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Cantor-Bendixson Spectra of w-Stable Theories

CARLO TOFFALORI*

1 Introduction In the following, we shall mean by theory a first-order,
countable, complete, quantifier-eliminable theory.

The idea of classifying w-stable theories by the analysis of the Boolean
algebras of the definable subsets of their countable models arises from [3] and
is based on the remark that a theory T is w-stable if and only if, for every count-
able model M of T, the Boolean algebra B(M) of the definable subsets of M
is superatomic. In fact, it is well-known that, for every Boolean algebra B, an
ascending chain {7,(B): » ordinal} of ideals of B can be defined in this way:

1. Iy(B) = {0}

2. I;(B) is the ideal of finite elements of B

3. for every ordinal », 1,,;(B) is the preimage in B of I,(B/},(p)) in the

canonical homomorphism of B onto B/j, (g,
4. for every limit ordinal \, I, (B) = |J 1,(B).
y<\

In particular, when B is superatomic, there is an ordinal x such that
I,(B) = B; let u be the least ordinal with this property, then u is a successor
ordinal, and we may define:

ap = predecessor of u = least ordinal » such that I,(B) + B
dp = number of atoms in B/;_ (p).

We have the following:
(i) ap < w; if B is countable
(ii) dpg < w
(iii) for every ordered pair (o, d) with l = o < w;, ] =d < w, thereis a

countable superatomic Boolean algebra B such that («, d) = (g,
dp)

* would like to thank Gregory Cherlin for his valuable contribution of ideas, sugges-
tions, and patience, and the referee for his useful advice.
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(iv) for every countable superatomic Boolean algebras B, B,, B; = B, if
and Only if (O(Bl, dB;) = (aBz, de).
(See [2].)

Then, for every w-stable theory T and for every countable model M of T, we set
(O(M, dM) = (ozB(M), dB(M))’ and we say that:

® «,, is the Cantor-Bendixson rank (CB-rank) of M
¢ d,, is the Cantor-Bendixson degree (CB-degree) of M
® (ayuy, dyg) is the Cantor-Bendixson type (CB-type) of M.

We also define the Cantor-Bendixson spectrum of 7 (CB-Spec T') in the
following way

CB-Spec T = {(apr, dpr): MET, |M| = Ro}.

CB-Spec T can be ordered lexicographically, and has a minimal pair correspond-
ing to the prime model M, of T, and a maximal pair corresponding to the
countable saturated model M of 7. Moreover, aj; coincides with the Morley
rank ar of 7, and dj; coincides with the Morley degree d of T (see [1]). The
analysis of CB-Spec T gives a measure of complexity of 7 for instance, |CB-
Spec T'| = 1 means T is pseudo-8,-categorical [4], CB-Spec T = {(1, 1)} means
T is strongly minimal.

Then we can classify w-stable theories by the following equivalence rela-
tion ~: if Tj, T, are w-stable theories, we set 7} ~ T, if and only if CB- Spec
T, = CB-Spec T,. Every ~-class defines a subset of (w; — {0}) X (w — {0}).
Put for simplicity ] = w; — {0}, w* = w — {0} and, for X C w} X w*, define
X a CB-set (Canton-Bendixson set) if there is an w-stable theory T such that
X = CB-Spec T. Our problem is to study the characterization of CB-sets. Of
course, there are several subsets X of w] X »* which are not CB-sets; some
restrictions are already provided by Lemmas 1.1 and 1.2 below, but stronger
conditions must be satisfied by X when, for instance, (1, 1) € X (see [5]). This
paper is a natural complement of [S]; in fact, our main goal is to provide a lot
of general examples of CB-sets. More precisely, the program of this work is the
following: Section 2 (“the bricks”) is devoted to some basic examples of CB-sets;
in Section 3 (“the project”) we shall explain a simple project for combining these
examples to construct more complicated CB-sets; this “construction” will be
made in Section 4.

These results, together with those of [5], are a first step to a complete clas-
sification of the subsets X C w} X w* which are CB-sets.

Although this general problem seems to be very difficult, we may conjec-
ture that, if the minimal rank of X is « = 3, then some simple conditions should
let X be a CB-set; but if the minimal rank is o < 3, then deeper conditions must
be satisfied by X. However, this will be the matter of some forthcoming notes.

Lemma 1.1 Let X C w} X w* be a CB-set. Then X is countable and admits
a maximal element.

Proof: See the previous remarks.

Lemma 1.2 If (1, d) € CB-Spec T for an w-stable theory T, then dr < d.
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Proof: Let M £ T, | M| = Ry, (aar, dar) = (1, d). By the finite equivalence
relation theorem [6], there is a 0-definable equivalence relation £ on M admit-
ting a finite number of equivalence classes, and, in particular, exactly ds classes
Ey,...,E,; with Morley rank ay. It follows that, for every i =1,...,dr, E; is
an infinite definable subset of M, so B(M)/; ) has at least dy atoms.
Consequently, d = d7.

Remark: It is not generally true that, if («, d) € CB-Spec T for a > 1, then
dr < d. Counterexamples are implicit in the following.

A remark which will be useful is the following:
Lemma 1.3 If (a, d) € w] X 0", {(a, d)} is a CB-set.

Proof: See [4]: it suffices to consider the pseudo-R,-categorical w-stable theory
T such that, for every countable M k 7, (ap, dy) = (a, d).

2 The bricks

2.1 The structures M(a, i) For all « € w}, i € w*, we construct a structure
M («, i), admitting an equivalence relation E, for every v with 1 < » < «, in the
following way:

e M(1, i): i elements, no structure

* M(«a + 1, i): i classes of the new equivalence relation E,, every class iso-
morphic to M («, i)

e M(4, i) for 8 limit: fix a strictly increasing sequence (6,: n € w) such
that li’rln 6, = 6, set
M6, i) =M, i)
E, = (M(3, i))* for every » with §; < » < 8.

Some examples will explain the previous definitions.

ei=1 M(a, 1) 1
o i=2 M(,2) =
M(2,2) E,
M3, 2) S E
E,
M(w, 2) (put © = limn) E (Eq = (M(, 2))?
forn=2)
e i=3 M(,3) ]
M(2, 3) E,
M(3, 3) Ey
E,

M(w, 3) = M(3, 3) (E, = (M(w, 3))* for n = 3).
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2.2 The structures M;(5) (6 limit) For all limit ordinals 8, we consider the
following structure M;(4):

e domain: U M6, n)
new*
® an equivalence relation E, for every » with 1 < » < 6.

Example: M, () = |) M(w, n) = \) M(n, n)

nEw n=1

E,

= E1

Proposition For every limit ordinal 6, M,(6) is w-stable and CB-Spec
Th(M, () = {(1, 1), (5, 1)}.

Proof: 1t is obvious that M, (6) has CB-type (1, 1). Let M be a countable model
of Th(M,(8)), M2 M,(8), a € M — M,(5), then:

® a|g, is infinite,
e for every p, » with 1 < u < » < §, a|g, contains infinitely many distinct
E, -subclasses.

It follows that M has CB type (6, 1).

2.3 The structures Mi (o) For all ordinals «, we consider the following
structure M7 (o):

¢ domain U M(a + 1, n)
n€w*
e equivalence relations E£,(1 < » < «).

Examples:

Mimy = UM2n o g E

new

M2 = M3, O EE—] E

new*

E2 E2
Proposition For every ordinal o, Mf{(«a) is w-stable and CB-Spec

Th(M7(a)) = (1, D} U {(a, n): n €™} U {(a + 1, 1}.

Proof: Obviously M} («) has CB-type (1, 1). Let M be a countable model of
Th(M{(a)), M2 M{(a), a € M — My (), then:
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® a|g, is infinite
e for every u, v such that 1 < u < » < «, a|g, contains infinitely many
disjoint E,-subclasses.
It follows that M has CB-type:

¢ (a, n) if M admits exactly n infinite E-classes
e (a+ 1, 1) if M admits infinitely many infinite E,-classes.

2.4 The structures M, (o + 1) For all ordinals «, add to the previous struc-
ture M7 (o) an automorphism f, as the following examples describe:

we o Eat ==
[ 1 . . T . . . . .
M) ] —— EREN IENCHCN R
] I ——

f=id fi=id fi=id

We have:

Proposition For every ordinal o, M\(a + 1) is w-stable and CB-Spec
Th(Mi(a + 1)) = {(1, 1), (a+ 1, 1)].

Proof: It follows from 2.3 and the definition of f.

We are going now to construct more complicated examples.

2.5 The structure P, First, we consider a structure Py having domain {c; ;:
1 =j=<i< w} and a unary function s such that

e i<,
S(cz,j) - {ci,l ifj — i.

Graphically,
P Q > 7 =
C11 21 (&%) C3g C32 C33

It is easy to see that Th(P,) is strongly minimal. Notice that Py is the prime
model of Th(Py).

2.6 The structures Mij(a + D(a = 1) For every ordinal o = 1, let
M/ (a + 1) be the disjoint union of M7 («) and Py, together with a func-
tion 7: M} (a) = Py such that, forevery 1 <j<n<w, 77! (cn,j) is an E,-class
of M(« + 1, n). The language of this structure will also have predicates Q,
P for M{(a), Py, respectively, and constants for all elements. Note that
M/ (a + 1) is essentially just M;(a + 1) U M (a + 1)/E,, together with a
Py-structure on the quotient set M;(« + 1)/E,.
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Examples:

]

.. o .
. R . .

o« v e « o . o e .
o . o« e . . .

Mi(3)
D
It is easy to see that Th(M{(a + 1)) is w-stable and that M{(a + 1) has

CB-type (1, 2), while, if M is a countable model of Th(M{(« + 1)) and Mz
M/{ (o + 1), then M has CB-type (a + 1, 1). Then we have:

M (2)

Proposition For every a = 1, M{(a + 1) is w-stable and CB-Spec
Th(M{(a+ 1)) = {(1, 2,), (¢ + 1, 1)}.

2.7 The structures M;(5) (6 limit) Let 6 be a limit ordinal. Fix a strictly
increasing sequence (8,: n € w) such that § = lim §,, and let M{(8) be the

U M7 (6, + 1), where we identify the P,’s of ea"ch M/ (6, + 1). The language
n€Ew
of this structure will also have

¢ a predicate P for P,

¢ for every n, a predicate Q, for M; (6,) (the Q-part of M (5, + 1))

e for every n, a function symbol =, for the projection map of M (3,)
onto P,

(for each n, distinguish by symbols E, ,, 1 < » < §,, the equivalence relations
on M*(8,)).

Example: M| (w), w = limn. We have
n

Mi(1) fExca [
™ *
Fo @
[ -] (o]

M (2) e

L)
Py

It is easy to see:

Proposition For every limit ordinal 6, M{(8) is w-stable and CB-Spec
Th(M{ () = {(2, 1), (6, 1)}.

In fact, CB-type M| () = (2, 1), while, if M is a countable model of
Th(M/{ (6)) and Mz M/ (8), then M has CB-type (5, 1).
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2.8 The structures M(c) (o = 1) Finally, let M («) be the structure whose
domain is Py U Ppy U Q(a) where Py, Py, = Py and two projection maps :
QO(a) = Py, m2: Q(a) = Py, are given such that, when c¢!; € Py and ¢ x €
Poz, then

il (cl)) N ayt(ch k) = M(a, min(i, h)).
The language for this structure will have

e relation symbols Py, P,, O for Py, Py, Q(«), respectively
e function symbols for x;, 7,
e constants for all the elements of M («),

together with the symbols for Py; (j = 1, 2, see 2.5) and for the equivalence
relations E, (1 = v < ).

Graphically
Q(a)
2 1 T2
ChkT|m—+~—~—~—~ — |
|
!
I
y ™1
|
Py, + Py,
cij

Of course M («) is the prime model of Th(M («)). Furthermore it is straight-
forward to see that, for any countable model M of Th(M («a)),

e if Py, = PM or Py, = PY (in particular, if M = M («)), then M has CB-
type (2, 1),
e if Py # PM and Py, # P}, then M has CB-type (a + 2, 1).

Then we have

Proposition For every ordinal o = 1, M(«a) is w-stable and CB-Spec
Th(M(a)) = {(2, 1), (a +2, 1)}.

We conclude Section 2 recalling that the following are CB-sets (see 2.1-3):

e {(1, 1), («, 1)} for every ordinal o = 1
e {(1, VU {(a, n): n € w*} U {(a + 1, 1)} for every ordinal o = 1.

3 The project We propose here a simple project to construct new CB-sets.
Let {T;: i € I} be a countable family of w-stable theories. We define a theory
T= |J 7; in this way:
el
e I(T) = U L(T;)) U {U;: i € I} where, for every i € I, U, is a l-ary
i€l
relation symbol .
e ME Tif and only if M = |J M; U M,, where M; = U} is a model
iel .
of T; for every i € I, while M, = @ if I is finite, M, = M — |J M,.
i€l
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T is w-stable. Furthermore, CB-Spec T can be easily determined because, for
every countable model M of 7, the algebra B(M) is isomorphic to the weak
direct product of the Boolean algebras B(M;) (i € I),

B(M)=w X B(M,)
il

(see [2]).
As an application, suppose [ finite, I = {1,...,d}, T} =...= T,. Con-
sider the theory T = U T; defined as above, add to L(T') new l-ary func-

l<i=d

tional symbols 4; ; for 1 <, j < d and in the enlarged language get a new the-
ory T’ adding to T axioms stating that M is a model of 7" if and only if M =

U M;, where M,,...,M,;F T, and, for every i, j with 1 < i, j < d, h; ;is an
l<i=d
isomorphism of M; onto M;, h;; = id, h;; = h,-,‘jl, hij-hi,i = hg ;. (We set for
simplicity in this case M = dM,.) T’ is an w-stable theory. Looking at the
examples in Section 1, we put:

* My(a) = dM,(a): so CB-Spec Th(My()) = {(1, d), (a, d)}

* Mj(a+ 1) =dM{(a+ 1): CB-Spec Th(M;(a + 1)) = {(1, 2d), (o +
1, d)}

o Mj;(6) = dM/{(6) [6 a limit ordinal]: CB-Spec Th(M;(5)) = {(2, d),
(9, d)}

* Mj(a) = dMs(a): so, CB-Spec Th(Mj(a)) = {(1, d)} U {(«, nd):
newluU{(a+1,d).

We will also denote by M} («) a countable w-stable pseudo-R,-categorical
structure whose theory has got CB spectrum {(«, d)} (see Lemma 1.3).

4 Some constructions Recall w* = w — {0}, w] = w; — {0}. If X C w] X
w*, we shall set:

* X(a) = {d € w*: (a, d) € X} for every o € w}
* X*={u€ owl: X(a) # D).

We shall also use the following abbreviation: for «;, o ordinals o; T « if and
only if {a;: i € N} is a strictly increasing sequence such that limo; = a.
1

Our main results are Theorems 4-6,7 and concern the sets X such that min
X*=3.

We show now some results related to the case: X (2) # &.
Theorem 4.1 Let X C w} X w* be an infinite set such that:
@ifaeX*,a=2
(b) for every a € w}, | X(a)| =1
©) if o; T a and o; € X™ for every i € N, then (o, 1) € X.

Then X is a CB-set.

Example 1: For every A such that w < A\ < wy, {(a, 1): 2 < a < A} is a CB-set.
Example 2: {(n, n): n € w,n =2} U {(w, 1)} is a CB-set.

Proof: Letting (ag, dy) be the minimal element of X, we define a partition
X = X, U X, U X, of X in the following way:
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Xo = {(a0, do)}

Xi{={a€EX"PEX", <] alN X" =0T}, X;={(a,d) €
X: o € X7}

e Xj={a€X" 3, €X], o T}, X = {(a, 1): ¢ € X3}

Weset M(X;) = ) My(a), and
(a,d)EX]
M(X,) if (g, do= (2, 1)
M(X) =4 M(X;) UMg,_1(2) ifag=2,dy>1
M(X) UM (o)  if ag>2.

M (X) is w-stable. We claim that CB-Spec Th(M (X)) = X. For simplicity, we
assume (o, dp) = (2, 1). The proof can be easily modified to cover the
remaining cases. Notice that the pseudo-¥,-categorical w-stable structure
M}, _1(2) [Mj(a)] lets (g, dp) be the minimal pair of CB-Spec
Th(M (X)). First we show that, for every (&, d) € X, there is M = M(X),
|M| = Ry such that M has got CB-type (&, d). Notice that we may suppose

M= J M, (UM,

(ad)EX,
where M, ;= My(a), | M, 4| = R, for every (a, d) € X,. So we have:

e (a,d) = (2, 1): for every (a, d) € X, assume that the CB-type of
M, qis (1, d) so M has got CB-type (2, 1)

* (&, d) € X,: take the following choice of M, 4: M, 4 has CB-type («,
d) when («, d) = (@&, d), (1, d) otherwise; recall & > g = 2, so the
CB-type of M is (&, d)

¢ (&, d) €EX,,50d=1:let {o;: i €N} be a sequence of elements in X7
such that a; T «, assume M, , has CB-type («, d) when thereis i€ N
such that o = «;, (1, d) otherwise. In this case, the CB-type of M is
(a, 1).

Conversely, let M = M(X), |[M| = Ry, we will show that the CB-type of M
belongs to X. Define Y = {a € X{: M,, ; has CB-rank o}. We can distinguish
the following cases:

* Y = J; then M has CB-type (2, 1)

e Y # (J, there is max Y = a: let X(a) = d, then M has CB-type («,
d) € X,

e Y # J, but admits no maximal element: let o = sup Y, then o € X3,
(a, 1) € X,, and we see («, 1) is the CB-type of M.

The second step is to consider the finite disjoint unions of the theories given in
Theorem 4.1. So we get:

Theorem 4.2 Let X C w} X w* be an infinite set, (ay, dy) be the minimal
element of X, and N be a positive integer. Suppose:

@ ifaeX*,a=2

(b) X(ag) = {dy}, wheredy= N if ag =2
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©) if a € X* — {«y]}, there are a positive integer N, < N, and dff . ,dy, €
X () (not necessarily distinct) such that X (o) = {E €di ¢=0,1, E €= }
) if ; T o and a; € X* for every i € N, then N, = N, df =.. .—dN 1.

Then, X is a CB-set.

Example 3: {(2, n)} U {(a, 1),...,(a, n): 3 <a <N} is a CB-set for every A
such that w = A < w;.

Proof: Notice that, for every o € 0], |X(a)] < 2N, As above, we set

XO = {(aO, d())}
Xf={e€EX"B<a,BEX]B alNX*=0)
Xo={a€EX*: 30, €E X", a; T a}

so that X™* = X§ U X| U X3. We define now:

° .Y(), )?la' . !YN—l C O)T X w*
e for every @ € X*, an integer P(«) such that 0 < P(a) < N.

We proceed in the following way:

* a=0ay=2:Plag) =0; 2,dp—N+1) € Xy, (2,1) €X;ifj>0
L4 0l=a0>22P(0(0) =0, (Ol(),do)eyo, (2, 1)6)?,1fj>0
acEXl:letBE X", B<a,]B, a[N X* =, and set P(a) = P(B) +
l_(mOdN); (a’ dix)_e XP_(a)s (aa déx) € XP(a)+Ia-'-’(a’ dg/a) €
Xp(a)+N,—1 (Weput X, = X, whenr=s (modN))

* ¢ € X3 P(a)—O(a,l)eXforeveryJ=01 LGN-—-1

e let X,...,Xn_; contain no more elements.

Notice that, for every j=0, 1,...,N—1, )71 satisfies tﬂe hypotheses of The-
orem 4.1, so there is an w-stable structure M; such that X; = CB-Spec Th(M;).
Let M = My U...U My_,, then M is w-stable and we claim X = CB-Spec
Th(M).

i. X C CB Spec Th(M).

It suffices to show that, for every («a, d) € X, there is M’ = |M | = Ro
such that M’ has got CB-type («, d). We notice that M’ = M§ U. ..U Mj_,
where M} = M;, |M/| = R, (so that the CB-type of M/ belongs to X) for
everyj=0, ,...,N—1.

* (a,d) = (ag, dy): take M having CB-type (2, dy — N+ 1) if ap = 2,
(g, dp) if a9 > 2, M} having CB-type (2,1) if j > 0, so M" has CB-type
(ag, dp) N,

s o€ Xf,d= Eeid;": let M} have CB-type («a, d*) if j = P(a) + i —

i=1
I and ¢; = 1, M/ have minimal CB-type otherwise, then M’ has CB-type
(a, d)
® o € X7 (so that P(a) = 0): assume M/ has CB-type («, 1) if 0 <j <
d, (2,1) if d =j < N, then M’ has CB-type («, d).
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ii. Conversely, we show that, if M’ = M and |M’| = Ry, the CB-type of M’
belongs to X. We have already seen that, if the CB-type of M/ is the mini-
mal one for every j, then (aq, dy) is the CB-type of M’. If this is not the
case, let o be the maximal CB-rank of M;’s (0 < j < N), and put for 1 <
i< N,

_ |1 if (a, df¥) is the CB-type of Mp(4)+i-15
~ |0 otherwise;

Not
then M’ has got CB-type (a, Yy eid;"> € X.
izl

Remark: Of course, we can modify the previous proofs to get finite CB-sets. For
instance, we have:

e ifn, dy, dy,...,d, E 0", ag, ay,...,a, € w], <1 Ed) (o, dp) <

(aj, dy), 1 < a; <...< ay, then {(«j, dj): 0 < j < n} is a CB-set
e let n € w*, XCw1><w X* = {ag, a1,...,0,}), Where 1 < ag < oy,
1 <o) <...< ay if ay < a;, suppose that, for every i = 1, there are

di,..., d};/i € w* —not necessarily distinct —such that X (¢;) = [ E € d’

Nj
=0,1, E € > 0}, while X (ag) = {(«g, dy)} where dy = E E d

Jj= i=1 j=1
ifag=1; 1f ag = oy, suppose that, for every i = 2, there ared!,...,
N;

dj, € »* such that X (o) —[Zej di: e =0, 1, Ee, > O} while,
lookmg at X («;), there are dy, di,.. le € w* such that X («;) =
{do + E edlie =0, 1}; then X is a CB-set.

j=1

(The previous results can be obtained as corollaries of the following Lemmas
4.3 and 4.4.)

Example 4: For every A such that 2 < A< w, {(a, 1): 2 < o < N} is a CB-set.

Example 5: {(1, n(a — 1))} U {(», 1),...,(v, n): 2 <» <} is a CB-set for every
a such that 2 = a < w.

Lemma 4.3 Let Xy, ...,X, be CB-sets, («j, d;) = min X;, X (a;) = (d;},
Xj/ =ij - [(aj, dl)} fO" 1 <j<n. Put Qo = max[al,. . .,Oln} do = E dl

aj=oag
and suppose ag < (X{)* <...< (X;)*. Then X{ U...U X; U {(«ag, do)} is
a CB-set.

Proof: Let M; be a countable w-stable structure such that X; = CB-Spec
Th(M;) (1<j<n);put M= |J M, then it is easy to deduce that CB-Spec

l<j=n
Th(M) =X{ U...U X, U {(ag, dp)}. In a similar way, we can deduce that,
for every (o, d) € w] X w* such that (o, dp) < (a, d) and o < (X{)*, X{
U...U X, U {(«a, d)} is a CB-set.
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Lemma 4.4 Let Xy,...,X,; ag, &1,...,0,; do, di,...,d, be as above.
Suppose now oy < (X{)* =...< (X)) and define, for 1 =i <j=<n,

B(Xla /\,]) = {(aa_z 'Ekdk>: a e n (X/é)*’

i<k=<j isks<j

dkEXk(Ol),Gk=0, 1, E EkZZ}.

isk<j

Then X =X{ U...U X, U < U s, X,-)) U {(ag, do)} is a CB-set.
1=i<j=n

Proof: Define M;(1 < j < n), M as above; let M' = M, |[M’| = Ry, so that
M’ = (J Mj where Mj = M;, |M/| = Ro. If M/ has CB-type («;, d;) for

l<j=<n

every j, M’ has CB-type (ag, dy). Otherwise, let j be the maximal index such
that M; has CB-type (o, d) € X;: if, for every i < j, the CB-rank of M/ is less
than «, M’ has CB-type («a, d); if there is i < j such that M, has CB-rank «

(and i is the minimal index with this property), M’ has CB-type (a, E ekdk>,
i<ksj

where

_J1 if the CB-rank of M} is «
% =10 otherwise

SO (a, E Ekdk> € 6(X;, X;). Conversely, every element of X is the CB-type
i<k=j

of a suitable structure M’ = M, |M'| = R,.
Looking now at the CB-sets X such that, for some o € X*, X () is infi-
nite, we prove the following.

Theorem 4.5 Let X C w] X w*, X* infinite, and put oy = min X*. Suppose:

@ ifaeX*,a=2

(b) for every o € X*, either X (a) = o* or X(a) = {1}

(c) when X(a) = o*, X(a + 1) # T

@ ifFX(a+)={1}and o + 1 > oy, X(a) = v*

() ifa; € X* foreveryi€e Nand a; 1 a, « € X*

) if X(a) = {1} and o is a limit ordinal and o > «y, there is a sequence
{o; € X*: i € N} such that o; 1 «.

Then X is a CB-set.

Example 6: {(o, d):2<a <N d€w*}JU{\ 1} forw=\N<uw.
Example 7: {(2n,d):n,d€ w*} U {2n+ 1, 1): n € 0*} U {(v, 1)}.
Example 8: {(2n, 1):ne€ew*} U {2n+ 1,d): n,d € o*} U {(v, 1)}].

Proof: Weput X§ = (g}, X*={a EX*: X(a) =*}, XT =X*U (X* +
). Ifa€e X*— (X5 UXY), then X (o) = {1}, and « is a limit ordinal, so that
there is a sequence {o;: i € N} C X™ such that o; T a. We set X5 = {a €
X*— (XgUX{):3ap < o) < a < ... all in X7 such that o; T «}, notice
that X* = X3 U X7 U X3, and X7, X™ are infinite.



»-STABLE THEORIES 271

Case 1. X (ag) = {1}. We first suppose ag = 2, and we define
M= (J Mi(a)

aeX*
(notice that ag & X*). Then, Th(M) is w-stable, and we claim X = CB-Spec
Th(M). Recall that, for every countable model M’ of Th(M),
M = (J M, (UM.)
aeX™
where |M,| = 8y, M, = M;(a) for every a. We first show X C CB-Spec
Th(M).

® (2, 1) is the CB-type of M’ if M, has CB-type (1, 1) for every « € X*

e if « € X*, (a, n) is the CB-type of M’ when, for every 8 € X*, Mg has
CB-type (a, n) for 8 = «, (1, 1) otherwise

e if o € X7 — X*, there exists » € X* such that o = » + 1: suppose M,
has CB-type (» + 1, 1), while Mgz has CB-type (1, 1) for every 8 €
X* — {»}: then M’ has CB-type (c, 1)

e if @ € X7, there is a sequence {o; € X7: i € N} such that o; T a; we
can suppose o; € X™ for every i; for every 3 € X*, let M have CB-type
(a;, 1) if there is i € N such that 8 = «;, (1, 1) otherwise; we get a
model M’ of Th(M), such that the CB-type of M’ is («, 1).

Conversely, CB-Spec Th(M) C X:let M’ =M, |M'| =Ry, put Y = {o € X*:
the CB-rank of M, is higher than 1}. We distinguish the following cases:

e Y =(: then M’ has CB-type (2, 1) € X

e Y # (J, there exists « = max Y: in this case, if M, has CB-type («, n)
but o = » + 1 for a suitable » € X* and M, has CB-type (v + 1, 1), M’
has CB-type («a, n + 1) € X; otherwise the CB-type of M’ coincides with
the CB-type of M, in particular belongs to X

e Y # (J, Y admits no maximal element: let o = sup Y, then M’ has CB-
type («, 1). Furthermore there is a sequence {«;: i € N} C Y such that
o; 1o, s0 (a, 1) € X.

When «q > 2, we consider M U M| («q) instead of M.

Case 2. X (o) = w*. Follow the same procedure as above, recalling that oy €
X in this case.

A more general version of Theorem 4.5 can be given starting from the structure
M} (a)(d € «*) instead of M7 («).

Remark: We have also that, if X C w] X «* and X* = {1, o, a; + 1: 1 <
i=m)wherel <a; <...<ay, X(ao) = {(aj, n):n€w*}forl =i=<m,
X(aj+1)={(a;+ 1, 1)) when o; + | < jy; or i = m, X(1) = {m}, then X
is a CB-set. In fact, we can apply Lemma 4.4 when («g, dy) = (1, m) and, for
Il=i=s=m X;= {1, D}U {(a;, n): n € w*} U {(a; + 1, 1)}, so that, for 1 <
i<m,

g foa1>a;+1

0(Xi, Xin) = { {(atiz1, n): n =2} C X;4, otherwise,
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while, if j > i+ 1,
(X, X)) = 2.

Notice that we can assume the minimal element of X is (g, dy) for every (o,
dy) such that (1, m) < (a9, dp) < (ay, 1).

Example 9: {(o, d):2<=a <A, d€ w*} U {(\ 1)} (for 2 <\ < w) is a CB-set.

We are going now to the main results of this paper: we follow a more compli-
cated line of thought to construct more complicated CB-sets, assuming in par-
ticular Examples 2.5-8 as basic structures.

Theorem 4.6 Let X C w] X w* with maximal element (N + 3, 1) and such
that:

@ X\N+2)=0o"

M) faeE X", a=3.

Then, X is a CB-set.

Proof: We may limit our examination to the case A > 1. First we assume that
(3, 1) is the minimal element of X. We set Y’ = X — {(\ + 3, 1)} and we define
Y C o} X w* in the following way: Y* — {3} = (Y')* — {3}, Y(») = Y'(») if
ve (Y)Y — {3}, Y(3)={d—-1:.d€ Y’'(3), d> 1}. Notice that (a) implies
Y is infinite. We consider now the theory 7 whose models are the following
structures:

M = ( U le,d) U ( U Ma,d;B,e) (UMoo)
(a,d)EY (a,d),(Be)EY
(a,d)<(B.e)
where M, g = Mj(a), M, 4.5 = M(MN) and, for every («, d), (8, e) € Y such
that («, d) < (B, e), two isomorphisms

hog,la)';ﬁ,e: PMad P{Wa-d;e,e
ho(fyzt)i;ﬁ,e: PMs.e _, Pg’la-d;ﬁ,e

are given. (Remember that M, 4, = M; U...U M, where M| =...= M,,
M,,...,M;= M/ (a), so we mean by PM«.d PMi for example; similarly for
PMs.e), T is w-stable; furthermore, if M E T and |M| = Ry, then, for every
(a, d), (B,e) €Y, (a,d) < (B, e), the CB-type of M, 4.4, is

® (2,1) when either M, ; or Mg . has minimal CB-type
* (N + 2, 1) otherwise.

We claim X = CB-Spec T. First suppose M k T, | M| = Ry, we prove that the
CB-type of M belongs to X. We can distinguish the following cases:

e for every (a, d) € Y, M, ; admits minimal CB-type: M has CB-type
(3,1

¢ there is one and only one element («, d) € Y such that the CB-type of
M, 4is (a, d): if « =3, M has CB-type (3, d + 1); if o > 3, M has
CB-type (a, d); in both cases, the CB-type of M belongs to X

e there is a finite number n = 2 of elements («, d) € Y such that M, 4
has CB-type («, d): M has CB-rank \ + 2, and its CB-degree equals the



«-STABLE THEORIES 273

sum between E i and, in case, all the CB-degrees d corresponding
l<i<n

to the CB-rank o« = \ + 2
e there are infinitely many pairs («, d) € Y such that M, , has got CB-
type (o, d): then M has CB-type (A + 3, 1).

Conversely, it is straightforward to see that, for every (a, d) € X, thereis a
countable model M of T such that the CB-type of M is («, d).

Let now, more generally, (aq, dy) be the minimal element of X, («q,
dy) > (3, 1).

* a4 > 3: we define Xy C w] X w* in the following way: Xg§ — {ag, 3} =
X* — {ag, 3}; Xo(ap) = {d —dp: d € X(ap), d > dp}, Xo(3) = {1},
Xo(v) =X (v) if v€ X* — {ap). Let Ty be the w-stable theory such that
Xy = CB-Spec Ty, choose a model M, of T, and consider the theory T
of My U MJ (a): T is w-stable, and CB-Spec T = X.

® oy =3, dy > 1: we define Xy C w] X »* in the following way: X§ =
X*, Xo(3)={d—dy+1:d € X(3)}, Xo(v) =X (») if > 3; let T be
the w-stable theory whose CB-spectrum is Xy, choose M, E T, and
consider the theory T of My U Mj,_, (3): T is w-stable and CB-Spec
T=X.

Remark: A similar proof shows the following is a CB-set:
X C w} X w*, X admits a maximal element (A + 3, 1), and

a. X()\+2)={ Yy k:new*}

1<k=<n
b. {(a, d) € X: a < N\ + 2} is infinite
c. ifaeX* aa=3.

Similarly we have:

Theorem 4.7 Let X C w} X w* admit as maximal element (\, 1) where \ is
a limit ordinal and:

(@) {o: X(a+2) # D} is cofinal in \

(b) for ever « € X*, a = 3.

Then X is a CB-set.

Proof: First we assume that (3, 1) is the minimal element of X. We set Y’ =
X — {(\, 1)} and we define Y C w] X w* as above: Y™ — {3} = (Y")* — (3],
Y)=Y(»)ifre (YY) —-{3},Y3)={d—-1:de Y'(3),d> 1}. Notice
that (a) implies Y is infinite. However, Z = {((«, d), (B, €)) € Y?: (a, d) <
(B, e)} is a countable set, so we give some enumeration {((«,, d,,), (B, €)):
n € N} to Z, and we take at the same time a sequence {A,: n € N} of ordinals
such that A,, T \. We consider the following function ¢ having domain Z:

* ¢((o, do)s (Bo, €0)) = (v0, &) where vo = min{y: X(y +2) # G,
Bo < v} and gy = min X (yo + 2)

* d((ans1> ns1)s (Brtis €nst1)) = (Yna1s &n+1), Where vy, = min{y:
X(y+2)# g, Br+1s Yns AN <7l and n1 = Min X (yp41 + 2).
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Let T be the w-stable theory whose models are the structures

M:( U Ma,d)U( U Ma,d;ﬁ,e>[UM,,,].
(a,d)EY ((a,d),(Be))EZ

M is defined as above, in particular, for every ((a, d), (B8, e)) € Z, My 4.5 =
gM () where (v, g) = ¢((a, d), (B, e)), so that the CB-type of M,, 4.4, is:

* (2, g) if either M,, 4 or Mg . has minimal CB-type
* (y + 2, g) otherwise.

We claim X = CB-Spec T. First, let M k T, |M| = Ry. We shall prove that the
CB-type of M belongs to X; we distinguish again four cases:

e for every (o, d) € Y, M, ; admits minimal CB-type: M has CB-type
G 1

e there is one and only one («, d) € Y such that the CB-type of M,, , is
(a, d): if « = 3, M has CB-type (3, d + 1); if o > 3, M has CB-type
(a, d); in both cases, the CB-type of M belongs to X

o there is a finite number n = 2 of elements («, d) € Y such that M,, 4
has CB-type («a, d): take the corresponding maximal pair ((«, d), (8,
e)) in the enumeration of Z, let (v, g) = ¢ (o, d), (B, e)), so M has CB-
type (y +2,8) €X

¢ there are infinitely many pairs (a, d) € Y such that M,, ; has got CB-
type («, d): then M has CB-type (A, 1).

Conversely it is straightforward that, for every («, d) € X, there is a model M
of T such that |M| = 8, and the CB-type of M is («, d). Finally, if the mini-
mal pair of X is (ag, do) > (3, 1), we can proceed as in Theorem 4.6.

Remarks: 1. Looking at Theorems 4.6 and 4.7, notice that similar results can
be obtained about finite CB-sets.

2. Lemmas 4.3, 4.4, and disjoint unions with suitable pseudo-&,-categor-
ical w-stable structures can be used to construct new CB-sets, starting from the
previous ones. In this way, we can partially cover the A + 1, A + 2 cases.

3. As a final remark, we note that there are 2¥0 CB-sets, i.e., 250 classes
of w-stable theories of the equivalence relation: 7; ~ 7, if and only if 7; and
T, have got the same CB-spectrum.
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