ otherwise.

We claim X = CB-Spec T. First, let $M \models T$, $|M| = \aleph_0$. We shall prove that the CB-type of M belongs to X; we distinguish again four cases:

- for every $(\alpha, d) \in Y$, $M_{\alpha,d}$ admits minimal CB-type: M has CB-type (3, 1)
- there is one and only one (α, d) ∈ Y such that the CB-type of M_{α,d} is (α, d): if α = 3, M has CB-type (3, d + 1); if α > 3, M has CB-type (α, d); in both cases, the CB-type of M belongs to X
- there is a finite number n ≥ 2 of elements (α, d) ∈ Y such that M_{α,d} has CB-type (α, d): take the corresponding maximal pair ((α, d), (β, e)) in the enumeration of Z, let (γ, g) = φ((α, d), (β, e)), so M has CB-type (γ + 2, g) ∈ X
- there are infinitely many pairs (α, d) ∈ Y such that M_{α,d} has got CB-type (α, d): then M has CB-type (λ, 1).

Conversely it is straightforward that, for every $(\alpha, d) \in X$, there is a model M of T such that $|M| = \aleph_0$ and the CB-type of M is (α, d) . Finally, if the minimal pair of X is $(\alpha_0, d_0) > (3, 1)$, we can proceed as in Theorem 4.6.

Remarks: 1. Looking at Theorems 4.6 and 4.7, notice that similar results can be obtained about finite CB-sets.

2. Lemmas 4.3, 4.4, and disjoint unions with suitable pseudo- \aleph_0 -categorical ω -stable structures can be used to construct new CB-sets, starting from the previous ones. In this way, we can partially cover the $\lambda + 1$, $\lambda + 2$ cases.

3. As a final remark, we note that there are 2^{κ_0} CB-sets, i.e., 2^{κ_0} classes of ω -stable theories of the equivalence relation: $T_1 \sim T_2$ if and only if T_1 and T_2 have got the same CB-spectrum.

REFERENCES

- [1] Baldwin, J. T., " α_T is finite for \aleph_1 -categorical *T*," *Transactions of the American Mathematical Society*, vol. 181 (1973), pp. 37-51.
- [2] Day, G. W., "Superatomic Boolean algebras," *Pacific Journal of Mathematics*, vol. 23 (1967), pp. 479–489.
- [3] Mangani, P. and A. Marcja, "Shelah rank for Boolean algebras and some application to elementary theories," *Algebra Universalis*, vol. 10 (1980), pp. 247-257.
- [4] Marcja, A. and C. Toffalori, "On pseudo-ℵ₀-categorical theories," Zeitschrift für Mathematische Logik und Grundlagender Mathematik, vol. 30 (1984), pp. 533-540.

ω -STABLE THEORIES

- [5] Marcja, A. and C. Toffalori, "On Cantor-Bendixson spectra containing (1, 1)," pp. 331-350 in *Models and Sets*, Lecture Notes in Mathematics 1103, Springer-Verlag, New York, 1984; and *The Journal of Symbolic Logic*, vol. 50 (1985), pp. 611-618.
- [6] Shelah, S., "Classification theory and the number of non-isomorphic models," *Studies in Logic*, vol. 92, North Holland, 1978.

Università Degli Studi Istituto Matematico "Ulisse Dini" 50134 Firenze Italy