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A Free Logic with Simple and
Complex Predicates

KAREL LAMBERT and ERMANNO BENCIVENGA

1 Introduction Consider a fragment of colloquial discourse sans modal or
epistemic operators or psychological verbs. Examples of statements in this frag-
ment are

(1) Vulcan rotates around its axis, !
and
(2) Vulcan is self-identical.

Some free logicians regard all such simple statements as asserting of the
objects to which the constituent singular terms purport to refer that they are
things which . (Here and elsewhere the blanks are to be filled in by appro-
priate verbs or verb phrases.) So, for instance, (1) and (2) respectively assert of
Vulcan that it is a thing which rotates around its axis and, among other possi-
bilities, that it is a thing which is the same as Vulcan.

This kind of linguistic intuition underlies the conviction of many free logi-
cians that all simple statements of the fragment of colloquial discourse in ques-
tion imply the existence of the purported referents of their constituent singular
terms, and hence that if the purported referents fail to exist, the host statement
is false. Free logics of this sort are called negative free logics.?

Other free logicians regard simple statements of the fragment of colloquial
discourse in question merely as asserting that the objects to which the constit-
uent singular terms purport to refer . So, for instance, the sentences (1)
and (2) respectively assert that Vulcan rotates around its axis and, among other
possibilities, is the same as Vulcan. Accordingly, even if all the singular terms
are irreferential —as in (2) —the truth-value of the host statement need not be
false, and, indeed, is true in the case of (2). (1) is either true or truth-valueless.

This kind of linguistic intuition underlies the conviction of many free logi-
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cians that at least some simple statements do not imply —nor even presuppose
(in the Lambert-van Fraassen sense of “presuppose”)—the existence of the pur-
ported referents of the constituent singular terms, and hence that there are some
true simple statements of the fragment of colloquial discourse outlined which
contain irreferential singular terms. (2), in fact, is a standard example. Free
logics of this kind are called positive free logics.?

Given that many, if not most, simple statements of our colloquial fragment
are equivocal with respect to the kinds of assertion outlined above,* the ques-
tion arises whether there can be a system that accommodates both linguistic intu-
itions. The answer is yes. Scales’ pioneering [7]° sketched just such a system.
In what follows we present an alternative way of accomplishing the same end.
The pivotal semantical differences are these. Scales’ models included outer
domains conceived as sets of nonexistent objects, but we eschew outer domains.
(In Scales’ terminology, his semantics is Meinongian, but ours is Russellian.)
Moreover, Scales’ semantics is bivalent, but ours is not, being essentially an
amplification of the modified supervaluational approach developed by Ben-
civenga [1].

Like Scales, we distinguish two kinds of simple statement. There are sim-
ple statements consisting of an n-adic simple predicate (approximately what
Scales calls an n-adic sentential function) and n singular terms, where n = 1, and
there are simple statements consisting of an n-adic complex predicate and n sin-
gular terms, where n = 1. The former kind of simple statement is the formal
counterpart of a simple statement of colloquial English construed as asserting
that the objects purported to be referred to by the constituent singular terms of
that sentence . The latter kind of simple statement is the formal counter-
part of a simple statement of colloquial English construed as asserting of the
objects purported to be referred to by the constituent singular terms of that sen-
tence that they are things which ____ .

The distinction between simple and complex predicates parallels the distinc-
tion between simple singular terms (grammatically proper names) and complex
singular terms (for instance, definite descriptions). Just as there can be simple
statements containing simple singular terms or complex singular terms, so there
can be simple statements containing simple predicates or complex predicates.
Moreover, just as in some treatments a simple statement containing a simple sin-
gular term can differ in truth-value from a simple statement containing a com-
plex singular term even though the simple singular term and the complex singular
term are codesignative,® so a simple statement containing a simple predicate
can, in the present treatment, differ in truth-value from a simple statement con-
taining a complex predicate even though the simple predicate and the complex
predicate are coextensive.

An example may help to fix the main ideas. Let “v” abbreviate “Vulcan”,
“R” abbreviate “rotates around its axis”, “=v” abbreviate “is the same as Vul-
can”, and “Ax(x = v)” abbreviate “is a thing which is the same as Vulcan”.
Then each of

(3) Rv
4) v=v
) Ax(x=v)v
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is a simple statement, the first pair containing simple predicates, and the third
a complex predicate. Moreover, in the treatment to follow, (3) is truth-valueless,
and (4) not only is true, but is logically true, while (5) is false even though “=v”
and “Ax(x = v)” are coextensive. (4) and (5) represent the pair of assertions
associated with the equivocal (2).

We turn now to a precise statement of the system FL,

2 The syntax of FL*¢ The vocabulary of FL* is as follows:

(i) individual variables: x, y, z,...
(ii) individual constants (singular terms): a, b, c,. ..
(iii) simple predicates: P, Q, R, ...
(iv) connectives: ~, &
(v) quantifier: v
(vi) abstractor: A
(vii) existence sign: E!
(viii) identity sign: =

The symbols in (i)-(viii) are autonymous. Since no confusion can result,
we will also use symbols of category X as metavariables for symbols of category
X. If s and ¢ are variables or singular terms, As/¢ is the result obtained from
substituting s for all free occurrences of ¢ in A (possibly after some relettering
to avoid scope confusions). The definition of predicate and statement is by
simultaneous recursion as follows:

(a) simple predicates are predicates

(b) if P is an n-adic simple or complex predicate, Pa,,...,qa, is a state-
ment

(¢) Ela and a = b are statements

(d) if A, B are statements, so are ~A, A & B and VxAx/a

(e) if A is a statement, Ax;...Ax,(Ax,/a,...x,/a,) is an n-adic

predicate
(f) nothing else is a predicate or a statement.

(The definitions of v , D, =, and 3 are as usual.) The simple statements of FL*
are isolated by clauses (b) and (c) of the above definition.

The intelim rules for FL* are any adequate set of intelim rules for the
classical logic of statements and the following:

FUE (m)|vxA (or Ela)

(n

~

Ela (or vxA)

(p)|Aa/x
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FUI (m) Ela

(n) Aa/x provided a does not occur in (n + 1) or any
of the premises of the derivation
(n+1) VXA

FIE (m)|a="b(or A)
(n)|A (or a =0>)
(p)|Ab/a

FII
(m)la=a

FAbE (m)|Axy ... Ax,(Ax /a, .. .x,/a,)by...b,

(n)|A(by/ay...b,/a,) & (E!b; &...& E!b,)

FAbI (m)|A(by/a, ... by/ay) & (E!b; &...& Eb,)

()| Axy ... A\x,(Ax\/a, .. .x,/a,)b; .. .b,

Some important categorically derived statements of FL*¢ are instances of
the following:

CD1 (E!b; &...& E!b,) D (AXy...Nx,(Ax /ay...x,/0,)by ... b, = Ab,/

a... b,,/a,,)
CD2 Ax;...Ax,(Ax\/a,...x,/a,)b,...b, = ((E!b; &...& E!D,) & (Ab,/
a...b,/a,))

CD3 E!b = (A\x(Ax/a)bv \x(~Ax/a)b)
CD4 Ny(Ay/x)b D 3xA
CD5 vx(A\y(Ay/a)x = Ny(By/a)x) D (A\y(Ay/a)b = \y(By/a)b).

CDl1 is the restricted form of the principle of abstraction. CD4 shows the
principle of particularization for simple statements with complex predicates, CD2
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shows the conditions under which complex predicates are eliminable from state-
ments containing singular terms, and CDS5 depicts an important substitutivity
principle for complex predicates. As will be clear in what follows the analogues
of CD4 and CDS5 for simple predicates do not hold.

3 The semantics of FL* A model M is a pair (D, g), where D is a set, and
g a function totally defined on predicates but partially defined on singular terms
such that

(i) g(a) € D when g(a) is defined
(i) g(P) € ®(D") when P is n-adic.

We introduce the widely adopted simplification that every element of D has
a label as follows. We say that M is full if for every d € D there is a singular
term a such g(a) = d. The first such singular term in some alphabetical order
will be designated d.

A completion M’ of M = (D, g) is a model (D’, g’) such that

(i) DD

(ii) g’(a) = g(a) if g(a) is defined
(i) g(P) cg'(P)
(iv) g(a) is defined for all a

(v) M’ is full (possibly in a larger language).

Care must be taken to distinguish a full model from one which is the com-
pletion of another model. In the former, every element of D has a label, but
some singular terms may be irreferential; in the latter, every singular term is
referential.

We introduce the extension function ey, and the fact function f,, for a full
model M = {D, g) by simultaneous recursion as follows:

(i) if g(P)is defined, then ey, (P) = g(P)
(ii) if all of g(a,),...,g(a,) are defined, then
@) fp(Pay...a,) =Tif {g(a)),...,8(a,)) € e,(P), and
d) far(Pa, . ..a,) = F otherwise
(iii) if g(a) and g(b) are defined, then
(@) fm(a=0b) =Tif g(a) = g(b), and
(b) far(@ = b) = F otherwise
(iv) if exactly one of g(a), g(b) is defined, then fy,(a = b) =F
(v) (@) fym(Ela) =T if g(a) is defined, and
(b) fum(Ela) = F otherwise
(vi) @) fm(~A) =Tif fy(A) =F, and
®) fmu(~A4) =Fif fjyy(4) =T
(vii) if fas(A) and f,(B) are defined then
(@) fm(A & B) =T if fy(A) = fu(B) =T, and
(b) far(A & B) = F otherwise
(viii) if fs(Aa/x) is defined whenever g(a) is defined, then
(@) far(vxA) = T if fys(Aa/x) = T whenever g(a) is defined, and
(b) far(vxA) = F otherwise
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(x) epr(Axy .. . Ax,(Ax1/a; ... x,/a,)) = {{di,...,dy): dy,...,d, € D and
fu(Ad,/a, . ..d,/a,) =T}
(xX) epr and f, are not otherwise defined.

The preceding definition stipulates what the extensions of simple and com-
plex predicates are in a full model M, and reflects the intuitive idea that some
statements in M are made true (or false) by the facts therein. But the facts dom-
inate only in the presence of referential singular terms. So the question arises
how the truth-values of statements containing irreferential singular terms are to
be computed given the “factual” information supplied by M. The answer is sup-
plied by the following two definitions:

If M is a full model, and M’ a completion of M, the valuation for M’ from
the point of view of M is the function Vs (s such that:

(i) if A is of the form \x;...\x,(Bx,/a,...x,/a,)b, ...b, then
(a) VM'(M) (A) =T lffM(A) =T, and
(b) Varar (A) = F otherwise
(i) if A is of the form Pa,,...,a,, a = b or Ela, then
@) Vairon (A) = fu(A) if fps(A) is defined, and
(b) VM'(M) (A) =.fM' (A) otherwise
(lll) VM'(M) (~A) =Tif VM'(M) (A) =F, and = F otherwise
(lV) VM'(M) (A & B) =Tif VM’(M) (A) = VM’(M) (B) =T, and = F otherwise
(V) VM'(M) (VXA) =Tif VM'(M) (Aa/x) =T for all @ such that VM’(M) (E!a) =
T, and = F otherwise.

To illustrate the key conditions (i) and (ii) in this definition, consider the
simple statements “Ax(x = a)a” and “a = a,” and assume that g(a) is unde-
fined (a is irreferential). Then (i) forces the falsity of “Ax(x = a)a” in any com-
pletion M’ of M in virtue of the facts of M, but, in contrast, (ii) declares “a =
a” true in M’ because that value is the value it gets in M.

We define the supervaluation for a full model M as the function S, such
that

() Sm(A) =T if Varary(A) =T for all completions M’ of M
(i) Sp(A) =F if Vypary(A) =F for all completions M’ of M
(iii) Sps(A) is undefined otherwise.

Supervaluations settle the truth-values of statements relative to M, about
which the facts may be silent in M, by looking at all of its completions. A state-
ment of the form Ax(Ax/a)b, where g(b) is undefined, will always be false —
that is, Sy,(Ax(Ax/a)b) = F—because it is false in all of the completions of M,
a consequence of the facts of M. In contrast, an atomic statement containing
irreferential singular terms but no complex predicate can be true, false, or truth-
valueless. In particular, returning to (3)-(5), it can now be confirmed that
Sa(3) is undefined, Sy,(4) =T, and S,,(5) = F, under suitable choice of M.
Indeed, as earlier intimated, (4) is logically true—that is, Sy, (v =v) = T for
all M.

Finally, if M is a nonfull model, add to the language new individual con-
stants and assign each d for which there is no d to some new constant. A super-
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model M’ of M is thereby generated. Define S,, according to the above
instructions. Sy, is the restriction of S, to the original language. This defini-
tion does not depend on the nature of M’.

The adequacy of FL* in the sense that A is categorically derivable in FL*
if and only if A is logically true follows directly from the ensuing facts. First,
the system FL® is obtained by deleting the abstractor A, the accompanying
clauses involving A in the formation rules, and FAbE and FAbI. The semantics
for FL® is obtained by appropriate deletions in the definitions and conventions
of those clauses concerning expressions of the form Ax; ... Ax,(Ax;/a; . ..x,/
a,). FL® (in effect) has been proved adequate in the above sense, relative to
the amended semantics, by Bencivenga [1]. Second, a translation of FL*® into
FL* in the manner suggested by CD2 is forthcoming, such that, where 4™ is the
transform in FL® of A in FL*,

(i) A is categorically derivable in FL* if and only if A™ is categorically
derivable in FL?,

and

(ii) A is logically true in the semantics of FL* if and only if A* is logically
true in the semantics of FLS.

(i) and (ii) are established by straightforward inductive arguments.

4 Concluding remarks We end with four remarks of philosophical interest.

First, as is well known, the symbol E! in FL* (or in FL®) is redundant
given the inclusion in the vocabulary of the symbol =. Indeed, where a is a vari-
able or singular term, E!a can everywhere be replaced by 3x(x = a). But if = is
dropped from the language of FL®, then, as Meyer et al. [4] have recently
shown, Ela is not eliminable given the resources of that system. But the addi-
tion of complex predicates to FL® sans identity does permit the elimination of
E! from the primitive basis of the language. In FL*¢ this is reflected in CD3 and
shows one benefit of the greater expressive power of a language with complex
predicates. Moreover, the present result has implications for Williams’ view in
[10] that existence is not a first-order predicate. Part of Williams’ argument
trades on the allegation that E! seems only to be definable in terms of a
“meaningless” complex predicate involving identity, But FL* provides an alter-
native meaningful and nontrivial definition of E!.

Second, the inclusion of abstractors in the language FL*¢ enables confor-
mity with an ideal of logical laws, namely, that they be general. To see what is
at issue consider a version of negative free logic by Burge [2]. Burge’s system,
which is devoid of abstractors, requires him to distinguish between atomic and
complex statements vis a vis the existence of the purported designata of their
constituent singular terms as necessary conditions. Thus, he has an axiom
scheme to the effect that Aa/b D Ela, provided A is atomic. But this axiom
scheme seems to violate the ideal that the laws of logic be general, that they hold
for all statements 4. The introduction of abstractors allows one to capture the
Burge intuition and write it in a more acceptable way. Such is reflected in the
categorically derived principle of FL*,
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CD6 Ax;...Ax,(Ax\/ay...x,/a,)b,...b, D (E'b; &...& E!b,).

Note that A can be any statement atomic or complex. Here is yet another benefit
of the greater expressive power of FL*.

The final pair of considerations display the capacity of FL*® to yield
important distinctions. First, consider the statement

6) Vx(x=x=(Elx&x=x))D(@=a=(Ela&a=a)).

(6) is not logically true in FL*. One might be tempted thus to conclude that
FL*¢ is nonextensional. But this conclusion is not imminent. Traditionally
extensionality, qua condition on languages, concerns the interchangeability sa/va
veritate of statements of the same truth-value, and of coextensive ferms, singular
and general. But (6) above reflects no breakdown in the principle of the inter-
changeability salva veritate of coextensive general terms; “x = x” and “Elx &
X = x” are open Statements, not general terms. What others’ call general terms
are called here complex predicates, and the interchangeability principle reflected
in CDS shows that FL* is general term extensional. Since it is easy to see that
the other interchangeability principles mentioned above hold in FL*, this sys-
tem is completely extensional —at least given the traditional interpretation of
extensionality. All this despite the feel that (6) is not logically true. This suggests
that arguments based on alleged failure of extensionality, arguments which have
played such a central and forceful part in the philosophical logic of the past few
decades, are in need of precise restatement and reassessment.

Finally, consider again the sort of argument that impressed many of the
early pioneers of positive free logics, the argument that the classical inference
pattern from

a is so and so,
to

There exists something that is
so and so,

is invalid when a is irreferential. The judgement seems warranted by the argu-
ment from

Vulcan is self-identical,
to

There exists something that is
identical with Vulcan,

an argument with an apparently true premise and a false conclusion. But the les-
son to be learned from FL*® is that if the classical inference pattern is construed
(in its simplest form) as having the structure

ANy(Ay/b)a

Therefore, 3x(Ay(Ay/b)x)

then the counterexample fails because the premise is false. On the other hand
when construed as having the structure
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Aa/x

Therefore, IxA

the premise could be true, and the counterexample thus succeeds. Both argument
patterns have some call on the name EXxistential Generalization. Hence the debate
between positive free logicians and others over the status of Existential Gener-
alization may often be only verbal, and it is one of the benefits of FL* to have
made this clear.

N

NOTES

. Here Vulcan is the putative planet, not the god.
For an example of such a logic, see [7].
For an example of such a logic, see [5].

See [7], p. 104. The basis of this distinction in ordinary language has been detailed
by Scales. Additionally, one may think of the distinction applied here to all simple
statements as an extension of a similar distinction logicians in the Le$niewski tradi-
tion are fond of making in the case of simple identity statements.

. See chapter IV. Scales’ treatment antedates Stalnaker’s treatment in [9] by almost
a decade.

. An example is provided in [8]. Let “R” abbreviate the set name “the Russell set.”
If s and ¢ are codesignative just in case s designates whatever individual ¢ designates,
then “R” and the definite description “(Ix)(x = R)” are codesignative. But whereas
“R = R” is true, “R = (Ix)(x = R)” is false in Scott’s treatment.

For example, Leonard [3] and Quine [6].
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