Notre Dame Journal of Formal Logic Volume 27, Number 4, October 1986

Sums of Finitely Many Ordinals of Various Kinds

MARTIN M. ZUCKERMAN

Abstract The ordinals $\alpha_1, \alpha_2, \ldots, \alpha_n$ are said to be pairwise-noncommutative if for all $i, j = 1, 2, \ldots, n$, if $i \neq j$, then $\alpha_i + \alpha_j \neq \alpha_j + \alpha_i$. For positive integers n and k, let Σ_n be the symmetric group on n letters and let E_n (respectively L_n, S_n, T_n , or P_n) be the set of all k for which there exist n (not necessarily distinct) nonzero ordinals (respectively, limit ordinals, successor ordinals, infinite successor ordinals, or pairwise-noncommutative ordinals) such that $\sum_{i=1}^{n} \alpha_{\phi(i)}$ takes on exactly k values as ϕ ranges over Σ_n . Then for all $n \ge 1$, $E_n = L_n =$ $S_n = T_n$; min $P_n = n$, and max $P_n = max E_n$. Furthermore, $P_1 = E_1$, $P_2 = E_2$, $P_3 = E_3 - \{1, 2\}$, and $P_4 = E_4 - \{1, 2, 3, 11\}$.

1 Introduction Addition of ordinal numbers depends upon the order of the summands. For each positive integer *n*, the maximum number, m_n , of distinct values that can be assumed by a sum of *n* nonzero ordinal numbers in all *n*! permutations of the summands has been calculated by Erdös [1] and Wakulicz [3] and [4]. The first few values of m_n are as follows: $m_1 = 1$, $m_2 = 2$, $m_3 = 5$, $m_4 = 13$, $m_5 = 33$, $m_6 = 81$, $m_7 = 193$, $m_8 = 449$; moreover, it is known that $\lim_{n \to \infty} \frac{m_n}{n!} = 0$.

Let *n* and *k* be positive integers. Let Σ_n be the symmetric group on *n* letters. Let $\alpha_1, \alpha_2, \ldots, \alpha_n$ be any *n* (not necessarily distinct) nonzero ordinals. We will say that $\alpha_1, \alpha_2, \ldots, \alpha_n$ yield *k* sums if $\left\{\sum_{i=1}^n \alpha_{\phi(i)}: \phi \in \Sigma_n\right\}$ is a *k*-element set. Let E_n be the set of all integers *k* for which there exist *n* (not necessarily distinct) nonzero ordinals that yield *k* sums. It is known that $E_n = \{1, 2, 3, \ldots, m_n\}$ for n = 1, 2, 3, 4, 6, 7, and 8 ([2], [5], and [6]), that $E_5 = \{1, 2, 3, \ldots, m_n\}$ for all $n \ge 9$ ([7]).

For every ordinal number $\alpha > 0$, let

(1)
$$\alpha = \omega^{\lambda_1} a_1 + \omega^{\lambda_2} a_2 + \ldots + \omega^{\lambda_r} a_r$$

Received April 17, 1985

be the *(Cantor) normal form* of α ; here r, a_1, a_2, \ldots, a_r are positive integers and $\lambda_1 > \lambda_2 > \ldots > \lambda_r \ge 0$ are ordinals. λ_1 is called the *degree of* α (written, "deg α ") and α_1 , the leading coefficient of α . By the remainder of α , we mean $\omega^{\lambda_2}a_2 + \ldots + \omega^{\lambda_r}a_r$ (or zero, if r = 1). By the remainder form of α , we mean $\omega^{\lambda_1}a_1 + \rho_1$, where λ_1 is the degree of α , a_1 is the leading coefficient of α , and ρ_1 is the remainder of α .

The ordinal numbers $\alpha_1, \alpha_2, \ldots, \alpha_n$ are said to be *nonoverlapping* if for each *i*, *j* ($\neq i$) = 1, 2, ..., *n*, whenever $\lambda_i = \deg \alpha_i > \deg \alpha_j = \lambda_j$, then (1), the normal form of α_i , consists of terms all of which are of degree $>\lambda_j$. Addition of nonoverlapping ordinals is considerably simpler than in the general case, and is considered in [6]. Here and in [8] we consider the addition of various other types of ordinals.

2 Limit ordinals; successor ordinals Let L_n be the set of all integers k for which there exist n (not necessarily distinct) limit ordinals that yield k sums; let S_n be the set of all integers k for which there exist n (not necessarily distinct) successor ordinals that yield k sums, and let T_n be the set of all integers k for which there exist k (not necessarily distinct) infinite successor ordinals that yield k sums.

Theorem 1 For all $n = 1, 2, 3, ..., E_n = L_n = S_n = T_n$.

Proof: Clearly, $L_n \subseteq E_n$ and $T_n \subseteq S_n \subseteq E_n$.

For any nonzero ordinal α whose normal form is given by (1), let

$$\alpha' = \omega^{\lambda_1 + 1} a_1 + \omega^{\lambda_2 + 1} a_2 + \ldots + \omega^{\lambda_r + 1} a_r$$
$$\alpha'' = \begin{cases} \alpha + 1, & \text{if } \alpha \text{ is infinite} \\ \alpha & \text{, if } \alpha \text{ is finite} \end{cases}$$

and

$$\alpha''' = \omega^{\lambda_1+1}a_1 + \omega^{\lambda_2+1}a_2 + \ldots + \omega^{\lambda_r+1}a_r + 1.$$

Let $k \in E_n$ and let $\alpha_1, \alpha_2, \ldots, \alpha_n$ yield k sums. Suppose that for some $\phi \in \Sigma_n$,

$$\sum_{i=1}^{n} \alpha_{\phi(i)} = \omega^{\delta_1} b_1 + \omega^{\delta_2} b_2 + \ldots + \omega^{\delta_s} b_s$$

Then

$$\sum_{i=1}^{n} (\alpha_{\phi(i)}) = \omega^{\delta_{1}+1} b_{1} + \omega^{\delta_{2}+1} b_{2} + \ldots + \omega^{\delta_{s}+1} b_{s}$$

so that $\alpha_1', \alpha_2', \ldots, \alpha_n'$ yield k sums, and consequently, $E_n \subseteq L_n$. Clearly $1 \in S_n$ for all n. To see that $E_n \subseteq S_n$ for all n, we can assume that at least one of the ordinals $\alpha_1, \alpha_2, \ldots, \alpha_n$ is infinite. Then

$$\sum_{i=1}^{n} \left(\alpha_{\phi(i)}'' \right) = \left(\sum_{i=1}^{n} \alpha_{\phi(i)} \right) + 1$$

so that $\alpha_1'', \alpha_2'', \ldots, \alpha_n''$ yields k sums, and $E_n \subseteq S_n$. Finally,

$$\sum_{i=1}^{n} (\alpha_{\phi(i)}''') = \omega^{\delta_1 + 1} b_1 + \omega^{\delta_2 + 1} b_2 + \ldots + \omega^{\delta_s + 1} b_s + 1$$

so that α_1^{m} , α_2^{m} , ..., α_n^{m} yield k sums, and $E_n \subseteq T_n$. Thus for all $n, E_n = L_n = S_n = T_n$, as was to be proved.

3 Pairwise-noncommutative ordinals Let $\alpha = \omega^{\lambda_1} a_1 + \rho$ and $\beta = \omega^{\mu_1} b_1 + \sigma$ be the remainder forms of the nonzero ordinals α and β , respectively. Then it is well-known that $\alpha + \beta = \beta + \alpha$ if and only if $\lambda_1 = \mu_1$ and $\rho = \sigma$. In other words, two nonzero ordinals commute if and only if they agree in their degrees and in their remainders.

Let $\alpha_1, \alpha_2, \ldots, \alpha_n$ be any *n* nonzero ordinals. Then $\alpha_1, \alpha_2, \ldots, \alpha_n$ are said to be *pairwise-noncommutative* if for all *i*, *j* = 1, 2, ..., *n*, if $i \neq j$, then $\alpha_i + \alpha_j \neq \alpha_j + \alpha_i$. In many of the examples in [2], [3], [5], and [6], ordinals repeat, or more than one ordinal is finite, or several ordinals are integral multiples of ω . These examples thus make use of *n* ordinals, at least two of which commute. Addition of pairwise-noncommutative ordinals is considerably more restrictive.

For each n, let P_n be the set of all integers k for which there exist n pairwise-noncommutative ordinals that yield k sums.

Lemma 1 Suppose that for ordinals α and β , $\alpha + \beta \neq \beta + \alpha$. If deg $\beta < \text{deg } \alpha$, then

$$\alpha = \beta + \alpha < \alpha + \beta.$$

If $\deg \beta = \deg \alpha$ and $\operatorname{rem} \beta < \operatorname{rem} \alpha$, then

 $\alpha + \beta < \beta + \alpha.$

Theorem 2 For all $n \ge 1$, min $P_n = n$ and max $P_n = m_n$.

Proof: We first show that for all $n \ge 1$, every set of n pairwise-noncommutative ordinals yields at least n distinct sums. For n = 1, this is obvious.

Let n > 1 and suppose that for $1 \le k < n$, every set of k pairwisenoncommutative ordinals yields at least k distinct sums. Suppose that α_1 , $\alpha_2, \ldots, \alpha_n$ are pairwise-noncommutative ordinals and $\alpha_1 < \alpha_2 < \ldots < \alpha_n$. If $\deg \alpha_{n-1} < \deg \alpha_n$, let $A_1, A_2, \ldots, A_{n-1}$ be sums for $\alpha_1, \alpha_2, \ldots, \alpha_{n-1}$ such that $A_1 < A_2 < \ldots < A_{n-1}$. Then $\deg A_1 < \deg \alpha_n$ so that, by Lemma 1,

$$A_1 + \alpha_n = \alpha_n < \alpha_n + A_1 < \alpha_n + A_2 < \ldots < \alpha_n + A_{n-1}$$

and consequently,

$$A_1 + \alpha_n, \alpha_n + A_1, \alpha_n + A_2, \ldots, \alpha_n + A_{n-1}$$

are *n* distinct sums for $\alpha_1, \alpha_2, \ldots, \alpha_n$.

If $\deg \alpha_{n-1} = \deg \alpha_n$, let *m* be the smallest index for which $\deg \alpha_m = \deg \alpha_n$. If m = 1 and if $A_1, A_2, \ldots, A_{n-1}$ are distinct sums for $\alpha_1, \alpha_2, \ldots, \alpha_{n-1}$ such that $A_1 < A_2 < \ldots < A_{n-1}$, then because $\alpha_1, \alpha_2, \ldots, \alpha_n, A_1, A_2, \ldots$, and A_{n-1} are all of the same degree and because

$$rem A_1 = rem \alpha_1 < rem \alpha_2 = rem A_2 < \ldots < rem \alpha_{n-1} = rem A_{n-1} < rem \alpha_n$$

it follows that

$$\alpha_n + A_1 < \alpha_n + A_2 < \ldots < \alpha_n + A_{n-1} < A_{n-1} + \alpha_n$$

so that $\alpha_n + A_i$, i = 1, 2, ..., n - 1, together with $A_{n-1} + \alpha_n$ are *n* distinct sums for $\alpha_1, \alpha_2, ..., \alpha_n$.

If m > 1, then let

$$B_{m} = \sum_{i=1}^{m-1} \alpha_{i} + \sum_{i=m+1}^{n-1} \alpha_{i} + \alpha_{m} = \sum_{i=m+1}^{n-1} \alpha_{i} + \alpha_{m}$$

$$B_{m+1} = \sum_{i=1}^{m} \alpha_{i} + \sum_{i=m+2}^{n-1} \alpha_{i} + \alpha_{m+1} = \alpha_{m} + \sum_{i=m+2}^{n-1} \alpha_{i} + \alpha_{m+1}$$

$$\vdots$$

$$B_{n-1} = \sum_{i=1}^{n-1} \alpha_{i} = \sum_{i=m}^{n-1} \alpha_{i}.$$

Then $B_m < B_{m+1} < \ldots < B_{n-1}$, so that $B_m, B_{m+1}, \ldots, B_{n-1}$ are n - m distinct sums for $\alpha_m, \alpha_{m+1}, \ldots, \alpha_{n-1}$ as well as for $\alpha_1, \alpha_2, \ldots, \alpha_{n-1}$. Moreover,

(2) $\alpha_n + B_m < \alpha_n + B_{m+1} < \ldots < \alpha_n + B_{n-1}$

so that $\alpha_n + B_i$, i = m, m + 1, ..., n - 1, are n - m distinct sums for α_1 , $\alpha_2, ..., \alpha_n$. Furthermore, by the inductive hypothesis, there are (at least) *m* distinct sums, $C_1, C_2, ..., C_{m-1}, C_n$ for $\alpha_1, \alpha_2, ..., \alpha_{m-1}, \alpha_n$. We can assume that $C_1 < C_2 < ... < C_{m-1} < C_n$, and consequently,

$$B_{n-1} + C_1 < B_{n-1} + C_2 < \ldots < B_{n-1} + C_{m-1} < B_{n-1} + C_n.$$

Each of the ordinals $B_{n-1} + C_i$, i = 1, 2, ..., m - 1, n, is a sum for α_1 , $\alpha_2, ..., \alpha_n$. Finally, using the lemma, we see that

(3) $\alpha_n + B_{n-1} < B_{n-1} + \alpha_n \le B_{n-1} + C_1 < B_{n-1} + C_2 < \ldots < B_{n-1} + C_{m-1} < B_{n-1} + C_n$

so that by (2) and (3),

$$\alpha_n + B_m < \alpha_n + B_{m+1} < \ldots < \alpha_n + B_{n-1} < B_{n-1} + C_1$$

< $B_{n-1} + C_2 < \ldots < B_{n-1} + C_{m-1} < B_{n-1} + C_n.$

This proves that $\alpha_n + B_i$, i = m, m + 1, ..., n - 1, together with $B_{n-1} + C_j$, j = 1, 2, ..., m - 1, n, are n distinct sums for $\alpha_1, \alpha_2, ..., \alpha_n$.

For all $n \ge 1$, $\omega + 1$, $\omega + 2$,..., $\omega + n$ are *n* pairwise-noncommutative ordinals with sums $\omega n + 1$, $\omega n + 2$,..., $\omega n + n$. Thus, $\min P_n = n$. Finally, Wakulicz [3] has shown, in effect, that the maximal sum, m_n , for E_n can always be obtained by using *n* pairwise-noncommutative ordinals of the form

$$\omega^{2r}; \ \omega^{2r-1} + \omega^{2r-2}, \ \omega^{2r-1} \cdot 2 + \omega^{2r-2} \cdot 2, \ \omega^{2r-1} \cdot 4 + \omega^{2r-2} \cdot 3$$

$$\dots, \omega^{2r-1} \cdot 2^{x_{r-1}} + \omega^{2r-2} \cdot x_{r};$$

$$\omega^{2r-3} + \omega^{2r-4}, \ \omega^{2r-3} \cdot 2 + \omega^{2r-4} \cdot 2, \ \omega^{2r-3} \cdot 4 + \omega^{2r-4} \cdot 3,$$

$$\dots, \omega^{2r-3} \cdot 2^{x_{r-1}-1} + \omega^{2r-4} \cdot x_{r-1};$$

$$\vdots$$

 $\omega + 1, \, \omega 2 + 2, \, \omega 4 + 3, \dots, \omega 2^{x_1 - 1} + x_1,$

where $x_1 + x_2 + \ldots + x_r = n - 1$.

Corollary $P_1 = \{1\} = E_1 \text{ and } P_2 = \{2\} = E_2 - \{1\}.$

Theorem 3 Let $n \ge 2$. Then the following integers are in P_n :

(a) $n, n + 1, \ldots, 2n - 2$

- (b) For n ≥ 3 and for 1 ≤ l ≤ n 2, all integers of the form (n 2)² + l(n 2) + 2
 (c) For n ≥ 4, n(n 1)
- (d) For $n \ge 5$, $n^2 2$
- (e) 2^{n-1}
- (f) $n^2 3n + 3$
- (g) $n^2 3n + 4$.

Proof: Unless otherwise indicated, assume $n \ge 2$.

(a) For $1 \le \ell \le n - 1$, the *n* pairwise-noncommutative ordinals $\omega + 1$, $\omega + 2, \ldots, \omega + (n - 1)$, and ℓ have sums

 $\omega(n-1) + 1, \, \omega(n-1) + 2, \dots, \omega(n-1) + n - 1 + \ell.$

Thus $\{n, n + 1, ..., 2n - 2\} \subseteq P_n$.

(b) Let $n \ge 3$ and let $1 \le \ell \le n-2$. Then ω^2 , $\omega + 1$, $\omega + 2$, ..., $\omega + (n-2)$, and ℓ have sums ω^2 , $\omega^2 + \ell$; $\omega^2 \cdot i + j$, where $1 \le i \le n-2$ and $1 \le j \le n-2 + \ell$. Consequently, for each such ℓ there are $(n-2)^2 + \ell(n-2) + 2$ distinct sums.

(c) For $n \ge 4$, the ordinals ω^2 ; $\omega^2 + 1$, $\omega + 2$, $\omega + 3$, $\omega + (n-1)$ yield the n(n-1) distinct sums ω^2 ; $\omega^2 + \omega + j$, for $2 \le j \le n-1$; $\omega^2 + \omega i + j$, for $2 \le i \le n$ and $1 \le j \le n-1$.

(d) For $n \ge 5$, the ordinals ω^2 , $\omega^3 + 1$, $\omega + 2$, $\omega + 3$, ..., $\omega + (n-1)$ have as sums ω^2 ; $\omega^2 + \omega i + j$, for i = 1, 2 and $2 \le j \le n - 1$; $\omega^2 + \omega i + j$, for $3 \le i \le n + 1$ and $1 \le j \le n - 1$. Thus there are $(n-1)^2 + 2(n-2) + 1$, or $n^2 - 2$ distinct sums.

(e) The ordinals ω^{n-1} , ω^{n-2} , ..., ω^2 , ω , 1 yield 2^{n-1} distinct sums.

(f) The ordinals ω^2 , $\omega^2 + \omega$, ω , $\omega + 1$, $\omega + 2$,..., $\omega + (n - 3)$ have as sums $\omega^2 \cdot 2$; $\omega^2 \cdot 2 + \omega i + j$, for $1 \le i \le n - 1$ and $0 \le j \le n - 3$. There are $n^2 - 3n + 3$ distinct sums.

(g) The ordinals ω^2 , $\omega + 2$, $\omega + 4$, ..., $\omega + 2(n-2)$, 2 have as sums ω^2 , $\omega^2 + 2$; $\omega^2 + \omega i + 2j$, for $1 \le i \le n-2$ and $1 \le j \le n-1$. There are $n^2 - 3n + 4$ distinct sums.

Theorem 4 $P_3 = \{3, 4, 5\} = E_3 - \{1, 2\}.$

Proof: $P_3 \subseteq E_3 = \{3, 4, 5\}$. Moreover $\{3, 5\} \subseteq P_3$ by Theorem 2 and $4 \in P_3$ by part (a) of Theorem 3.

Lemma 2 In order for 4 ordinals to yield 11 or more different sums, one of these must have highest degree and the other three must have the same degree.

Proof: Given any 4 ordinals, let δ be the highest degree of any of these. Then it is easily seen that if all 4 ordinals are of degree δ , there are at most 4 different sums; if 3 of the ordinals are of degree δ , there are at most 6 different sums; if 2 of the ordinals are of degree δ there are at most 10 different sums. Now suppose that exactly one of the ordinals, α_{δ} , is of degree δ . Let γ be the highest degree among the other 3 ordinals. If exactly one ordinal, α_{γ} , is of degree γ and if β_1 and β_2 are the remaining ordinals, there are at most 10 possible sums: α_{δ} , $\alpha_{\delta} + \beta_1$, $\alpha_{\delta} + \beta_2$, $\alpha_{\delta} + \beta_1 + \beta_2$, $\alpha_{\delta} + \beta_2 + \beta_1$, $\alpha_{\delta} + \alpha_{\gamma}$, $\alpha_{\delta} + \alpha_{\gamma} + \beta_1$, $\alpha_{\delta} + \alpha_{\gamma} + \beta_2$, $\alpha_{\delta} + \alpha_{\gamma} + \beta_1 + \beta_2$, and $\alpha_{\delta} + \alpha_{\gamma} + \beta_2 + \beta_1$. If exactly two ordinals, α_1 and α_2 are of degree γ and if β is the remaining ordinal, there are at most 10 possible sums: α_{δ} , $\alpha_{\delta} + \beta$, $\alpha_{\delta} + \alpha_1$, $\alpha_{\delta} + \alpha_2$, $\alpha_{\delta} + \alpha_1 + \alpha_2$, $\alpha_{\delta} + \alpha_2 + \alpha_1$, $\alpha_{\delta} + \alpha_1 + \beta$, $\alpha_{\delta} + \alpha_2 + \beta$, $\alpha_{\delta} + \alpha_1 + \alpha_2 + \beta$, and $\alpha_{\delta} + \alpha_2 + \alpha_1 + \beta$. The lemma is thereby established.

Lemma 3 4 pairwise noncommutative ordinals cannot yield 11 sums.

Proof: By Lemma 2, it suffices to consider ordinals with remainder form $\omega^{\gamma} \ell_i + \rho_i$ for i = 1, 2, and 3 together with α , where $deg(\alpha) > \gamma$. Clearly, because the ordinals are pairwise-noncommutative, ρ_1 , ρ_2 , and ρ_3 are distinct. We can assume $\ell_1 \leq \ell_2 \leq \ell_3$. The possible sums for these ordinals are then

 $\begin{array}{l} \beta_{1} = \alpha \\ \beta_{2} = \alpha + \omega^{\gamma} \ell_{1} + \rho_{1} \\ \beta_{3} = \alpha + \omega^{\gamma} \ell_{2} + \rho_{2} \\ \beta_{4} = \alpha + \omega^{\gamma} \ell_{3} + \rho_{3} \\ \beta_{5} = \alpha + \omega^{\gamma} (\ell_{1} + \ell_{2}) + \rho_{1} \\ \beta_{6} = \alpha + \omega^{\gamma} (\ell_{1} + \ell_{2}) + \rho_{2} \\ \beta_{7} = \alpha + \omega^{\gamma} (\ell_{1} + \ell_{3}) + \rho_{1} \\ \beta_{8} = \alpha + \omega^{\gamma} (\ell_{1} + \ell_{3}) + \rho_{3} \\ \beta_{9} = \alpha + \omega^{\gamma} (\ell_{2} + \ell_{3}) + \rho_{2} \\ \beta_{10} = \alpha + \omega^{\gamma} (\ell_{2} + \ell_{3}) + \rho_{3} \\ \beta_{11} = \alpha + \omega^{\gamma} (\ell_{1} + \ell_{2} + \ell_{3}) + \rho_{1} \\ \beta_{12} = \alpha + \omega^{\gamma} (\ell_{1} + \ell_{2} + \ell_{3}) + \rho_{2} \\ \beta_{13} = \alpha + \omega^{\gamma} (\ell_{1} + \ell_{2} + \ell_{3}) + \rho_{3} \end{array}$

Some of these 13 sums may be the same.

If $\ell_1 = \ell_2 = \ell_3$, then $\beta_5 = \beta_7$, $\beta_6 = \beta_9$, and $\beta_8 = \beta_{10}$, so that there are 10 distinct sums.

If $\ell_1 = \ell_2 < \ell_3$, then $\beta_8 = \beta_{10}$, and there are 12 distinct sums. If $\ell_1 < \ell_2 = \ell_3$, then $\beta_5 = \beta_7$, and there are 12 distinct sums. If $\ell_1 < \ell_2 < \ell_3$, then there are 13 distinct sums.

Theorem 5 $P_4 = \{4, 5, 6, 7, 8, 9, 10, 12, 13\}$ = $E_4 - \{1, 2, 3, 11\}.$

Proof: By [5] together with Theorem 2 and Lemma 3 of this paper, $P_4 \subseteq \{4, 5, 6, 7, 8, 9, 10, 12, 13\}$. Moreover, $\{4, 13\} \subseteq P_4$ by Theorem 2, $\{5, 6\} \subseteq P_4$ by Theorem 3 (a), $\{8, 10\} \subseteq P_4$ by Theorem 3 (b), $12 \in P_4$ by Theorem 3 (c), and $7 \in P_4$ by Theorem 3 (f). Finally, the ordinals ω^2 , ω , $\omega^2 + 1$, and 1 have 9 distinct sums: ω^2 , $\omega^2 + 1$, $\omega^2 + \omega$, $\omega^2 + \omega + 1$, $\omega^2 + \omega^2 + \omega^2 + \omega^2 + \omega^2$, $\omega^2 + \omega^2 + \omega$

The cases of 5 and 6 pairwise-noncommutative ordinals will be considered in [8].

REFERENCES

- [1] Erdös, P., "Some remarks on set theory," Proceedings of the American Mathematical Society, vol. 1 (1950), pp. 127-141.
- [2] Sierpiński, W., "Sur les series infinies de nombres ordinaux," Fundamenta Mathematicae, vol. 36 (1949), pp. 248-253.
- [3] Wakulicz, A., "Sur la somme d'un nombre fini de nombres ordinaux," *Fundamenta Mathematicae*, vol. 36 (1949), pp. 254–266.
- [4] Wakulicz, A., "Correction au trauvail "Sur les sommes d'un nombres fini de nombres ordinaux" de A. Wakulicz," *Fundamenta Mathematicae*, vol. 38 (1951), p. 239.
- [5] Wakulicz, A., "Sur les sommes de quatre nombres ordinaux," Polska Akademia Umiejetności, Sprawozdania z Czynności i Posiedzén, vol. 42 (1952), pp. 23-28.
- [6] Zuckerman, M., "Sums of at most 8 ordinals," Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, vol. 19 (1973), pp. 435-446.
- [7] Zuckerman, M., "Sums of at least 9 ordinals," Notre Dame Journal of Formal Logic, vol. 14 (1973), pp. 263-268.
- [8] Zuckerman, M., "Sums of 5 or 6 pairwise-noncommutative ordinals," to appear in Zeitschrift für Mathematische Logik und Grundlagen der Mathematik.

City College of the City University of New York New York, NY 10025