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On An Implication Connective of RM

ARNON AVRON

Introduction The Dunn-McCall system RM was developed and studied by
the "Entailment" school (mainly by Meyer and Dunn), but it can hardly be
called "relevance logic" because of theorems like -(A -• A) -> (B -+ B) and
{A -»B) v (B -> A) (see [1], 29.5); yet it is a strong and decidable logic which
still avoids A -+ (B -> A) and ~A -^> (A -+ B).

Some new light on RM is shed here (so we hope) by investigating an im-
plication connective D definable in it by (A -> B) v B. " D " has most of the
properties one might expect an implication to have in a paraconsistent logic1:
respecting M.P., the "official" deduction theorem, and a strong version of the
Craig interpolation theorem: RM \- A D B iff either RM \- B, or there is an
interpolant C for A and B. (In classical logic there is also the possibility that
\-~A.) These facts are all proved in Section 1.

In Section 2 we investigate /?Mas a system in the { — , v, ΛZ)} language.
We give a simple axiomatization of its {~D} fragment, which suffices for
characterizing the Sugihara matrix.2 In this fragment -> is definable (so the
Sobociήski logic3 is a proper subsystem of it), but v is not. We get the full sys-
tem RM by adjoining some natural axioms concerning Aw B and -(Aw B) to
its {~D} fragment. In contrast to extending with v the {—•} fragment, this
extension causes no essential changes.

From the simple classical laws concerning combinations of ~ with D, v,
and Λ, RM only lacks -(AD B) DA and -AD (AD B). By adding, in Sec-
tion 3, the first schema to RM, we get a three-valued logic equivalent to what
was called RM3 in [1], This system might be considered an optimal paraconsis-
tent logic, since its positive fragment (in the {D, Λ, V} language) is identical
with the classical one. It avoids ~ A D (AD B), but every proper extension of
it (closed under substitutions) is equivalent to PC.

Preliminaries The system RM is obtained from the system R by adding to
it the mingle axiom A -+ (A -• A). We assume the reader is acquainted with this
system and its properties, as described in [1], 29.3-4.
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A Sugihara matrix is a structure (S, <, ~, -•> in which (S, <> is a linearly
ordered set, and - is a unary operation satisfying the De-Morgan conditions:
— a — a; a < b => ~ b < ~ a; and a -> Z? is — # v Z? if a < &, —a /\b otherwise
(where v and Λ are the usual lattice operations). We call a G S designated iff
-a < a. (This definition is a version of Dunn's concept of Sugihara chain
appearing in [1], p. 421.)

Among the Sugihara matrices particularly important are the matrices Sz,
SQ, and Sj, S, (0). Sz, which we shall call here sometimes the Sugihara matrix,
consists of the integers with their usual order relation and where -a is taken to
be — a (SQ is based in the same way on the rational numbers). S,(0) is the sub-
matrix of Sz consisting of the integers between (and including) — / and /. S, is
Sj(O) — {0}. Meyer has proved Sz to be characteristic for RM.

By an extension of a system L we mean a set of sentences in the language
of L which contains all theorems of L and is closed under the rules of L and
under substitutions. Dunn has shown that any proper extension of RM has some
Si or S/(0) (1 < / < oo) as a characteristic matrix. It further follows from his
work ([1], 29.4, and [5]) that if Γis an i?M-theory and φ a sentence such that
Γ [ ^ φ , then there is a valuation v in SQ such that v(A) > 0 for any AGT, but
v(φ) < 0.

Section 1 The connective D of RM

def

1.1 Definition A D B =' (A -> B) v B.

1.2 Deduction theorem 3, A ^BiffS^ADB.

Proof: Suppose 3\-ADB.4 Since A \- (A -• B) -+ B and h# -> B, we have A h
( ( > l ^ ^ ) v 5 ] ^ 5 , i.e., ^ (- (A D B) -* i?. So 3, ^ h B in this case. For the
converse, suppose 3 (/ A D B. By Meyer's and Dunn's completeness theorems
for RM, there exists a valuation υ in 5 β such that v(φ) > 0 for every ψ E 3
and f 04 D 5 ) < 0 . Hence, v(B) < 0 and v(A -+ B) < 0, so t>(,4) > ι;(5). If
v(A) > 0, then obviously 3,A\tB. Otherwise v(B) < v(A) < 0 and \v(A)\ <
\v(B)\. Now define υ' by

y (φ) = \
iv(φ) otherwise.

It is easy to prove that υf is a well-defined valuation, that υ'(φ) > 0 for φ E
3 U {yl} and y'(5) (= v(β)) < 0. Hence, 3, A \f B.

1.3 Remarks
(a) The intuition behind the D -definition is that 3, A \- B iff either 3 \- B or
there is a proof of B in 3 from the hypothesis A that actually uses A, in which
case A -+ B must be provable in 3. This intuition is not correct in R and RM
since A^> B\-A-> {A tκB),b\λl neither ,4 -> {A Λ 5) nor 04 -• B) -• >4 ->. (A A
B) are theorems of RM. It is strange, therefore, that it leads to correct results.
(b) In a language containing a propositional constant t and in RM1 (the conser-
vative extension of RM by the axioms t and / -+ (5 -• 5)), 4̂ D 5 is equivalent
to A Λ z1 -> i? (we show this immediately below). Now AΛt-+B serves in R and
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RM to define the enthymematic implication (see [2] and [7]), for which the
deduction theorem is easily proved. This can be used to give another proof
of 1.2.

To show that the claimed equivalence holds, we note first that since
\—rt B-+(t -•£), we have that f—-t B -> (A Λ t -* B). Obviously also \—t {A ->
KM KM KM

B)-*(AΛt-> B), so \^p(A DB)->(AΛt-+B).
For the converse we observe that from the following three theorems of

RM1: t, t-+ (~t-+t) and t -> {A ->A), we easily get that ^p-t^ {A ->^4),

or \τ—r,~A -+ (A -+ t). Since also \πu~A -* (A -* ^4), we have that h—rt~A -»
/τ./V7 /\ivi KΛΪ

(̂ 4 -• y4 Λ 0 and so (^7^4 v (̂ 4 -• v4 Λ 0 Using distribution, we have also

I ^ ( v 4 Λ ί ) v ( i 4 - * i 4 Λ θ . But obviously [^pA Λ t -+ [(A Λ t -+ B) -+ B]

and ^ ( Λ ^AΛt)^[(AΛt-+B)-+(A-+B)]. Hence ^ [ ( Λ Λ ί - B) -

5] v [ ( V 4 Λ / - > £ ) -* (,4-•£)]. From this | ^ ( > 4 Λ / - » 5 ) -*(/4Dfi) follows at

once.
1.4 Craig interpolation theorem \-A D B iff \-B or there is a sentence C,
containing only propositional variables common to A and B, such that \-A D
C, VC D B.

Proof: We confine ourselves to sentences in the language of A D B. Suppose
\-A D B and \fB. We assume that there is no interpolant C and then get a con-
tradiction. Let S = {C|K4 D C, and C only contains variables common to A
and B}. By 1.2, S is closed under M.P. and adjunction. Hence (and since \fB),
our no-interpolant assumption and 1.2 again imply that S \f B. Let To 3 S be a
maximal theory in the language of S such that Γo 1/ B, and let 7\ be a maximal
extension of Γo in the language of B such that T{ \f B. Both To and Tx are eas-
ily seen to be prime,5 and 7\ is a conservative extension of To.

Now, To U {̂ 4} is also a conservative extension of Γo, for if T0U {A} \-
D, D in the language of To, then there are Theorems C{ . . . Cn of Γo such that
h4 D (Cj D ( . . . (Crt D £>) . . . ) )• Therefore Cj D ( . . . D (Cn D D ) . . . ) E S C
Γo, and To \- D as well.

Let Γ2 be a maximal conservative extension of To in the language of A,
which contains A. T2 is also prime.

We now define three equivalence relations ~, for sentences in the language
of 7/(/ = 0, 1,2) by:

Let [φ]7 be the equivalence class of φ relative to —/, with Sj the set of equiva-
lence classes. Let < / 5 ΛZ , VM -*/, -/ be defined on 5/ in the obvious manner. By
the completeness proof of RM and its extensions (see [5]), 5/ is a finite Sugihara
matrix in which exactly the theorems of 7} are true under the canonical valua-
tion Vj (defined by f/(φ) = [φ]1 for every φ). Moreover, since To is prime and
the Tt (i = 1, 2) are conservative extensions of it, the mappings Λ, : 5 0 -* S/ (/ =
1, 2) defined by Λ([^]°) = [φΫ are embeddings of 5 0 in S, for which:
(*)Λ, !;o = ι ; / ( / = l , 2 ) .

It is now easy to construct two embeddings g, (/ = 1, 2) of S/ in the infi-
nite Sugihara matrix Sz in such a way that (**) gγhx = #2^2- (For example, So
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can be mapped on a finite arithmetical sequence with a large enough difference,
and then the definition of g, can be completed.)

Finally, we define v(P) as giVj(P) for P atomic in the language of Γ, . By
(*) and (**) υ is well defined, and υ(φ) = g//z/(Φ) for every φ in the language
of Γ,. In particular, since T2\- A and Tλ \f B9 υ(A) is designated and υ(B) is
not. This contradicts the validity of A D B.

1.5 Remark In [1], pp. 416-417, it is shown that the Craig theorem fails for
A -• B in RM, and it was conjectured that, "There is an- appropriate version of
that theorem, perhaps involving sentential constants, which does hold for RM".
Theorem 1.4 gives an affirmative answer to this conjecture: using 1.3(b), 1.4
entails that if RM' h A Λ t -> B, then there is an interpolant C such that RM' \-
AM-+C, RM' YCM-^B. (Note that C may contain /.6)

1.6 Theorem The {D, Λ, V} fragment of RM is identical to the correspond-
ing fragment of the system LC1 of Dummett.

Proof: This is essentially proved in [6], taking 1.3(b) into account.

1.7 Theorem on definability
(a) -» is definable in RM using ~ and D.
(b) D is undefinable in RM using ~ and -+.
(c) v is undefinable in RM using ~ and D.
(d) -• is undefinable in RM using ~ and v.
(e) -+ is undefinable in RM using D, v and Λ.

Proof: (a) We leave it to the reader to check that A -» B is equivalent in the
Sugihara matrix to -(AD B) D~ (BDA). We note, however, that -> is most
naturally defined in the {-, D, Λ} language by (A D B) Λ (~B D -A).

(b) For any sentence A in the {—>} language and a valuation v in the
Sugihara matrix |y(^4)| = max ( | u ( P i ) | . . . \v(Pn)\), where Px...Pn are the
atomic variables of A. P D Q, on the other hand, lacks this property. (If
v(P) = 1, υ(Q) = 0, then v(P D Q) = 0.)

(c) Call an atomic variable P a 0-atom of φ if for any valuation v in Sz

v(φ) =0=> v(P) = 0. NowpMq has no 0-atom, but any sentence in the {-, 3}
language has. This is easily shown by induction on the length of φ: if φ is atomic
the claim is trivial. Also, any 0-atom of B is also a 0-atom of ~B and ADB.

(d)-(e) We leave the proofs to the reader.

Section 2 Axiomatizing RM and RM3

2.1 The system RM3

Al AD (BDA)

A2 AD(BDC) D. (A D B) D (A D C)
A3 A D — A
A4 ADA
A5 (~A. DB)D. (ADB)DB
A6 AD. -BD -(A D B)
A7 ~(ADB)D ~B
A8 (A D B) D. -(A D B) D A.
Inference rule. A, A D B/B (M.P.)
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2.2 Theorem All theorems of RM^ are valid in the Sugihara matrix and so
are provable in RM.

Proof: By 1.2, in order to prove the validity of a sentence of the form A\ D
((A2 D . . . D (An D B)). . .) in the Sugihara matrix, it is enough to consider
valuations in which A\.. .An all get designated values and show that B also gets
a designated value. We leave details to the reader.

2.3 Completeness Theorem Let L be an extension of RMS. Let φ be a sen-
tence in this language such that L\f φ. Then there is a finite Sugihara matrix in
which all theorems of L are valid but φ is not.

Proof: Let 5 be a Sugihara matrix.
The operation Don S (corresponding to the connective D) is defined by:

{—a a < b < ~a

b otherwise.

We may suppose that L is an extension by schemata of RMS. Suppose L \f φ
and let P i . . . Pn be the sentenial variables of φ. We deal from now on only with
sentences in the {P{.. ,Pn} language.

As usual, the presence of A\ and A2 provides a deduction theorem for
RM5, and using A5 we can find a complete L-theory 3 such that 3 \f φ. Define

def

A ~3 B = 3 h A D B, 3 (- B D A, 3 (- -A D ~B and 3 (- ~B D -A. ~ is an
equivalence relation. Let [A] denote the equivalence class of A and let S be the
set of equivalence classes. Further, define -[A] = [~A] and [A] < [B] iff
3 \- A D B and 3 | — B D ~A. By definition of ~ 3 and A1-A4, - and < are
well defined. < partially ordered S and the De Morgan conditions are satisfied.

We now show that < is linear. First, we note that by A8 (using Al):

(**) RM5\-~(A DB)D (BDA).

Now, if 3 h A D B and 3 \- ~B D ~A9 then [A] < [B]. Otherwise, by
completeness of 3, 3 h -{A D B) or 3 h ~(~B D -A).

If 3 h -(A D B), then by (**) 3 h B D A. Also, by A7, 3 h ~B and so
3 I- ~A D ~B. Hence, [B] < [A].

If 3 h ~(~B D -A), then by (**) 3 h -A D ~B and by A7, A4, and Al,
3 \-BDA. SO again [B] < [A].

(S, <, —) is, therefore, a Sugihara matrix. We now show that if D is
defined on S according to (*), then [A] D IB] = [A D B] for all A, B. We
argue by cases:

First, suppose [A] < [B] < ~ [A]. Then: ( i ) 3 M D 5 , (ii) 3 h £ D ~Λ,
(iii) 3 h ~fi D ~Λ, (iv) 3 h ^ D ~ B . Now, by (ii), (iii) and A5, 3 h -A, and
so: (1) 3\- (ADB)D ~A. From (iv) and A6, 3 h A D -(A D B) and so: (2)
3 h — . 4 D -{A D B). (i) gives (3) 3\- ~AD (AD B). Finally, by (i), A8,
and A3: (4) 3 h ~G4 D £) D — A . (l)-(4) show, by definition, that (A D B)
~z~A, as desired.

Now suppose that one of (i)-(iv) is not true. We show that A D B — 3 B in
this case. Since B D (A D B) and ~(A D B) D ~B are axioms, we must only
show: (a) 3\- ~BD -(A D B), (b) 3 h (A D B) D B.
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Subcase (i). 3 \f A D B. Then 3 \- -(A D B) and (a) is true. By A8, we also
have 3 h (A D B) D A and so, by A2 and (A D B) D (A D B)9 we get (b) as
well.
Subcase (ii). 3\r{BD~A). Then 3 \- ~(B D -A). By A7 and A4, 3\-A. (a)
then follows from A6 and (b) from AD (AD B) D B.
Subcase (iii). 3 (/ ~B D -A. Similar to case (ii).
Subcase (iv). 3 \f A D ~B. Then 3 h -(A D ~B) and by A7, A4 3 \- 5, and (b)
follows. Also, by A8 3 h (Λ D ~5) D A and so 3 h ~B D A. Using A6, (a) is
true as well.

Using [A] D [B] = [A D B], it is easy to prove, for any A, that [X] G
{[Λ]» [~Λ] [ΛiJ» [~Pn]}> and that υo(A) = [A], where y0 is the canoni-
cal valuation (defined by vQ(P) - [P] for P atomic). As a consequence, S is
indeed finite.

We finally show that [A] is designated in S (i.e., ~[A] < [A]) iff 3 \-A.
Since every substitution instance of L-theorems is provable in 3, this suffices by
now to prove that S is an L-matrix. Since vo(φ) = [φ] and 3 \f φ, that φ is not
valid in S follows as well.

Suppose then that 3 (- A. By Al then 3 \- ~A D A, 3 [• ~A D ~~A, so
~[A] = [~A]<z[A]. Conversely, if -[A] < [A], then 3\-~ADA. Finally,
by A5 and .4 DA,3\-A.

2.4 Theorem >l«y proper extension of RM3 has a finite characteristic
matrix which belongs to the sequence: Slf Sj(0), S2, S2(0), S3, S3(0).... More-
over, the logics corresponding to this sequence are all distinct and form a
decreasing sequence.

Proof: Using 2.3, the proof proceeds exactly like that of the analogous theorem
for RM. The only difficulty is to show that the logics corresponding to the var-
ious Sh Sj(O) are all distinct. Dunn's proof for the RM case uses the
"Dugundgi sentences" which are disjunctions of sentences of the form p o q
(/?, q atomic). Now p <* q is equivalent in RM to (p -* q)° (q -+ p), i.e., to
[(P-+Q) ~* ~(Q-+P)]> and so can be expressed, by 1.7(a), in the language of
RM^. However, v is not available in this language, so we cannot directly use
Dugundgi sentences. Nevertheless, we can replace any schema B of the form
Aι v A2 v . . . v An by the following schema B*9 in which q can be any atomic
variable not occurring in B:

B* = (Aι Dq)D ((A2 D q) D. . .D ((AnD q) D q). . . ) .

We show that B is valid in a Sugihara matrix S iff B* is. Since ^B D B*,
one direction is trivial. For the other direction, suppose B is not valid in S. Then
there is a valuation v in S which simultaneously falsifies Au A2,... ,An. We
may assume that v is not defined for q and extend its definition by letting
v(q) - max(v(A{)9 v(A2),... ,υ(An)). Then we get v(B*) = v(q), which is not
designated. Hence B* is not valid in S too.

Using the above observation, it is clear how to transfer any Dugundgi sen-
tence B to a sentence in RM3 language which has the same relevant properties
(to the proof of the theorem) that B has.
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As is clear from 1.7, RM3 is stronger in its expressive power than RM~
(Sobociήski's three-valued logic), but weaker than the full system RM.S To get
a system equivalent to RM we must add to RM3 language either v or Λ with
appropriate axioms. We choose to add v.

2.5 Definition The system RMD: This is RM3 augumented by the fol-
lowing:

A9 A D (A v B)
A10 B D (A v B)
All (A D C) D (BD C) D ((A v B) DC)
All ~(AvB) D -A
A13 ~(AvB)D~B
A14 ~AD~BD~(A\/B).

2.6 Theorem RMD is equivalent to RM and appropriate versions of
2.2-2.4 (in the language of ~, D, v) hold for it. Moreover, all extensions of
RM result by adding A9-A14 to RM3 's extensions.

Proof: Like in 2.2-2.4, we only note that according to the definition of < (in
the proof of 2.3), A9-A14 is just what is needed for proving the identity [A v
B] = max([A], [B]).

2.7 Remark A9-A14 are the most obvious introduction and elimination
laws concerning Ay B and ~(A\ι B). An analogous set of axioms can charac-
terize Λ independently, (Λ is definable in RMD using De Morgan laws.) We
could, of course, take both v and Λ as primitive and as axioms—the usual posi-
tive axioms concerning them and all forms of De Morgan laws.

2.8 Corollary If we add -A D (AD B) to either RM or RM5, we get clas-
sical logic (in the corresponding languages).

Among RM axioms, there is only one that may seem unnatural: A8. If we
strengthen it in order to make it an analogue of A7, we get a very interesting
system:

2.9 Definition The system RMj? (RMS3) is the system resulting from the
replacement of A8 in RMD (RM3) by

A8r: -(A DB). DA.

The following Corollaries of 2.4-2.6 are what makes RM^ interesting:

2.10 Theorem
(a) RM^ (RM33) axiomatizes the Sugihara matrix Sx (0) and is therefore equiv-
alent to RM3 (see [1], 29.4).
(b) ~A D (AD B) is not provable in RM3

D and RM3

D is a maximal logic hav-
ing this property. In fact, classical PC is its only extension. The same holds for
the {~D} fragment.
(c) The positive fragment of RM3

D (in the {D, v, Λ} language) is identical to
that of classical PC, and it is the only extension of RMD (besides PC itself)
having this property.
(d) RM3

D and RMS3 can be also axiomatized by adding the Peirce's law to
RMD and RM5, respectively.
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RM^ is, by 3.3, a three-valued logic. For the reader's convenience, we dis-
play here the corresponding matrices with {T, F, 1}:

~ \ D \ T \ I \ F \ V \ T \ I \ F \ Λ I T I / I F

*ΓF T I F T T T T I F

*I I T I F Til I I F

FT- T T T T I F F F F

NOTES

1. See [3] for the meaning of this.

2. Which is, by a theorem of Meyer, characteristic for RM. See [1], 29.3, and prelimi-
naries.

3. Developed in [9] and proved by Parks to be identical with the {--•} fragment of
RM. (See [1], pp. 148-149.)

4. We omit, henceforth, subscripts under \- whenever no danger of confusion arises.

5. 3 is prime i f3h-4v2?=>3 |--4or3 |-£.

6. This is an essentially known result; see Corollary 1 on p. 52 of [8].

7. I want to thank Professor D. Gabbay for first suggesting to me this connection to
LC.

8. It is surprising therefore that although the language of RM3 is weaker than that of
RM, it has all of RM important properties, as 2.3-2.4 show. By this it differs in an
essential way from RM~, which cannot distinguish between the various finite Sugi-
hara matrices and between them and the infinite one.
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