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Invertible Definitions

TIMOTHY WILLIAMSON*

Introduction A concept of informational equivalence between relations is
explicated to generalize some suggestions by Geach. It is shown that two rela-
tions are informationally equivalent if and only if each can be defined in terms
of the other without the use of quantifiers. It is shown that there is a general
method for listing the ./-place relations informationally equivalent to an arbitrary
given /-place relation if and only if i<j. The equivalence classes of the relation
of informational equivalence are characterized as the invariants of the group of
invertible quantifier-free definitions, for / =j.

Quantifier-free definition is contrasted with general first-order definition
by means of an example of two first-order interdefinable relations which are not
interdefined by any pair of mutually inverse first-order definitions.

1 Geach ([3], pp. xi-xii, 25-26, 33, 52) has suggested that one property or rela-
tion may be so closely connected to another that to have the concept of either
is to have the concept of both. For example, to know what is red is to know
what is not red, and to know what is to the left of what is to know what is to
the right o/what. If a relation is the same as its contradictory and its converse
in this respect, it is presumably also, by transitivity, the same as the contradictory
of its converse in the same respect. Since Geach claims to refute some theories
of concept acquisition and possession on the basis of their neglect of this equiva-
lence relation, a formal characterization of it would seem desirable, so that a
general principle covering his remarks can be stated and tested.

Geach's suggestion is plausible if concepts are thought of as discriminative
capacities. For vividness, imagine an ω-sequence of labeled objects to which we
have no direct access, but about which we can gather information via a robot
(the discriminative capacity). Suppose that we can use the robot to discover
whether the object with a given label is red (when the instruction 'Red' is input,
followed by the label, the robot moves along the line until it finds the object with

*I thank the anonymous referee for helpful comments on an earlier version.
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that label, and on its return flashes a light if and only if that object was red):
then ipso facto we can use the robot to discover whether the object with a given
label is not red (similarly with 'red' and 'not red' reversed). 'Red' and 'not red'
correspond to the same discriminative capacity. Again, suppose that for any
labels a and b we can use the robot to discover whether the object labeled a is
to the left of the object labeled b, by inputting the instruction 'Left', followed
by a followed by b: then for any labels a and b we can use the robot to discover
whether the object labeled a is to the right of the object labeled 6, by inputting
the instruction 'Left', followed by b followed by a (similarly with 'left' and 'right'
reversed). 'Left' and 'right' correspond to the same discriminative capacity.

To generalize these examples, we need to define a relation —call it infor-
mational equivalence—which applies to pairs of converses and contradictories,
such that a philosopher (whom I shall call "Geach") might plausibly claim that
if R is informationally equivalent to S then to have the concept of R is to have
the concept of S. Here are some desiderata for the definition of informational
equivalence1:

(i) Geach's suggestion would become unnecessarily tendentious if we made
first-order interdefinability entail informational equivalence. For consider the
first-order interdefinable predicates Fx and Fx = (lyFy & 3y-ιFy). In the exam-
ple above, let the domain of quantification be the set of all objects in the ω-
sequence, F be true of all and only the red ones and "Red" be the robot's only
instruction. Suppose that, unknown to us, all the objects are red. Then, by
means of the robot, we shall discover that 3yFy is true, but we shall never dis-
cover that 3y-ιFy is false, so we shall never know the extension of Fx s (3yFy
& 3y-ιFy). Since we can use the robot to discover the extension of one prop-
erty but not of the other in a finite way, it is not arbitrary to rule that they are
not informationally equivalent. Moreover, even for a finite domain, we could
know the extension of one over a proper subset of the domain without know-
ing the extension of the other. (For a generalization of (i), cf. (iii).)

(ii) However, Geach would lose one of his examples if we made the infor-
mational equivalence of two /-place relations entail that the extension of each
could be recovered from the extension of the other over every set of /-tuples. For
consider the singleton set {(x,y)}. If one is told only that (x,y) is not in the
extension of to the left of, one cannot tell whether it is in the extension of to
the right of (x may be on top of y). What we can make the informational
equivalence of two /-place relations entail is that for every set of individuals, the
extension of each relation could be recovered from the extension of the other
over every set of /-tuples of members of that set. For example, if one is told the
extension of to the left o/over a set {(x,x), (x,y), (y,x), (y,y)}, one can
deduce the extension of to the right o/over that set.

(iii) Consider the predicates Fx and Fx = P, where P is a closed formula
whose truth value is contingent. Although in any given world Fx = P is exten-
sionally equivalent either to -*Fx or to Fx itself, we should not treat Fx and
Fx s p as informationally equivalent, since one cannot tell how to determine the
extension of one from that of the other if one does not happen to know the truth
value of P.

(iv) We should allow an /-place relation to be informationally equivalent
to ay-place relation even when / Φj. For example, suppose that Rxy is defined
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by Gx & Gy9 so that Gx is logically equivalent to Rxx. Then, for any set, if we
knew the extension of Gx over that set we could deduce the extension of Rxy
over all ordered pairs of members of that set and vice versa.

We shall treat an /-place relation as a function from possible worlds to sets
of /-tuples (a property is a one-place relation). Some relations in an intuitive
sense (such as serial ordering) may not naturally correspond to a particular set
of /-tuples in given circumstances; however, since possible worlds figure in the
mathematics below only as indices, they can be regarded as including arbitrary
stipulations for the extensions of such indeterminate relations (different stipu-
lations will give different worlds). In any case, the results below can be inter-
preted in a more syntactic fashion, so that they are not as different as they look
from the work of Beth and his successors on definability (see [4]). Think of the
possible worlds as the models of a first-order theory T. Given an ordering of the
variables of the language, each open formula in which at most the first / vari-
ables are free determines a function from models to sets of /-tuples in the obvi-
ous way. Two open formulas determine the same function if and only if they
are satisfied by the same sequences in all models of Γ, hence if and only if they
are provably equivalent in 7; such relations can thus be thought of as the ele-
ments of a Lindenbaum algebra (cf. [2]). Since the definitions with which we
shall be concerned are first-order, for each result below a corresponding result
can be stated in syntactic terms.

Now we can define a sense in which R and G from desideratum (iv) nec-
essarily determine each other's extensions as follows. For any n9 suppose that
the sequences (xθ9 Λ - i ) and (y0,... 9yn-\) are alike with respect to R9 in
the sense that (Xi,Xj) is in the extension of R when and only when (y^yj) is,
for /, j < n; then (xθ9... ,xn-\) and (y0,...,yn-\) are alike with respect to G,
in the sense that xt is in the extension of G when and only when yt is, for / <
n. In virtue of this entailment we can say that R determines G. Similarly, the
converse entailment holds, and in virtue of it we can say that G determines R.
This definition can be generalized; if we then say that two relations are infor-
mationally equivalent if and only if each determines the other, it turns out that
we meet all four desiderata. Note that, in order to meet desideratum (iii), we
allow xθ9... 9xn-\ to be drawn from one world and y0,... 9yn-\ from another:
that is, the informational equivalence of two relations requires that the way in
which one determines the other to be invariant over possible worlds, for the
receiver of information may not know which possible world it is in. Before we
give the general definition we require some technical apparatus.

P(X) is the power set of X. Card (A") is the cardinality of X. X x Y is the
Cartesian product of X and Y. Yx is the set of functions from X to Y.i and j
are finite ordinals, identified with natural numbers (thus 2 = {0,1}, etc.). The
variables w9w'9 etc., range over a class whose elements are called the possible
worlds. For each, w, Dw is a set whose elements are called the individuals in w.
An /-place relation R is treated as a function taking each w to a subset Rw of
Dι

w. et is the identity function on / and 1/ is the identity function on the class of
all /-place relations. If/and g are functions, fg is g followed by/, dom(f) is
the domain of/and ran(f) its range. The variable /can range over all sets, but
in cases of interest is a finite ordinal.

If R and S are /- and ./-place relations respectively, R determines S iff:
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v/vwvw' vx e Divγ e D!

w,
({f:feIi&xfeRw} = {f:feIi&yfeRw>}
- {/: / E V & xf GSW} = {/: / E V & y/E Sw>}).

Determination is obviously reflexive and transitive. Since {/: / E V & xf E
Dl-Rw} = /'' - {/: / E /'' & ΛΓ/E i?w}, i? determines -./?. Since {/: / E / 2 &
xfG Rw} = {g:geI2&3he {/: / E I2 & * / E Λw}(*(0) = Λ(l) & £(1) =
Λ(0))}, R determines its converse R. Thus the definition captures Geach's
examples.

The proposal is to generalize Geach's original suggestion to all pairs of rela-
tions which are informationally equivalent in the sense of determining each
other. We shall now show that one relation determines another if and only if
the latter can be defined in terms of the former by use only of variables (that
is, the permutation and identification of arguments) and truth functions. Hence
the proposed generalization is in effect to all pairs of relations which are first-
order inter definable without the use of quantifiers. Although desideratum (i) is
thereby met, Geach's suggestion may seem to be threatened when it is thus gener-
alized. In order to know what it is for x to love y, does one really need to know
what it is for x to love y if and only if z does not love itself? The condition
hardly seems to be necessary if one thinks of the subject's ability to manifest
understanding verbally: but Geach's original examples are already under threat
at this level, since it seems that a child could master the predicate 'is red' with-
out having mastered a sign for negation. Geach's claim is best defended for dis-
criminative capacities, at which level the proposed generalization is not obviously
wrong. We commend this issue to the reader, and turn to the proof that mutual
determination and quantifier-free inter definability are equivalent.

We now require a formal representation of definitions which use only truth
functions and variables. Let A Q P(j'). Define a function MΛ taking subsets of
Dι

w to subsets of DJ

W, for all w, by:

MA(X) = {x: x e Di & {f: fef & xfe X} G A}.

Note that MA is implicitly relativized to / and j ; in practice this causes no con-
fusion. A function Mtaking /-place relations toy-place relations is an i,j-sat-
isfaction function iff for some A <Ξ P(jι)> for all R and w M(R)W = MA(RW).
If R is /-place, think of each/Ey' as taking variables from iMA(R)x0.. .Xj-\'
to give/?(/) = 'Rx/(θ).. .#/(/_i/; think of each Xζj1 as the conjunction c(X)
of p(f) for each/E X and -•/?(/) for e a c h / E / - X; think of each A c p ( / )
as the disjunction of c(X) for each X G A. Thus A codes a definition of
MA(RW) which uses only truth functions and variables, in disjunctive normal
form. Conversely, any definition which uses only truth functions and variables
can be coded in this way. For example, A = {X: XQ iι & e7 ^ X) codes nega-
tion on /-place relations and if a E 22 is given by a(0) = 1, α(l) = 0, A = {X:
X <Ξ 22 & a E X} codes conversion.

We now show that mutual determination and interdefinability by satisfac-
tion functions are equivalent.

Proposition 1 IfR is i-place and Sj-place, R determines S iff for some ij-
satisfaction function M, M(R) = S.
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Proof: Left to right: Define a subset of P(jι) by:

A = {X: 3w3xeSw(X= {f:fef&xfeRw})}.

If xeSwthen {ffef&xfeRy,} eΛ, soxeMA(Rw). Thus SW^MA(RW).
Conversely, let x G MA(RW), so for some w' and y G Sw>

{f:feji&xfeRw} = {f:feji&yfeRw,}.

Hence by definition of 'R determines 5' for / = y,

{f:fejJ&xfeSw} = {f:fejJ&yfeSw,}.

Thus xβj G Sw iff yβj G Sw>\ but yej(=y) G SW' so #(=xey) G 5W so MΆ(RW) c
Sw. Thus Aζ4(Λw) = Sw.

Right to left: Suppose that A c PCy'), for all w M(R)W = MA(RW) = SWi

for some w and w' x e D!

wy y G D^ and

{/: / e r & x/G Λw} = {/: / € / ' & yfe Rw}.

For / G /y and g G yf", /g G /'", so xfg E Rw iff jjfe G Rw>. Hence for / G /y

{«: ί ey7' & xfg G iew} = {g: g<Ξf & yfg G Rw>}

so

{g: g G r & x/g G ̂ w} G ̂ 1 iff {g: g G y1" & yfg G i?^} G ^ .

Since xfe DJ

W, yf<Ξ DJ

W>, xfe MΛ(RW) iff yfe MA(RW), so xfe Sw iff yfe
Sw>. Thus

{/: / G /•/' & xfe Sw} = {/: / G V & ̂ /G 5W^}.

Hence R determines S.
Proposition 1 could also be extended to the case where S is defined in terms

of several relations R, R\ That is, if R, R\... and S are /-, /v-,... and
y-place relations respectively, {R, R\...} collectively determines S iff:

V/VwVw'Vx G Dlvy G Dl>
(({/: /G /' & xfe Rw} = {f:fe V & yfe Rw} &
{/: fe /'v &xfe R'w} = {f:fe /'•' & ^ / G ^ } & . . . )
-{/ :/G/ y &x/GS w } = {/:/G/ y&^/G5^}).

The corresponding enlargement of the definition of a satisfaction function would
be, for A c p(y') x p(j') x . . . , to define MA taking arguments ZxZ' x . . . ,
where Z ς / ) ; , Z ' c i ) ^ . . . , to subsets of £>£, for all w, by:

Af^ίZxZ' x . . . ) = {x: x e Di & {f. fef & xfe Z} x
{f:fef&xfeZf} X...EA}.

These definitions would also allow certain privileged relations to be used as fixed
parameters. For instance, if one treated identity as a logical constant one might
be interested in the equivalence relation which holds between R and S iff each
is definable in terms of the other using only truth functions, variables, and iden-
tity: in other words, when {R, =} collectively determines S and {5, =} collec-
tively determines R.
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Proposition 2 If R is i-place and S isj-place, R determines S and S deter-
mines R iff for some ij-satisfaction function M and some], i-satisfaction func-
tion N9 M(R) = S and N(S) = R.

Proof: Immediate from Proposition 1.

Since satisfaction functions make the generalization of Geach's idea more
perspicuous, we list some of their elementary properties. We first show the cod-
ing of ^/-satisfaction functions by subsets of P(j') to b e unique except for
small domains.

Proposition 3 If A, B c P(jι), MΛ = MB and for some w either j <
card(Dw) or i = 0 or both i < card(Dw) and i = 1, then A — B.

Proof: Let / c / . For j < card(Dw), choose x E DJ

W to be 1 - 1; for i = 0
choose any x E DJ

W; for 1 < card(Dw) and / = 1, take a, b E Dw (a Φ b) and
define xEDJ

w by: for kEj, if the function g Ej' such that g(0) = k is in /, let
x(k) = a, otherwise let x\k) = b. In all cases, let Rw = {y: y e D*w & 3g E
I{y = xg)}. Hence f o r / e / , xfE Rw iff for some gelxf=xg. Thus i f /E
/, xfERw. Conversely, let xfE Rw: if x is 1 - 1, xf= xg (g E /) entails / = g,
so / E /; if / = 0, g E / entails / = g, so / E /; for 1 < card(Dw) and / = 1,
xf = xg (g E /) entails that / E / iff g E / by the choice of x, so / E /. Thus
{f:fef&xfeRw}=I. But MA(RW) =MB(RW), so {f:fef&xfeRw} E
^ iff {f:fGjι&xfeRw}GB, sole A iff / E £ . Since/was arbitrary, ,4 = 5.

Proposition 4 //y#r #// w card{Dw) <j and 1 < /, there exist A, B Q P{jι)
such that A Φ B but MA = MB.

Proof: Let A = { }, B = {{/: / E / & Vm, H E /(/(m) =/(/i))}}. Exercise:
MA=MB.

We now list some closure properties of satisfaction functions.

Proposition 5 1/ is an /, /-satisfaction function.

Proof: Let A = {X:X^ ϊ & et E X}. Hence for Rw ̂ D^xE MΆ(RW) iff {/:
/ E ιβ/ &xfERw}EA iff e, E{f:fE V & xfE Rw} iff j», E i?w iff JC E Rw.
Thus MA(RW) = lf(R)w.

Proposition 6 If M is an ij'-satisfaction function and N is a j9 k-satisfaction
function, then NM is an i, k-satisfaction function.

Proof: Let M(R)W = MA(RW) and N(R)W = MB(RW), for all R and w, where
A c P(y'") and £ c P ( ^ ) . Define

C = {X: J c « {/; / E kι & {g: gEf &fgEX}EA}E B}.

Hence for Rw c £>£, and JC E D^,

x E MC(RW) iff

{Λ: hEk1 &xhERw}EC\ΐi
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{/: fe kj & {g: gef &fg G{h:he k* & xh E Rw}} GA} E B iff
{/: fe kj & {g: gef & xfg GRw}eA}eB iff
{fife kj & xfe λfA(Rw)} E B iff
XGMB(MA(R*)).

Hence Mc = MBMΆ.

Proposition 7 If M is an /, i-satisfaction function and MN = 1, or MTV = 1,
ίΛefl TV /51 an /, i-satisfaction function.

Proof: By Propositions 5 and 6, the iterations of M(M°, Mι, M2,..., i.e. 1, ,
M, MM,...) can be indexed by elements of P(P(ii))9 which is a finite set.
Hence for some m, «(1 < n), Mm+n = M m , so Nm+ιMm+n = Nm+ιMm or

Mm+nNm+ι = M " w m + 1 , SQ Mn-\ = ^ s o b y Propositions 5 and 6 TV is an /,/-
satisfaction function.

2 When a concept has been defined, one wants some idea of its extension.
Now the extension of the concept of informational equivalence may include, for
any given / andy, infinitely many pairs (R, S), where R and S are /- andy-place
relations respectively (for instance, infinitely many pairs of converses). However,
by Proposition 1 and our definition, for each such pair there is an / '̂-satisfaction
function M for which M(R) = S, and the number of ^./-satisfaction functions,
for any particular values of / and j , is finite (each function has a distinct index
in the finite set P(j1)). Thus it is natural to seek a finite representation of the
infinite extension of the concept of informational equivalence in terms of satis-
faction functions. More precisely, suppose that there are /,y-satisfaction func-
tions M, M', M " , . . . such that, for every /-place relation R, M(R), M'(R),
M"(R),... is a complete list of they-place relations informationally equivalent
to R; then the finite list M, M\ M " , . . . is a perspicuous and general answer to
the question: to which y-place relations is an /-place relation informationally
equivalent? It will be shown that such a list exists whenever / < j .

We can sharpen the issue by means of an observation. Suppose that the ij-
satisfaction function M appears on such a list. Then M{R) is always informa-
tionally equivalent to R, so for every /-place relation R there is ay,/-satisfaction
function TV such that N(M(R)) = R. We can argue that TV is independent of the
choice of R, as follows. Since satisfaction functions are definable in terms of
variables and truth functions, for any y,/-satisfaction function TV there is a first-
order sentence A (M, TV) in prenex normal form with only universal quantifiers
and whose only atomic predicate is /-place such that for any /-place relation R
the extensions of R and N(M(R)) coincide in a possible world w if and only
if (DW,RW) is a model of A (M, TV). Suppose, for a contradiction, that for no
y,/-satisfaction function TV is A (M, TV) universally valid: then it is an easy exer-
cise to show, from the form of such sentences, that there is a model (X, Y),
whose domain X is countable, such that for every y, /-satisfaction function TV
A(M,N) is false in (X, Y). Hence if there is a relation R and a world w such
that (X, Y) = (DW9RW)9 there is no y,/-satisfaction function TV such that
N(M(R)) = R, contrary to our assumption. But such an R exists for any world
w for which Dw is countably infinite. Thus we are warranted in assuming that
M(R) is informationally equivalent to R for every /-place relation R only on
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condition that A(M, N) is universally valid for some ̂ /-satisfaction function N,
in which case N(M(R)) = R for every /-place relation R. Such an Nis a left
inverse of M; in what follows, a left inverse will always be required to be a satis-
faction function. Thus we seek /,y-satisfaction functions M, M', M " , . . . , each
with a left inverse, such that, for every /-place relation R, M(R), M'(R),
M"(R),... is a complete list of they-place relations informationally equivalent
to R.

Trivially, if the /^'-satisfaction function M does have a left inverse, every
/-place relation R is informationally equivalent to M(R). Thus we can assume
the list My M\ M", . . . to include all /,y-satisfaction functions with left inverses.
So our question becomes: has every ./-place relation informationally equivalent
to an /-place relation R the form M(R) for some /,y-satisf action function M
with a left inverse?

Of course, if they-place relation S is informationally equivalent to the /-
place relation R, there is an /,y-satisfaction function M and a y, /-satisfaction
function TV such that M(R) = S and N(S) = R. This, however, does not guar-
antee that N, or any other y,/-satisfaction function, is a left inverse of M (there
may be another /-place relation Γsuch that N(M(T)) Φ T). The question is
whether there must be some /j-satisfaction function Λf', perhaps different from
M, where M'(R) = S and M' does have a left inverse.

The problem does not arise for Geach's original examples, since the satis-
faction functions which he uses already have left inverses, being self-inverse:
every relation is the contradictory of its contradictory and every two-place rela-
tion is the converse of its converse. The following is an example in which the
problem does arise. Let R and S be the two-place relations such that x has R to
y if and only if x is red and y is red, while x has 5 to y if and only if x is red
or y is red. Let M and N be the 2,2-satisfaction functions which take each two-
place relation Txy to the relations Txx v Tyy and Txx & Tyy respectively. Then
M{R) = S and N(S) = R, so R and S are informationally equivalent. However,
M does not have a left inverse, for if T is any nontrivial reflexive relation,
M(T) will be the tautologous relation, and there will be no 2,2-satisfaction
function N' such that N'(M{T)) — T. In this case, we can show that there is
a 2,2-satisfaction function M' with a left inverse such that M'(R) = S, for we
can define M' as taking each Txy to Txy s (73a: = Tyy) (it is easy to show that
M'(R) = M(R) and that Mr is self-inverse). Proposition 10 is simply the gen-
eralization of this example to any /-place relation R and y-place relation S, for

The extension of Proposition 10 to the case where i> j is false. Consider
again any nontrivial reflexive two-place relation: the only one-place relations
which can be defined in terms of it using only variables and truth functions will
be the tautologous and the self-contradictory ones, from which the original two-
place relation will not be recoverable. Thus there is no 2,1-satisfaction function
Msuch that, for every two-place relation R, M(R) is informationally equiva-
lent to R. In contrast, desideratum (iv) above gave an example of a two-place
relation which was informationally equivalent to a one-place relation. Hence
there are no 2,1-satisfaction functions M, M', M", . . . such that, for every two-
place relation R, M(R), M'(R), M"(R),... is a complete list of the one-place
relations to which R is informationally equivalent, although (by Proposition 10)
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there are 1,2-satisfaction functions M, M', M", . . . such that, for every one-
place relation R, M(R), M'(R), M"(R),... is a complete list of the two-place
relations to which R is informationally equivalent. Similar examples can be given
whenever / Φ y. For / < y, there is a general answer to the question "To which
y-place relations is an /-place relation informationally equivalent?", but no gen-
eral answer to the question "To which /-place relations is ay-place relation infor-
mationally equivalent?". As Russell said of relations in a different context, Ύou
cannot reduce them downward, but you can reduce them upward' ([5], p. 58).

It should be noted that these lists of informational equivalents may con-
tain repetitions. That is, we may have M(R) = M'(R) even when M and M'
are distinct satisfaction functions with left inverses. For example, the identity
and the operation of taking converses are distinct self-inverse 2,2-satisfaction
functions which give the same result when applied to a symmetric relation.
Any list of functions Λf, Λf', M " , . . . will have this feature if M(R), M'{R),
M"(R),... are all and only the y-place relations informationally equivalent to
R for every /-place relation R, since of two /-place relations one can be infor-
mationally equivalent to more y-place relations than is the other.

Proposition 9 (of which Proposition 10 is a corollary) shows that, in the
important special case where / =y, the left inverse of Proposition 10 can be taken
to be a two-sided inverse. That is, any two informationally equivalent /-place
relations are mapped to each other by invertible /,/-satisfaction functions. Since
(by Propositions 5, 6, and 7) the invertible ^/-satisfaction functions form a
group, we can think of what informationally equivalent /-place relations have
in common with each other as the invariants of this group. Proposition 9 also
in effect shows that an apparently more cautious generalization of Geach's exam-
ples is in fact equivalent to our own, in the case / =y. For since the operations
of taking the contradictory or the converse of a relation are invertible, one might
have restricted his suggestion to pairs of relations which can be interdefined by
quantifier-free definitions that invert each other everywhere. This criterion picks
out the same pairs as our own (quantifier-free interdefinability).

When / <y, however, the left inverse of Proposition 10 cannot be taken to
be two-sided. We saw above that a one-place relation R can be informationally
equivalent to a two-place relation S even though no 2,1-satisfaction function has
a left inverse. Now if M were a 1,2-satisfaction function with a two-sided inverse
TV such that M(R) = S, then N would be a 2,1-satisfaction function with a two-
sided, and therefore left, inverse M, which is impossible.

The main work toward proving Propositions 9 and 10 is for a lemma,
Proposition 8, about subsets of P(i')9 the indices of /,/-satisfaction function (/
is assumed to be fixed). For this we require some auxiliary notions. Invertible
/,/-satisfaction functions will turn out to correspond to total apt functions, in
a sense explained below.

We abbreviate e, to e. The variables/, g, and h range over V and X, Y, Z,
etc., range over P(i'). For any sets /and /, for a E /' and / c /', a % /is {/:
qfe /}. Thus aVoJc /', qf%J=fVo aVoJ,a °/o (JUK) = (a % J) U (a %
K), a % (J-K) = (a % /) - (a % K), etc., and if / c /', e % / = /. An apt
function is a partial or total 1-1 function F: P(V) -> P(V) such that if X E
dom{F), then for any/,/% Xe dom(F) and F(fVo X)=fVo F(X). F/J is
the restriction of F to the domain J.
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Proposition 8 IfF is apt, there is an apt F" such that dom(F") - P(/') and
FVdom(F) =F

Proof: (a) We show the existence of an apt F' such that dom(F) <Ξ dom(Fr),
dom(F) ψ dom(F'), and F'/dom(F) = F Since P(/') is finite, iteration of this
procedure gives Proposition 8. We first define an order £ on P(iι) by

XI Y iff card({Z: lf(Z=f%X)})<card({Z: lf(Z=f% Y)}).

£ is obviously reflexive, transitive, and connected. We can also define an equiva-
lence relation ££ on />(/'') by: X ££ Y iff X £ Y and Y £ X.

(b) If Yedom(F), Y ££ F(Y). Proof: For Y<Ξdom{F), since F is apt,
/ % r = g% yiffF(/% Γ) = F ( g % y) iff/%F(F) = g % F ( y ) . Thus the
function G given by G ( / % 7) = / % F(7) is a 1-1 correspondence between
{Z: 3/(Z = / % y)} and {Z: 3/(Z = / % F(7))}.

(c) P(/') — dom(F) can be assumed to be nonempty (otherwise we are
done); hence it contains a £-minimal element U: for Y φ dom(F)9 U £ Y

(d) If y £ /w?(F), t/ £ 7. PAΌO/ Let F be the ££ -equivalence class of Y
Since Fis 1-1, by (b) it induces a 1-1 correspondence between ED dom(F) and
E Π ran(F). Since £ is finite, card(E - dom(F)) = card(E - ran(F)); but FG
F - ran(F), so E - dom(F) is also nonempty. Choose ZEE- dom(F). By
(c), U £ Z; since Z G £, Z £ Y By transitivity, ί/ £ Z

(e) We make the following definitions:

W = {/: f°7oUe dom(F)}
W = HΊΊ {/: eEF(f% U)}
A = {Y: V/Vg(/% ί/ = g% t/->/% y = #% y)}

^ = {y: r n PF= c/n IT}

G(Y) = (Y- W)U W.

(f) G maps / H Ί 5 1-1 into ,4 Π 5'. P/ΌO/: G is 1-1 on A Π B, for if 7,
ZeADB and (Y- W)U W = (Z - W)Ό W, Y - W= Z - W (since
W c ίF) and FΠ W =̂ 6/Π ί f = z n ^(since Y,Z<ΞB); thus Γ = Z . Let
YGAΠB. G(Y)EB\ for since FT'c WΓ, WΠ((Y- W) U ̂ ' ) = *F'. To
show G(y) G ^ , let/% U = g °7o U. Since 7 G Λ / % Y = g% Y Now for
any Λ, h G / % PFiff/Λ G fFiff fh % Ue dom(F) iff A % / % Uedom(F)
iff A % g % (7 G ί/om(F) iff A G g % W; thus / % Ĥ  = g % PΓ. Similarly,
/ % W'=gVo W. Thus/% G(Y) = ( ( / % y) - / % FK) U/% PΓr = ((g%
y) - g % w) u g % PΓ' = g % G(Y).

(g) For 7G dom(F), Ye A iff F(Y) <Ξ A. Proof: For Yedom(F) and
any/ g,/% ̂  g % Yedom(F). Hence/% 7 = g % riff F ( / % F) =
F(g % y) iff/% F(F) = g % F(Y).

(h) For y G dom(F), Y G 5 iff F(y) G £'. P/ΌC/: Note that iίfeW,
fgeW for any g, because / % U G dom(F), so /g % (7 = g % / % (/ G
dom(F). Left to right: Let y G £, so 7 Π JF = t/ Π fK Hence for any/G
PΓ and any g,/gG Y iff fg e U9 so g G / % Y iff g G / % t/, so/ % y =

/ % CΛ Hence/GF(y) iff fe G F(7) iff e G / % F(Y) iff e G F ( / % 7) iff
έ?GF(/% t/) iff/G PΓ7. Thus ^ Π F ( η = H^Π FT7 = W, so F(Y) eB'.
Right to left: Let F(Y) G 5', so WΠF(Y) = W. Hence for any/G H^and
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any g, g G F(f % 7) iff gEfVo F(Y) iff fg G F(Y) iff fg G W iff έ? G
F(/g % C/) iff έ? G F(g % / % U) iff έ? G g % F ( / % (7) iff g G F ( / % £/); thus
F ( / % Y) = F ( / % C/), s o / % y = / % U. Thus/G 7iff e G / % riff e E
/ % ί/iff/E c/, so r n ^ = t/n w:

(i) (,4 Π B')-ran{F) is nonempty. PAΌO/: By (f), cέ3vtf(Λ C\B)< card(A Π
5'). By (g) and (h), card{Λ ΠBΠ dom(F)) = card{Λ Γ\ B' Γ\ ran(F)). Trivi-
ally, U(Ξ (A Π B) - dom(F). Since these are finite sets, 1 < card((A Π B) -
dom(F))= card(A ΠB)~ card{A ΠBΠ dom(F)) < card(A Π Bf) - card(A Π
B' Π r<m(F)) = card((A Π 5') - ran(F)).

(j) By (i) we can choose Ve (A Π B') - ran(F). We now define F' by:

Fr(Z) = F(Z) for Z G ί/om(F)
F ' ( / % £/) = / % Kfor/% U(£dom(F)
F' is undefined in all other cases.

The second clause is legitimate because VGA. Note that U(=e % t/) G
dom(F') - dom(F). Thus dom(F) c dom{F') and dom(F) Φ dom{Ff). Trivi-
ally, F'/dom(F) = F Thus it remains only to show that F r is apt.

(k) For any/, F ' ( / % £ / ) = / % K Proo/: We assume/% Uedom(F),
else we are done. Then for any g, g G / % Fiff/g G Fiff ,/g G W (because
V<=LB' and/G W, so/g G W) iff e G F(/g % (7) iff e G g % F ( / % (/) iff
g e F ( / % £/)if fgeF'(/% I/).

(1) F r is 1-1. Proo/: Let F ' W =F'(Y). There are four cases.

(I) X, YGdom(F). Then F(X) =Ff{Y) =F'{Y) =F(X),soX= Y
(II) X G dom(F)9 Y £ dom(F). Thus for some h, Y = h % U. Hence

for any/,/% y = / % A % U= hf°7o U. Thus {Z: 3/(Z=/%
F)}c {Z: 3/(Z=/% ί/)}.But Fίrfom(F),soby(c) £/£ Γ, i.e.,
cαrc/({Z: 3/(Z=/% (7)}) <α?Atf({Z: 3/(Z=/% y)}). Since the
sets are finite, {Z: 3/(Z = / % 7)} = {Z: 3/(Z = / % U)}. Thus
for some/, e% (7 = / % 7 = A/% £/. Since FG/1, F = e % K =
A/% K Since JTG dom(F),f°7oXe dom(F), so F(/% A") = / %
F(X) =f°7oF'(X) =f<*7oF'(Y) = / % A% F = A / % K= K This
contradicts F ^ ran(F), so the case cannot arise.

(III) As (II), with X and 7 reversed.
(IV) X,Y<£ dom(F). Hence for some g, A, ̂  = g % (7 and 7 = A % £/.

By (k), F' maps {Z: 3/(Z = / % £/)} onto {Z: 3/(Z = / % F)}.
But F ί ran(F), so by (d) cαrί/({Z: 3/(Z = / % t/)}) < carc/({Z:
3/(Z = / % F)}). Since these sets are finite, F' must be 1-1 on {Z:
3/(Z = / % £/)}. Since Ff(g % 17) = F'(Λ % U),g°7oU=h % £/.

(m) F' is apt. Proof: It remains only to show that if XG dom{Ff) then
for any f9f°7oX<Ξdom(F') a n d F ' ( / % ^ ) =/%F'(A r ) . If ΛfG dom(F), this
follows from the corresponding property of F. Otherwise, for someg9 X = g°7o
U. Hence/% X=fVogVo U = gfVo Uedom(F') andF'(/% X) =g/%
K = /%g% F = /%F/(Ar).

Proposition 9 Suppose that R,S are i-place and M,N are ij-satisfaction
functions such that M(R) = S, N(S) = R. Then there are /, i-satisfaction func-
tions M\ Nf such that M'N' = N'M' = 1, απc/ M'(R) = 5, A^'(5) = /?.
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Proof: We translate the problem about satisfaction functions into a finite com-
binatorial one about their indices, which is solved by Proposition 8, and then
translate the answer back again.

(a) The following defines an apt function F:
F(x % Rw) = x % Sw for any w and x E Dι

w

F(X) is undefined if X is not x % Rw for any w and xE:Dι

w.
Proof: By Proposition 2, for x E Dι

w and y E Dl>, x%Rw=yΰ7o Rw> iff x %
Sw=y % Sw>, so Fis well-defined on its domain and 1-1. If XG dom(F), for
some w and x E D*w X = x % # „ , so for any ff°7oX = f°7ox°7oRw = xf %
Λw E dom(F), and F ( / % X) = F(x/% Rw) = xf°7o Sw = / % x % 5W = / %
F f f l . Thus Fis apt.

(b) By Proposition 8, there is an apt function F " such that dom{F") =
P(i') and F"/dom(F) = F Since F" is 1-1 and its domain is finite, it has a two-
sided inverse G". Moreover, G" is apt too, since it is 1-1, total and for any X
andf,F"(fVoG"(X)) =f%F"(G"(X)) =f°7oX = F"(G"(f<ί7oX))isof0/o
G"{X) = G//(f%X).

(c) We define subsets of P(/'') by:

A = {X:eeF"(X)}
B={X: e<ΞG"(X)}.

For any w,xGDι

w and / c Dι

w, xG Λί4(/) iff x °̂o / € ̂  iff e E F"(JC % /) and
x E MB(/) iff x % / E 5 iff e E G"(x % / ) , by definition. We shall have
M'(T)W = MA(TW) and N'(T)W = MB(TW), for all w and T.

(d) For x E £>i, and / c D^, x % M^(/) = F"(x % /) and x % M5(/) =
G/r(x % / ) . PAΌO/; For any/, / G x % Af^ί/) iff x/E M^(/) iff e E F " ( J C / %

/) iff <? E F / r ( / % x % /) iff e G / % Fr/(jc % /) iff/E Fr/(x % /) . The other
case is parallel.

(e) For / c Dl

wy MΛMB{I) = MBMΛ(I) = /. Proo/: For * E £>i x E
MA(MB(I)) iff e G F"(x % M*(/)) iff (by (d)) eGF"{G"(x <*7o I)) iff e E x %
/ iff x E /. Similarly, x E Λf̂ ίAf̂  (/)) iff x E /.

(f) Aί4(Λw) = SW9 MB(SW) = Rw. Proof: For xGD^ F(X % Rw) = F^(x °/o
Λw) =x°7o Swsoxe MΆ(RW) iff e E F"(x % Λw) iff β E F(x % Λw) iff e E
x % 5W iff x E Sw. MB(SW) = Λw follows by (e).

Proposition 10 Suppose that 1 < / < y, i? /s i-place and Sj-place, M is an ij-
satisfaction function, Nis a jj-satisfaction function, M{R) — S and N(S) = R.
Then there is an i,j-satisfaction function M' and a jj-satisfaction function Nr

such that N'M' = 1,, M'(R) = S and N'(S) = R.

Proof: Define g E / by g(n) = n and h E iJ by h{n) = π for /? G / and Λ(«) =
0 otherwise. Thus Λg = e. Now define C c P(y'*) and C c p(/-/) by:

Now for / c Dί and x E I>i, x E MC(MC(I)) iff {/: / E ij &xfE MC(I)} G
C' iff A E {/:/G iJ &xf<EMc(I)} iff xΛ GMC(7) iff {/ :/E/ &xhfel} E
C iff £ E {/: / E / & xA/ E 7} iff xhg E 7 iff x E 7. Thus if P is the y,/-
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satisfaction function such that P(T)W = MC(TW) everywhere and Q is the ij-
satisfaction function such that Q(T)W = MC(TW) everywhere then PQ = 1, .

By Proposition 6, there are ^./-satisfaction functions P',Q' such that
P' = MP and Q' = QN. Then P'(Q(R)) = MPQ(R) = M(R) = S and Q'{S) =
QN(S) = Q(R). Hence by Proposition 9 there are y,y-satisfaction functions
P",Q" such that P"Q" = Q"P" = \ h P"{Q{R)) = S and Q"(S) = Q(R). By
Proposition 6, there is an /^-satisfaction function Mf and a j, /-satisfaction func-
tion N' such that M' = P"Q and N' = PQ". Then N'M' = PQ"P"Q = PQ =
1,; M'(Λ) = S and JV'(S) = Pζ>''(S) = PQ(R) = /?.

The proofs of Propositions 8-10 can be extended to the case, already men-
tioned, where auxiliary relations are allowed as parameters in the definitions;
details are omitted. The results also allow one to compute the maximum num-
ber of relations with which a relation may be interdefinable in terms of satis-
faction functions, by consideration of the corresponding total apt functions. For
example, a binary relation may be interdefinable with up to 192 binary relations
in this way.

3 The proof of Proposition 9 depended on the codability of /^'-satisfaction
functions by the finite set P(P(j1)), for a 1-1 partial function from a finite set
to itself can be extended to a 1-1 total function, which automatically has a two-
sided inverse. First-order definitions, which may use quantifiers, are not finitely
codable, and thus allow a 1-1 total function which, not being onto, lacks a two-
sided inverse. We substantiate these remarks by showing the analogue of Propo-
sition 9 for first-order definitions to fail for a suitable choice of possible worlds.
We shall exhibit first-order interdefinable relations which are not interchanged
by any pair of everywhere mutually inverse first-order definitions.

Let the sets of pairs of natural numbers X <Ξ ω2 be correlated 1-1 with the
possible worlds w(X), with DW(Xy = ω. We make the following definitions:

x £ y : vz( (Rxz = Ryz) & (Rzx = Rzy))

P(R): vxiyvz(Rxy & ~^Ryx & ((Rxz & -*Rzx) -+y = z)&

((Rzy&^Ryz)^x = z))

Q(R): vx3y(Rxx-+ (Ryx& ^Rxy))

M(R)xy: (x = y & P(R) & 3z(Rzz & Rzx & ^Rxz)) v

(-i(x = y&P(R)) &Rxy)

N(R)xy: (x = y & P(R) & lz(Rzz & Rxz & ~^Rzx)) v

(i(x = y&P(R)) &Rxy).

We first prove that any relation R has the same extension as N(M(R)) in

each possible world. Consider any world. If P(R) is false, R and M(R) coin-

cide, so P(M(R)) is also false, so N(M(R)) coincides with M(R) and thence

with R. Thus we can assume P(R) to be true. We next show that = and M=R)

coincide, x = y clearly entails x = y, so assume that x = y. By P(R),

choosey so that Vz(Ryy' & -*Ry'y & ((Rzy' & -*Ry'z) -+y = z)). Since Ryy'

without Ry'y, y = y' fails, so M(R)yy' and M(R)y'y are equivalent to Ryyf

and Ry'y respectively, so M(R)yy' without M(R)y'y. Since x M=R)y, M(R)xy'
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and M(R)y'x are equivalent to M{R)yyf and M{R)y'y respectively, so
M(R)xy' without M(R)y'x. Thus x = y' fails, so M{R)xy' and M(R)y'x are
equivalent to Rxyf and Ryfx respectively, so Rxyf without Ry'x. By the choice
of y\ x = y. Thus = and = coincide, so the former can replace the latter in
P(M(R)). Hence P(R) and P(M(R)) can differ in truth value only if Rxy &

-^Ryx and M(R)xy & ~^M{R)yx are not equivalent for all x,y. But if x = y,
Rxy & -iRyx and M(R)xy & ~^M(R)yx both fail, while if x = j> fails, MCR)xy
and M(i?)^x are equivalent to /?xy and jRyx respectively. Thus M(R)xy &
-iM(jR)j>x is equivalent to /toy & ->Ryx, so P(/?) and P(M(R)) are equivalent,
so P(M(#)) is true. Hence N{M(R)) is equivalent to (x = y & 3z(M(/?)zz &
/te: & -IΛZJC)) v (-ijt = j> & M(Λ)Ay). Thus if * = j fails, N(M(R)xy iff
M(i?)xy iff #xy. If x = y, by P(i?) x' can be chosen so that Vz{Rxxf & -yRx'x
& ((Rxz & -ιRzx)-+x' = z)& ((Rzxf & -^Rx'z) -+x = z)). Hence lz(M(R)zz
& itaz & -iRzx), and so N(M(R))xy, is equivalent to Af(Λ)xV, which is
equivalent to 3z(Rzz & Rzxf & -iRx'z), which by the choice of x' is equivalent
to Rxx and so to Rxy. Thus /? and N(M(R)) coincide.

Now define a relation R by /?w(jr) = X. Since N(M(R)) = /?, JR and
M(R) are first-order inter definable, so if the analogue of Proposition 9 for
first-order definability held, there should be first-order definable operations M'
and Nf such that Mf(R) = M(R) and for all binary relations T, N'(M'(T)) =
M'{N'{T)) = T. Moreover, if for each world w we put wf = w(Tw), then
Rw> = Tw, so by the first-order definability of M and M'9 M'(T)W = M'{R)W> =
M(R)W> = M(T)W. Thus for any binary relation Γ, M'(T) = M(T).

Let Y= {(m,n): (m,n) E ω2 & (m = n \ι m + 1 =n)}. We work in w(Y),
in which Y is the extension of R. One can easily check that = coincides with
identity, P(R) is true and N(R) coincides with R, so that P(N(R)) is also true.
Since for any x, x = xy if we assume that M(N(R))xx then for some z,
N(R)zx without N(R)xz. In that case, x N=R) z fails, so M(N(R))xz and
M(N(R))zx are equivalent to N(R)xz and N(R)zx respectively, so
M(N(R))zx without M(7V(/?))xz. Thus Q(M(N(R))) is true. But 7V(£) =
N(M'(N'(R))) = N(M(N'(R))) = N'(R), so M(N(R)) = M(N'(R)) =
M'(N'(R)) = R. Hence Q(R) should be true too, but it is not, for R00 even
though for no y do we have RyO without ROy. Thus no such operations as
Mf and TV' can exist: R and M(R) are not interchanged by any pair of mutu-
ally inverse first-order definitions.

In proving this negative result, we have treated possible worlds purely as
mathematical objects. Its interest thus to some extent depends on whether or not
they represent "real possibilities". The crucial assumption of the proof is just
that some relation has as its possible extensions precisely the subsets of the Carte-
sian product of a countably infinite set with itself. But if we define R to hold
between x and y if and only if x and y are natural numbers such that there is
a bag which contains exactly x red marbles and exactly y green ones, R seems
to meet just that constraint. Hence there is no reason to suppose that its interest
is undermined in that way.

We can also modify the above example so that the possible worlds are sim-
ply the models of a first-order theory. Consider a first-order language whose
only atomic predicate R is two-place, and the theory in it generated by the stan-
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dard logical axioms. In effect, we showed above that VXiy(Rxy = N(M(R))xy)
is true in all countable models; hence (by the Lόwenheim-Skolem theorems) it
is true in all models and therefore (by the Completeness theorem) provable. As
before, we can use a model in which the extension of R is Y to show that R and
M(R) are not interchanged (up to provable equivalence) by any pair of prov-
able mutually inverse first-order definitions. Thus the result of Part III can be
given a purely syntactic form.

Problem: Are there first-order interdefinable relations R and S such that
M(R) = S for no first-order definition M with a one-sided inverse?

NOTE

1. If relations are treated as genuine universals, rather than —as in this paper— set-
theoretic particulars, it can be argued that the concepts of to the right o/and to the
left o/are concepts of the same relation (cf. [6] and [1], pp. 42 and 94). Similarly,
Armstrong rejects negative universals and treats at least some pairs of contradictory
predicates as differently related to the same universal ([1], pp. 23-29). Hence, infor-
mational equivalence might also be proposed as a criterion of identity for genuine
universals.
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