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Identities and Indiscernibility

GUUS BROESTERHUIZEN and J. WIERZEJEWSKI

/ Introduction Ehrenfeucht and Mostowski introduced in [4] the method
of indiscernibles to show that every consistent theory which has an infinite model
has models with arbitrarily large automorphism groups. This method provides
a powerful tool for the construction of models with predetermined properties.
Morley in his proof of Los's conjecture used the notion of a set indiscernibles.
By the work of Morley, Shelah, and others this notion became important in
characterizing stable theories.

The above notions of indiscernibility are all special cases of a more gen-
eral one. We define it in Section 2. In solving problems concerning indiscerni-
bility it quite often turns out that the argument is essentially combinatorial in
nature and only uses properties of the equivalence relation ~, defined by: x ~
y iff x and y satisfy the same formulas. This gives rise to the definition of so-
called identities: pairs (A, E) where E is a certain equivalence relation on
(J An. The first one who fruitfully used identities in model-theoretic problems

nGω

was Shelah. He proved a compactness theorem for pairs of cardinals [8] and
gave a combinatorial proof of Vaught's two cardinal theorem [6]. Independently
of Shelah, Benda in [1] introduced identities under the name modeloids as
objects worthy of study in their own right.

In Sections 2 and 3 we investigate the notion of identity and we introduce
a special class of identities, the complete and homogeneous identities. In Sec-
tions 4 and 5 we apply our results about identities to investigate the hierarchy
of indiscernibility, e.g., we prove that there exists a collection of complete the-
ories {TX\X c ω} such that Tx < Tγ iff X £ Y.

In Section 5 we show by means of an example that the hierarchy of indis-
cernibility contains infinite chains and infinite antichains. Also here the advan-
tage of using identities becomes apparent. We adopt all modeltheoretic notations
from Chang and Keisler [3]. We specially mention the following: a, 5,... de-
note finite sequences. The length of a sequence a is l(ά) and if π is a permuta-
tion of {0,... ,/(#) - 1}, then πά is the sequence (tf^o),. ,^π(/(«)-i)>

If a is a sequence and a is a strictly increasing sequence i0 < iγ < i2

< . . . < /Λ:_1 < /(ά), then ά \ a is the sequence:
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(aio,aiι9.. .,aik_x).

If a and b are two sequences then a ~ 5 is the sequence obtained from
them by concatenation. .

For any collection {Aj\i E /} of sets (J A{ is the disjoint union.
iei

2 Complete and homogeneous identities A structure 21 is indiscernible by
1-tuples (or shortly: indiscernible) in a theory Γ(not necessarily for the same lan-
guage) if there exists a model 33 of Γand a one-to-one mapping f:A ->B such
that for all n E ω and all pairs of sequences {au... ,an) and <#/,... ,a'n) in
/1 Λ : if they satisfy the same quantifier-free formulas in 2ί, then </(#i), . . . ,
f(an)) and (f(a{),...,/«)> satisfy the same type in 93.

We introduce a relation < between theories as follows: Tγ < T2 iff for all
structures 21: if 21 is indiscernible in Γ1? then 21 is indiscernible in Γ2.

As a corollary of the definition we state the following:

Proposition 2.1 A structure 21 is indiscernible in a theory T iff for all finite
subsets X of A the following set is consistent with T:

{Φ(cXι9... 9cXn) +± Φ(cyι>... ,Cyn)\φ E Lτ, O Ί , . . . ,yn), <*i,... ,*„> E X",
(xu ... ,*„> ύfwrf <JΊ, . . . ,.yπ> 5flrί/ξ/V the same type in 21} U {Cx Φ Cy\x Φ y}.

This leads us to the following definitions:
An identity is a pair (A, E) where E is an equivalence relation on (J Ak

such that: keω

(i) £ ( ά , 5) implies I (a) = /(δ)
(ii) if ^ ( α , δ) and TΓ is a permutation of {0, . . . ,/(ά) — 1}, then E(πa, τb)

(iii) if ^ ί ^ , b) and / is a strictly increasing sequence of elements of
{ 0 , . . . , / ( α ) - 1}, t h e n £ ( t f r / , 5 f 7 )

(iv) if a0 = a\ and E(ά, b)9 then &0

 = b\
(v) if fl0 = βi a n d 6 o = 6! and E(ά\(l9... ,/(ά) - 1>, δ f < l , . . . ,/(α) - 1>)

then E(a, b).

A is the universe of the identity and \A\ is the cardinality of the identity.
E Π An is the equivalence relation EΠ (An)2 on A".
If (A, E) is an identity and Yc [̂ then (7, £7 7) is the identity defined

by£ry(ά, 6) iff E(a, b).
(A, E) is weakly finite if for all n: E Π >1Λ has only finitely many equiva-

lence classes.
(B, F) is realized in (A, E) if there exists a one-to-one function/: B -•

A such that for all n and all <Z?0, A-i>> W , , ^ - i ) Ξ # " : if
F « 6 0 , A - i > , <*ό, -,«- !>), then E«f(bo)9... ,/(6Λ-i)>, </(*ό), ,
/(W-i)>).

(>1, £) is an extension of (5, F) if ^ = 5 and ^ 2 F.

Let a structure 2ί be given. Define an identity (A, E%) as follows: E%(ά>
b) iff l(a) = 1(5) and a and 5 satisfy the same type in 21. We say that (J5, F)
is realized in 21 if (B9 F) is realized in (A, E) and (B, F) is realized in Γif it
is realized in some model of T. Finally we define, Id (A, E) as the set of finite
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identities that are realized in (A, E). In a similar way Id{%) and Id{T) are
defined for a structure 2ί and a theory T.

Proposition 2.2 For all theories Tx and T2:

Tx<T2iffId(Tx)Qld(T2).

Proof: Let 2li and 2l2 be ω-saturated models of Tx and T2 respectively. Surely,
for all finite identities (n, F), (n,F) is realized in 2li (2(2) iff it is realized in Tx

(T2). For every type p(xx,... ,xn) which is realized in 2li let Rp(xx,... ,xn) be
a relational symbol. Let 21* be the following structure for the language L =
{Rp(x,... ,xn)\p realized in 2li}

%ΐ = <Al9 R^) p realized in 2li

where Rp

ι (ax,...,an) iff (ax,...,an) realizes the type p in 211.
Two sequences ά and b satisfy the same quantifier-free formulas in 2ίί" iff

they satisfy the same type in 211.
If follows that Tx < T2 iff for all finite X c A, there exists a one-to-one

mapping /: AΓ-> A2 such that for all (xx,... ,xn), (yx,... ,>>„> E ̂ Λ , if they
satisfy the same type in 2ίi, then they satisfy the same type in 2l2.

The following also holds: a finite identity (n, F) is realized in 2li(2l2) iff
there is a one-to-one mapping g:n-+Ax (A2) such that: whenever F((ix,...,ik),
<Ju - Jk))> Λen <g(/Ί),... ,£(/*)> and <^(yΊ),... ,^(Λ)> satisfy the same
type in %x(%2). The proposition now follows easily.

An identity (A, E) is complete if for all finite identities («, F), if («, F) is
realized in every weakly finite extension of (A, E), then it is realized in (A, E).

An identity {A, E) is homogeneous if for all sequences a and b and all
elements c, if E(ά, b), then there exists an element d such that E((c) ~ a,
<d)~b).

Let a structure 21 be given and let Δ be a set of formulas in the language
of 21 with free variables among x0,... ,xn-\- Let Δ* = {φ(x^o)9... ,xπ(n-i))\π
a permutation of n and ψ E Δ } and define the identity (A, EA) as follows:

EA(a, b) if l(a) = l(b) a n d for all ix< i2 <.. .< ik in

{0,...,/ι- 1} and all φG (x0,-. .,**-i) Ξ Δ*,
aNΦ[β l 1 , . . . ,α/J i f f«NΦ[6 / l , . . . ,6/J .

Then (̂ 4, FΔ) is weakly finite if for all n, A has only finitely many formulas
with free variables among x0,... ,xn_x.

The following proposition follows immediately from the compactness
theorem:

Proposition 2.3
(i) For all finite identities (n, F): (n, F) is realized in Th{%) iff for all finite

sets Δ of formulas, (n, F) is realized in (A, EA).
(ii) IfId(A, E) = Id(Th($)) then Id(A, E%) is complete.

Theorem 2.4 Let Tbe a complete theory. Then there exists a complete and
homogeneous identity {A, E) such that Id(T) = Id(A9 E).

Proof: Let 2ί be an ω-saturated model of T. Let (A, E) = (A, E%). This iden-
tity meets the requirements.
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Theorem 2.5 Let (A, E) be a complete and homogeneous identity. Then
there exists a complete theory T such that Id(A9 E) = Id(T).

Proof: Let for k G ω, k Φ 0 {α, |/ G Ik} be the set of all equivalence classes of
EΠAk.

Let Rj be a λ>ary relation symbol for each J' c Ik.
LetL = {Rj\J^Ik, kGω}.
Define structure 21 for L whose universe is A and

Rj= (J at for J£ik.
ieJ

Let T= Th{$).
We can make the following observations

(i) E(ά, b) iff a and b satisfy the same quantifier-free formulas in 21.
(ii) If ά and b satisfy the same quantifier-free formulas and c EA, then there

exists d G A such that <c> ~ a and (d) ~ 5 satisfy the same quantifier-free
formulas,

(iii) If ά and b satisfy the same quantifier-free formulas, then they satisfy the
same formulas,

(iv) E(ά9 b) iff a and b satisfy the same type.

Let φ(xx,... ,xn) be given. Let JQ Inbe defined by

J={i\ieln9φ*naiΦ0}.

By (iv) it is easy to see that 21 N Vx[φ(x) +± R7(x) ].
Now remark that for every n G ω and every weakly finite extension (A,

E*) of (A, E) there exists a finite set of formulas Δ such that E* Π Ak =
£ Δ n Λ * f o r a l l i t £ / ! .

It follows that for all finite identities (n, F): (n, F) is realized in all weakly
finite extensions of (A, E) if for all finite sets of formulas Δ, (n, F) is realized
in (A9EA).

Using Proposition 2.3 and the completeness of (A, E)9 we see that Tsatis-
fies the conclusion of the theorem.

The special properties of the structure 2ί occurring in the proof above will be
needed later on. So we specially state the following proposition.

Proposition 2.6 Let (A, E) be homogeneous. Then there exists a structure
21 such that Id(A, E) = Id{%) and for all (n, F): (/ι, F) is realized in 77*(2l)
iff it is realized in every weakly finite extension of (A, E).

The language of the structure defined above may not be countable, but we easily
can show:

Proposition 2.7 For all languages L and theories T in L there is a countable
L*QL such that Id(T) = Id(TΠ L*).

Proof: Let Ln <Ξ L be finite such that for all finite (π, F), (n, F) realized in T
iff (n, F) realized in TO Ln. Such Ln exist because there are at most (up to
isomorphism) a finite number of finite identities of cardinality n that are not
realized in T. Let L* = (J Ln.

n
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We state without proof a combinatorial version of the theorem of Ehren-
feucht and Mostowski on sequences of indiscernibles (see [4]). Let, for n£ω,
(n, Fβ) be the following identity:

Ffi(a, 5) iff 1(5) = 1(5) and for all / <j < I (a),
cii < aj iff bi < bj.

Theorem 2.8 Given a finite identity (m, G) then the following are equiv-
alent:
(i) (m, G) is realized in (m, F™).

(ii) (m, G) is realized in all weakly finite identities (A, E) with infinite A.

3 A language for identities For n e ω, n Φ 0, let En be a relational symbol
with In open places. Let Lid = {En\n G ω} and Ln

id - {Ek\k < n}.
φ is an (Λ, ra)-formula if φ can be written as 3x0 3Xk-ι Φ where k < n

and ψ is the conjunction of formulas of one of the following three kinds:

(i) Xi = xj

(ii) Xi Φ Xj

(iii) Eι(xil9...,xi21), 1 < m.

φ is an (n, m)-sentence if φ does not have free variables.
The notions of (oo, m)-formula, (n, oo)-formula, (oo, oo)-formula are

defined in an obvious way.
For two identities (A, E) and (B, F) we define (A, E) < ( Λ , m ) (B, F) if

for all (n, m)-sentences φ, if (A, E Π An)nGω (= φ, then (B, FΠBn)neω N φ.
(A, E) Ξ ( / Ϊ > w ) (B, F) if (A, E) < ( Λ , W ) (B, F) and (B, F) < ( Λ , w ) (A, E).

The relations < ( o o > m ) ' , =(oomy, <(ΛfOo)'t Ξ(«,oo)', (̂oo,<x>) and Ξ(oo,oo) are de-
fined in a similar way.

Proposition 3.1 (A, E) < ( Λ f Λ ) (B, F) iff for all (n, G), if (n, G) is real-
ized in (A, E)9 then (n, G) is realized in (B, F).

Proposition 3.2 (A, E) <(oo,Λ) (#> F) iff there is a collection of mappings
J such that
(i) for allfG J:fis one-to-one, has a finite domain, and is a homomorphism

of the structure (A,EΠ Ak)k<n to the structure (B, F Π Bk)k<n>
(ii) for all finite X^A there is anfeJ such that X g dom /.

Let n G ω and (A, E) be given. (A, E) is ^-complete if for all (n, F): if (n, F)
is realized in all weakly finite extensions of (A, E), then (n, F) is realized in
(A,E).

Remark the following facts, which follow immediately from the definition of
identity:

(i) if (A, E) and (A, E*) are such that E Π An = E* Π A", then they
realize the same identities (n, F)

(ii) if E Π An c E* Π An, then for all k < n: E Π Ak c E* Π i4*
(iii) if is Π >4Λ has finitely many equivalence classes, then for all k < π:

£" Π ̂ 4^ has finitely many equivalence classes.
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It follows that (A9 E) is ^-complete if for all (n9 F), (n, F) is realized in (A,
E) if it is realized in all identities (A, E*) such that E* Π An 3 E Π An and
E* Π An has finitely many equivalence classes.

Theorem 3.3 Let {A, E) ^{n,n) (B, F) and (B9 F) <£(OOfΛ) (A, E). If {A,
E) is n-complete, then (B, F) is n-complete.

Proof: Let (n9 G) be realized in all identities (B9 F*) such that F* Π Bn 2 FΠ
5 Λ and has finitely many equivalence classes. Let (y4, F*) be a weakly finite
extension of (A, E). We will show that (nf G) is realized in (A, E*). Then the
theorem follows from the assumptions and from Proposition 1.

Because (B9 F) <(«>,«) (A, E) we can apply Proposition 3.2. Let /be a
collection of mappings as in Proposition 3.2. For every finite X ^ B9 let Jx =
{f\fe J,X^domf}. The collection {JX\XQ B, X finite} has the finite inter-
section property. So let H be an ultrafilter on / such that for all finite X^ B,
JXEH.

Definean identity (B9 F*) as follows: If I (a) = l(b) = k, then
F*(α, b) if there exists Jo E H such that for a l l/E /0

(i) r«^(^) U rng(b) c ώ m /
(ii) £*(</(tfo),. . ,/(^- i)>, <Abo),...,f(bk-l))).

(A, E*) is an identity, hence (_B, F*) is an identity. F* Γ)BnΏFΓ)Bn. Indeed,
let ί(a) = 1(5) = n and F(α, δ). There is Jo E H such that rΛg((2) U /"^(5) c
domf for a l l/E 70 Because of the properties of /: for a l l/E /0

£(/(βo), ,/(**-i)>, </(6o), JΦk-ύ))

and hence

E*«f(aQ), ,/(^-i)>, if (bo),... Jφk-ι)».

So by definition of F*: F*(ά, b).
F* Π ̂ " has finitely many equivalence classes. Indeed, if E* Π An has k

equivalence classes, then F* Π 2?" has at most k equivalence classes. Suppose
this were not so. Then there are a0,... ,ak E Bn such that for no / < j < k9

F*(βi9 άj). Let Xo,... , ^ - i be the equivalence classes of E* Π An. From the
properties of an ultrafilter it follows that for all / < k there exists j < k such that
for H-almost all / E /: /(#,) E A}. Hence there are / < y < k and I < k such
that for H-almost a l l/E /: /(α,) E ^ a n d / ί ^ ) E ^ . It follows that F*(ah

aj) — & contradiction. By assumptions («, G) is realized in (B, F*). Let
{ύr0,... ,flrΛ_i} c β b e such that F*((aiι9... ,aik), (aJι9... , ^ > ) whenever
G( </],..., 4>, O Ί , . . . ,Λ>) Again by the properties of an ultrafilter it follows
that for H-almost a l l/E J:

{aOi... ,*„_!} c rfom/and F * « / ( β / 1 ) , . . . J(aik))9 {f(ah)9... J(ajk)))

whenever F*(<α / 1,... ,aik), (aJι9.. . ,%>). Take a n / E /with these properties.
Then (n, G) is realized in (A, E*) by the set {f(a0),... J(an_γ)}.

Corollary 3.4 If (A, E) and (B9 F) realize the same identities and (A, E)
is complete, then (B9 F) is complete.

We will use Theorem 3.3 in various ways. Let us first introduce a more refined
notion of completeness. Let n9 k E ω and n9 k Φ 0.
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An identity (A, E) (finite or infinite) is (n, A:)-complete if for all (n, F)9

(n, F) is realized in (A9 E) iff it is realized in all identities {A, E*) such that
E* Π An 2 E Π An and E* Π An has at most k equivalence classes. We state
some facts about (n9 A:)-completeness without proof.

Lemma 3.5
(i) Let for all i G /, {Ah Et) be (n9 k)-complete and let D be an ultrafilter on

L Then Π (Ah Et)/Ώ is (n9 k)-complete.
/e/

(ii) Let D be an ultrafilter on a set I and let {A, E) be not (n9 k)-complete9

then {A, E)J/D is not (n, k)-complete.
(iii) (A9 E) is n-complete iff {A, E) is (n9 k)-complete for some k.

It should be obvious how the ultraproduct and ultrapower of identities are
defined.

Remark, that from (i) and (ii) it follows that the class of (n, &)-complete
identities, considered as structures for Lid9 is an elementary class (see [3]).

Proposition 3.6 Let n and k be given. Then for all identities (A, E) with
\A\>n9 {A, E) is (n9 k)-complete iff for all finite subsets YofA, if (Y9 E\Y)
= {nyn) (A, E), then (Y, E\Y) is (n9 k)-complete.

Proof: Let (A, E) be (n9 A:)-complete and let Y^A be finite such that (Y9

E\Y)={n>n) (A9E).
Suppose («, G) is not realized in (Y,E\Y). Then («, G) is not realized

in (A, E). Hence there is (A, E*) such that (n9 G) is not realized in (A, E*)9

E* Γ\An^EΓ)An and E* D An has at most k equivalence classes. Then surely
(n, G) is not realized in (Y, E*\Y). It follows that (Y9 E\Y) is (n,
A:)-complete.

Conversely, let for all Y^A such that (Y, E\Y) ={n>n) (A, E)9 (Y,
E\Y) will be (n, A:)-complete.

Let E be the set of those Y. Then E Φ 0 . For YG E let Hγ = {Y'\ Yr G E,
Y' 2 Y} and let D be an ultrafilter on E containing all sets Hγ. Finally, let (B,
F)=Y[ (7, E\Y)/D. Then (A, E) S ( Λ f Π ) (B9 F) and (A, E) < ( o o,Λ ) (B9 F).

By Theorem 3.3 and Lemma 3.5(i), (A9 E) is (n, £)-complete.

We will need this proposition in the proof of Theorem 3.9.

Proposition 3.7 For all identities (A9 E) and (B9 F): (A9 E) <(Oo,oo) (B9 F)
iff there exists an identity (C, G) and a one-to-one mapping f: A -> C such that
(C, G) β ( o β f O β ) (B9 F) andforall{al9...9an)9 (bl9...9bn) EAn

9

ifE((au...9an), (bi9... 9bn))9 then
G{{f(ax)9... ,/(*„)>, ( / ( n o , . . . J(bn))).

Proof: The existence of (C, G) and/is surely sufficient to conclude (A9 E)
<(oo,oo) (B9 F). So let (A, E) < ( Λ f Λ ) (B9 F). Let 93 be the structure (B9 FΠ
5">n G ω for the language Lid. Add to Lid new constants ca for all a G A. It is
enough to prove that the following set of sentences is consistent:

Th(%)U{caΦcb\a9b(ΞA9aΦb}
U {En(caι,...9can9 cbι9...9cbn)\E((al9...9an)9 (bl9... 9bn))}
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The consistency immediately follows from the compactness theorem and from
Proposition 3.1.

Theorem 3.8 Every homogeneous identity has a completion in the follow-
ing sense: if (A, E) is homogeneous, then there exists an identity (A*, E*) such
that {A*, E*) is homogeneous and complete, (A, E) (̂α>,oo) (A*> E*) and for
all homogeneous and complete (B, F) such that {A, E) <(«, «,) (B, F), (A*,
E*) <(oo,oo) (B,F).

Proof: Let (A, E) be homogeneous. Let 21 be the structure the existence of
which follows from Proposition 2.6. Let 2Γ be an ω-saturated model of Th(21)
and let (A*, E*) = (A\ E%>). Then (A*, E*) is homogeneous and complete and
for all (/ι, F)9 (n, F) is realized in (A*, E*) iff it is realized in every weakly
finite extension of (A, B). Surely (A, E) <(0o,oo) (A*, E*).

Let (B, F) be homogeneous and complete, and let (A9 E) ̂ (oo,*,) (B, F).
By Proposition 3.7 and Corollary 3.4 we may assume A c B and if E(ά9 b)9

then F(a9 b). Let (n9 G) not be realized in (B9 F). Then it is not realized in
some weakly finite extension (B9 F*) of (B9 F). Then (n, G) is not realized in
(A, F* \A). This is a weakly finite extension of (A, E)9 hence (n, G) is not
realized in (A*, E*). It follows that (A*, E*) <(oo,oo) (B9 F).

We could formulate the theorem above as follows:

For all homogeneous identities (A, E) there exists a complete theory T
such that: Id(A9 E) c Id(T) and for all complete theories T*: if Id (A 9

E) cid(T*) then Γ < Γ\

To conclude this section we will give a characterization of those sets E of finite
identities for which there exists a complete theory T such that Id(T) = E.

Theorem 3.9
(A) Let E be a class of finite identities such that the following conditions are

satisfied:
(i) // (n, F) is realized in (m, G) and (m, G) e E, then (n, F) e E (E is

transitive)
(ii) // (n, F)GE and (m, G) G E, then for some (k, H) G E, (n, F) and

(m, G) are both realized in (k, //) . (E has the joint embedding
property)

(iii) for all (n, F) G E, F(a, 5) and c G n there exists (m, G) G E and
d e m such that n c m, G\n 3 F and G((c) ~a, (d) ~5). (E is
homogeneous.)

(iv) for all n there exists k such that for all (m, G) G E, // (m, G) realizes
all («, F) that are in E, then (m, G) is (n, k)-complete. (E is com-
plete).

Then there exists a complete theory Tsuch that Id(T) = E.
(B) For all complete theories T, Id(T) satisfies conditions (i)-(iv).

Proof: Part (B) immediately follows from Theorem 2.4, Theorem 2.5, and
Proposition 3.6.

So let us prove (A). By Proposition 3.6 and Theorem 2.5 it is enough to
prove that there exits a homogeneous (A, E) such that Id(A9 E) = E. From (ii)
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it follows that for all finite Eo £ E there exists (m, H) G E such that every ele-
ment of Eo is realized in (m, H). Repeatedly applying (iii) yields: for all (n,
F ) G E there exists (m, H) G E such that n^m, Hn^F and for all F(ά, b)
and c G n there exists d G m such that H((c) ~ #, <rf) ~ 5).

For all A2 G ω, A2 t̂ 0 let {kn, Kn) G E be such that if m < « and (m, i7) G
E, then (m, F) is realized in (kn, Kn). Moreover let (/„, Ln) be such that kn c
ln, Ln\knΏ. Kn and whenever #„(#, 5) and cGί:β then there exists d G /„ such
that LΛ«c>~ 5, <tf>~5).

Define the sequence mu m2,... and identities (mi, Mi), (m2, M 2 ) , . . . as
follows: let (m^ MO = (/1? LO and let (mi9 Mt) be defined such that (mh

Mi) = (/„, Ln). Then let m = max(ln, n) and (m / + 1, M/ + 1) = (/w, L m ). Then
the following holds:

for all /, (mi9 M/) is realized in (m / + 1, M/ + 1) by a function/;: m,-* m/+1

such that whenever M7(£, 5) and c G AW,-, then there is d G m/+i such that
M / + 1«/(c)> ^ </(βo), ,/(tf/(*)-i)>, <̂ > ^ if (bo), ,/(6/(5)-i)».

Indeed, for all /, (mh M, ) is realized in (A:w, Km), where m is as above. Then
let/ be the function realizing (mi9 M, ). By identifying corresponding elements
we may assume that, for all /, /} is the identity mapping.

So we may assume the following:

(i) m! < m2 < m3 < . . .
(ii) for all /, M / + 1 Γmz 2 M/ and (mz, Λf, ) G E

(iii) whenever c G m, and M,(α, δ), then there exists d G m/+i such that
M/+I«c>~tf, <rf>^5)

(iv) for all n there exists an / such that: if («, F) G E, then (n, F) is realized
in (mh Mi).

Finally construct (A, E) as follows: A = (J ra7 and ii(<z, δ) iff there exists
/Gω _

an TV such that for all / > N, rng(a) U rng(b) Q rrii and Λf, (ά, 6). It is clear
that (A, E) is homogeneous and Id(A, E) = E. This finishes the proof.

From this and Theorem 3.8 follows a closure property:

Theorem 3.10 Let E be a set of finite identities such that E is transitive,
homogeneous, and has the joint embedding property, then there exists a com-
plete theory T such that E c ld(T) and for all T*, //Eg Id(T*), then T< T*.

4 The hierarchy of indiscernibilίty From Proposition 2.2, Theorems 2.4 and
2.5, and Proposition 3.1 it follows that the <-relation between complete theories
establishes a hierarchy which is isomorphic to the hierarchy of complete and
homogeneous identities induced by the relation <(Oo,oo). In this section we try
to answer questions concerning suprema and infima of chains.

Theorem 4.1 Let (I, <) be a linearly ordered set and, for i G /, (Ai, Ei) an
identity such that for all i, j G /, (Ah Ej) <(oo,oo) (Aj, Ej) if i <y. Then there
exists a subset I0^I cofinal and coinitial with I such that either (70, <) = (2,
<), or (To, <) = (ω, <), or (Io, <) = (ω*, <), or (70, <) = (ω* + ω, <) .

Proof: There are four cases, depending on whether /has a smallest element or
not and a greatest element or not. We will consider only one case: / has a
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smallest element but not a greatest element. Let for / E / and n E ω, n Φ 0,
Idn{Λh Ei) be the set of identities of cardinality n, that are realized in (Ah Ei).
Then for all / and n, Idn(Ah £,•) is finite. Hence there exists in such that for
all / > in:

Idn(AhEi)=Idn(Ain,Ein).

Now choose j \ <j2<j\ < . . . such that jγ > i\, j 2 ^ i2, then {jn\n E ω} is
co final with /.

Theorem 4.2 Lei (Au Ex) >(θo,oo) C4 2 , ^2) ^(00,00) (A3, E3) > ( Oo,oo)...

be a descending chain of homogeneous and complete identities. Then there
exists a homogeneous and complete identity (A, E) such that Id(A, E) =
Π Id(An9En).

Proof: We may assume that for all n E ω and m>n\

The identity {A, E) should have the following properties
(i) for all n, (A, E) s ( Λ f Λ ) (An, En)

(ii) (Ay E) is homogeneous.

This is also sufficient. Indeed, from property (i) and the assumptions of the the-
orem it follows that (A, E) (̂«>,/!) (An, En) for all n (remark that every (00,
n)-sentence is an (m, m)-sentence for some m>n). Then, by Theorem 3.3, (A9

E) is /2-complete for all n. The existence of an identity satisfying conditions (i)
and (ii) immediately follows from the compactness theorem.

Theorem 4.3 Let (Au E\) (̂oo.oo) (A2, E2) ^(00,00).. .be an increasing
chain of homogeneous and complete identities. Then there exists a homogeneous
and complete identity (A, E) such that for all n, (An9 En) <(«,«> (A, E) and
whenever a complete and homogeneous identity (B, F) also has this property,
then (A,E) <(OOjO0) (B, F).

Proof: Define (A*, E*) as follows: let D be any nonprincipal ultrafilter on
ω A* = Π Λn/D and E*({fu... ,/*>, (gu... ,gk)) iff for Z)-almost all /,

Ei((fi(i),... ,/*(/)>, <g/(/),... ,gk(i))) Then (A*, E*) is a homogeneous iden-
tity and (n, F) is realized in (A*, E*) iff there exists NGω such that for k >
TV, (n, F) is realized in (Ak9 Ek). Let (̂ 4, .E) be a completion of (̂ 4*, E*) as
defined in Theorem 3.6. This identity meets the requirements.

One might wonder whether strictly increasing or strictly decreasing chains with
nontrivial upperbounds or lowerbounds exist. In the next section we will con-
struct examples which show that such chains do exist. We did not succeed in
answering the question whether infima and suprema of incomparable identities
exist.

5 Examples In this section we are going to construct for every set / of prime
numbers a complete and homogeneous identity (Aj, Ej) such that (AJί9 EJλ)
<(OO)OO) (Aj29 Ej2) iff Jx c J2. This implies that nontrivial chains and infinite
antichains exist and that there are 2*° incomparable theories.
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For every prime number p G ω let (p9 EP) be the smallest identity contain-
ing the following set as an equivalence class:

{<0, l , . . . , / 7 - l > , < l ,2 , . . . , /7- l ,0>,
<2, 3, . . . ,p - 1, 0, 1>,... ΛP - 1, 0, 1,.. ., p - 2>}.

This implies: for all a, b such that l(a) = 1(5) and #z Φ cij and bj Φ bj for all
i<j<l(a),

if l(a)=l(b) =/?, then
Ep(ά9 b) iff for some permutation TΓ, τa and πb are in the equivalence

class above;
if l(a)=l(5) = k<p, then
Ep(ά, b) iff for some increasing sequence a and two sequences c and d of

length/?, £^(c, J ) and α = c\a and 5 — d\a.

Fact 1 (/?, iip) w homogeneous.

This immediately follows from the definition.

Fact 2 / /s an automorphism of (/?, i i p ) {i.e., of the structure (p9 Ep Π
Pk)keω for Lid) which leaves the equivalence class {<0,...,/?- 1 >, < 1,...,/? -
1, 0>,... ,</? - 1, 0, . . . ,/?- \)} fixed iff for allk<pj(k) Ξ / ( 0 ) + A: (morf

This is trivial.

Fact 3 Suppose l(ά) = 1(5); then the following statements are equivalent:
(i) Ep(ά, b)

(ii) There exists k < p such that for all i < l(ά), bj = aι + k (mod p).

Proof: It easily follows from the definition that we may assume l(a) = l(b) =
p and for all i <j <p: ai Φ aj and bt Φ bj. Then the following statements are
equivalent:

(i) Ep(ά, b)
(ii) For some permutat ion τ of p and for some r, s <p, π((r, r + 1, . . . ,/? —

1, 0 , . . . , r - 1>) = a and τ r « s , s + 1, . . . , / > - 1, 0 , . . . ,5 - 1>) = 5

(iii) for all k < p, ak = τ(k) + r (modp) and Z?̂  Ξ TΓ(/:) + 5 (modp)

(iv) for all k < p, bk = ak — r + 5* (modp).

Fact 4 //> ?t #, /Λ̂ « (/?, Jζ )̂ fe not realized in (q, Eq).

Proof: Suppose not. Then for some^p < q, (/?, Ep) is realized in (q, Eq). This
implies that there are n0,... ,«p_i in # such that Eq((n0,... 9np_ι),
(nu..., ^ _ ! , «o>). By Fact 3 there exists ak<q such that the following equa-
tions hold:

nx = n0 + k (mod q)y n2 = nx -\- k (mod q),...,
np-ι s ^ . 2 + £ (mod q), no = np_x + A: (morf g).

Hence 0 = p.k (mod q). This is impossible.

Before constructing (Λj, Ej) we introduce an operation on identities. Let for
/ G /, (Ai9 Ej) be an identity. Then
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Σ(4ί/)= ((jΛhE)
iei \ iei I

where E(ά, b) iff
(i) l(δ) = 1(5)

(ii) for all / G / and all k < l(ά): ak G At iff bk G A
(iii) for all increasing sequences α, and / G /: if rng(ata) c J4/ then £,(# tα,

5Γα).

We write (Au Eλ) + (A2, E2) instead of Σ (Ah Eϊ).
/e{i,2}

Remark that 2^ C*4/> ̂ /) is homogeneous if for all / G /, (Ah Et) is ho-
iei

mogeneous and if / is finite and for all / G /, (Ah Ej) is complete then
Σ (A> Ei) is complete.
iei

Let us now define (Aj9 Ej). For the time being we will assume that J is
infinite. At the end of this chapter we handle the case that / is finite.

We first define (Bj, Fj): Let (Bj9 Fj) = Σ (P> E

P)-
p(ΞJ

Fact 5
(i) (p, Ep) is realized in (Bj, Fj) iffp G J

(ii) (Bj, Fj) < ( 0 O J 0 O ) (BK, FK) tffjcK.

These facts follows immediately from the definition of Bj and from Fact 4.
Finally let (Aj9 Ej) be the completion of (Bj, Fj) as defined in Theorem

3.6. By this theorem we can conclude:

if J^K, then (Aj9 Ej) <(oOjOo) (Aκ, Eκ).

It results to show the converse. It is clear that it is sufficient to prove the fol-
lowing: if p φ: 7, then (p, Ep) is not realized in (Aj9 Ej). This will follow from
the following fact:

Fact 6 There exists a complete theory Tj such that Id(BJf Fj) c Id(Tj)
and (p, Ep) is realized in Tj iffp G /. Hence (Aj9 Ej) <(oo,oo) (Aκ, Eκ) iff

Proof: For every prime number q let Rq and Sq be #-ary relation symbols. Let,
for every prime number p, 2tp be the following structure: %p = (p, R^p, S^p,
RpP)q<p,qpήme> where

Λ ^ = { < 0 , . . . , p - l > , < l , . . . , / 7 - l , O > , . . . , < / 7 - l , O , l , . . . , / ? - l ) }

and for q < p, a G R^p iff for some strictly increasing #-tuple a in p and for

some B^R^P: a = b\a.
Remark that Rq is definable from Rp in %p. Sq will also be definable from

Rp in 3ip. Before we define Sq we state two facts about 2ίp:

(i)/is an automorphisms of %p iff for all k <p,f(k) =f(0) + k {mod p)
(ii) a and b satisfy the same type in %p iff Ep(a9 b).

Fact (i) is trivial and Fact (ii) follows from Fact (i), Fact 2, and Fact 3.
Now we define Sq for every prime number q < p: %p is a finite structure,

hence there are only finitely many inequivalent formulas with free variables
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v0,..., υq^χ in which only = and Rp occur. Fix a maximal sequence Φι(υ0,...,
ty_i), . . . ,ΦN(V 0 , . . . , Vq-ι) of inequivalent formulas (in which only = and Rp

occur). Now let (n0,... ,ng_{) SΞpq such that for all i <j < q, Πi Φ rij\ and let
X= {<«o,...,^_i>, <Λi,..., nq-u n0),... ,(nq-u «o>... ,Λ^- 2>}. From Fact
4 and Fact (ii) it follows that the elements of X do not all satisfy the same type.
Let k0 be the smallest ke{l,...9N} such that φpΠXΦ0 and -*φ%> (ΛXΦ

0 . Then let <«0, ,^-i> Ξ ^ p iff <"o>.. ,^-i> G φ?*. It is easy to see
that Sq is definable from Rp in 2ίp. Now let 7/ be the complete theory of the
structure 21/ defined as follows:

\pG/ /gGω,ςrprime

where

p>ςr p>ςr

and a <%J b iff for the unique p, q such that

a Gp and b E q, p < q.

( * \

It is easy to see that (Bj, Fj) = [ \J p, E% . From this it follows that Id(Bj,
\pGJ I

Fj) c Id(Tj). It remains to prove: if (p, Ep) is realized in Tj9 then p E /. In-
deed, let us define an equivalent relation — in every model 2t of Tj\ a - b iff
21 N -ι(α < c) Λ -i(c < α).

If (p, £p) is realized in Tj, then it must be realized by elements that are
equivalent. Hence the following set is consistent with Tj

{Cf Φ Cj\i <j<p}U {-ic, < cj\i, j <p} U
{Sp(c0,.. .,Cp-ι) τ±Sp(cu.. . ,c p_ 1, c 0),

•SpίCo,...,^-!) +*Sp(Cp-U C 0 , . . . , C p _ 2 ) } .

Because this set is finite, it must be realized in 21/. Hence p G /. This proves
Fact 6.

For finite sets J of prime numbers (Aj, Ej) would be finite. A slight modifi-
cation in the construction of (Bj9 Fj) would give us infinite identities for finite
sets /. We give only a sketch of this modification.

Remark that in the proof of Fact 6 a structure 21/ is defined with universe

\J p such that (Bj, Fj) = f [J p, E%A . Instead of defining the structure 2ίy
peJ \peJ )

as is done above one could define 21/ as follows:

\pG/ /ςreω,<7prime

where R®J((a0,... , ^ _ i > ) iff for some / G ω and p,

<tfo,. ><Vi> = <<«o, 0 , . . , { n q - u 0 )
for <Λ O , . . . , / !<7_I> Ξ # | k
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S%J is defined in a similar way and («, /) <%J (m, j) iff for the unique p and
q such that n e p and m E <?:

p < g oτ p = q and / < y.

( \
[j p X ω, E%\ and let (Λy, £ » be the completion of

PZJ J
(Bj, Fj). Again we have (Aj9 Ej) <(Oo,oo) (Aκ, Eκ) iϊϊJQK. Now (Aj, Ej)
is infinite for all /.
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