Solving Functional Equations at Higher Types; Some Examples and Some Theorems

RICHARD STATMAN*

The solvability of higher type functional equations has been studied by a number of authors. Roughly speaking the literature sorts into four topics: constructive solvability (e.g., Gödel [5], Scott [7]); solvability in all models, i.e., unification (e.g., Andrews [1], Statman [8] and [9]); solvability in models of A.C. (e.g., Church [2], Friedman [4]); and the solvability of special classes of equations (e.g., Scott [7]). In this note we shall consider yet a fifth topic, namely, the solvability of functional equations in extensions of models.

Our main result is the no counterexample theorem. This theorem equates the unsolvability of E in every extension of \mathfrak{A} with the solvability of some other \widetilde{E} in \mathfrak{A}. The theorem can be iterated and applied to λ theories (in extended languages) as well as to models. Thus, it can be used to explain, in a general way, a phenomenon well illustrated by the case of $\lambda \sqcup$.
$\lambda \sqcup$ is the theory of upper semilattices of monotone functionals. $\lambda \sqcup$ has the property that each of its models can be extended to solve all the fixed point equations

$$
M x=x
$$

This is a simple consequence of a Scott-type completion argument. It is also an immediate corollary to the no counterexample theorem.

We adopt for the most part the notation and terminology of [8] and [9].
Types τ have the form $\tau(1) \rightarrow(\ldots(\tau(t) \rightarrow 0) \ldots)$.
If S is a set of objects (terms, functionals, etc.), δ^{τ} is the set of all members of \mathcal{S} of type τ.

[^0]If Σ is a set of constants $\Lambda(\Sigma)$ is the set of all terms with constants from $\Sigma . \bar{\Lambda}(\Sigma)$ is the set of all closed members of $\Lambda(\Sigma) . \Lambda=\Lambda(\phi)$.
M, N range over $\bar{\Lambda}$.
B, C, K, I, W, S are the usual combinators.
$\mathfrak{A}, \mathfrak{B}, \ldots$ range over models of the typed λ calculus.
\mathfrak{H}^{*} is the result of adjoining infinitely many indeterminates of each type to \mathfrak{A}.
$\mathfrak{R}=\mathbb{R}_{\tau} \subseteq \underbrace{\mathfrak{A}^{\tau} \times \ldots \times \mathfrak{A}^{\tau}}_{n}$ is logical if $\mathbb{R}\left(\Phi_{1}, \ldots, \Phi_{n}\right) \Leftrightarrow \forall \Psi_{1} \ldots \Psi_{n} \mathbb{R}\left(\Psi_{1}\right.$,
$\left.\ldots, \Psi_{n}\right) \rightarrow \mathbb{R}\left(\Phi_{1} \Psi_{1}, \ldots, \Phi_{n} \Psi_{n}\right)$
(this is, of course, no restriction on \mathbb{R}_{0}).
Definition Functional equations $E=E(\vec{y}, \vec{x})$ have the form

$$
M \vec{y} \vec{x}=N \vec{y} \vec{x}
$$

where $M, N \in \bar{\Lambda}$. By λ abstraction this is perfectly general. Given the parameters \vec{y}, we wish to solve for \vec{x}.
Example 1. Solvability in all models for all choices of parameters: In this case we may assume $\vec{y}=\phi[9]$. Then E is solvable in all models if and only if $M \vec{x}$ and $N \vec{x}$ are unifiable.

Functional equations are closed under conjunction (see [4]).
Example 2. (Dezani) Invertibility: $B M x=I \wedge B x M=I$ is solvable in all models if and only if M is a hereditary permutation [3]. A solution, if it exists, is given by $\lambda y \underbrace{M(\ldots(M y)}_{n} \ldots)$ for some n.

Functional equations are in general not closed under negation; however, in one important case, they are.
Example 3. Models of A.C. ([4]): Let \mathfrak{A} be a model of A.C. and let $\vec{\Phi} \subseteq \mathfrak{A}$. Then either $E(\vec{\Phi}, \vec{x})$ is solvable in \mathfrak{A} or

$$
\lambda \vec{x} z \vec{x}(M \vec{\Phi} \vec{x})=\lambda u v u \wedge \lambda \vec{x} z \vec{x}(N \vec{\Phi} \vec{x})=\lambda u v v
$$

is solvable in \mathfrak{A} (so $E(\vec{\Phi}, \vec{x})$ is not solvable in any extension of \mathfrak{A}).
Definition $\quad \mathfrak{B} \supseteq \mathfrak{A}$ is called functionally complete (over \mathfrak{A}) if no extension of \mathfrak{H} solves more functional equations, with parameters from \mathfrak{A}, than \mathfrak{B}.

Example 4. Upper semilattices of monotone functionals: Let $\perp \in 0\left(\perp_{\tau} \equiv\right.$ $\lambda x_{1} \ldots x_{t} \perp$) and $\sqcup \equiv \sqcup_{\tau} \in \tau \rightarrow(\tau \rightarrow \tau)$ (for greater clarity we shall infix \sqcup). Let $\lambda \sqcup$ be the following equations:

$$
\begin{aligned}
\perp \sqcup I & =I \\
\lambda x x \sqcup x & =I \\
\lambda x y x \sqcup y & =\lambda x y y \sqcup x \\
\lambda x y z x \sqcup(y \sqcup z) & =\lambda x y z(x \sqcup y) \sqcup z \\
\lambda x y x \sqcup y & =\lambda x y z(x z) \sqcup(y z) \\
\lambda x y z(x y) \sqcup x(y \sqcup z) & =\lambda x y z x(y \sqcup z) .
\end{aligned}
$$

Let \mathfrak{A} be a model of $\lambda \sqcup$. Then the fixed point equation

$$
M x=x
$$

is solvable in every functionally complete extension of \mathfrak{A}. For if $\Phi, \Psi \in \mathfrak{A}$ define $\Phi \subseteq \Psi \Leftrightarrow \Phi \sqcup \Psi=\Psi$, then \subseteq is a partial order and a logical relation. Thus we can apply a Scott-type completion argument.

Given E, for $z_{0}, z_{1} \in 0$ define $\widetilde{E}_{n} \equiv \widetilde{E}_{n}\left(z_{0} z_{1} \vec{y}, \vec{u}\right)$ to be

$$
\begin{gathered}
\lambda \vec{x} z_{0}=\lambda \vec{x} u_{1} \vec{x}(M \vec{y} \vec{x})(N \vec{y} \vec{x}) \wedge \\
\lambda \vec{x} u_{1} \vec{x}(N \vec{y} \vec{x})(M \vec{y} \vec{x})=\lambda \vec{x} u_{2} \vec{x}(M \vec{y} \vec{x})(N \vec{y} \vec{x}) \wedge \\
\cdot \\
\cdot \\
\lambda \vec{x} u_{n} \vec{x}(N \vec{y} \vec{x})(M \vec{y} \vec{x})=\lambda \vec{x} z_{1} .
\end{gathered}
$$

A solution to $\widetilde{E}_{n}(a b \vec{\Phi}, \vec{u})$ for $a \neq b$ is called a counterexample to $E(\vec{\Phi}, \vec{x})$. $E(\vec{\Phi}, \vec{x})$ is said to be no counterexample interpretable in \mathfrak{A} if for each $a \neq b$ and $n, \widetilde{E}_{n}(a b \vec{\Phi}, \vec{u})$ has itself a counterexample in \mathfrak{A}. The reader might wish to compare these notions to [6].

Example 5. The fixed point equation $M x=x$: The fixed point equation is no counterexample interpretable in any model of $\lambda \mathrm{L}$. For put $M^{n}=$
 $\widetilde{E}_{n}(a b, \vec{u})$. We have $a=\Psi_{1} M^{1} M^{2} M^{1} \subseteq \Psi_{2} M^{2} M^{3} M^{2} \subseteq \Psi_{3} M^{3} M^{4} M^{3} \subseteq \ldots=b$ so $a \subseteq b$. Symmetrically $b \subseteq a$ so $a=b$. The rest is simply an exercise in the definition. Observe that this gives an alternative proof of Example 4.

The No Counterexample Theorem

$E(\vec{\Phi}, \vec{x})$ is solvable in an extension of $\mathfrak{A} \Leftrightarrow$
$E(\vec{\Phi}, \vec{x})$ has no counterexample in \mathfrak{A}.
Proof: Clearly it suffices to show \vDash, so assume that $E(\vec{\Phi}, \vec{x})$ has no counterexample in \mathfrak{A}. Let $T_{1} \equiv M \vec{\Phi}$ and $T_{2} \equiv N \vec{\Phi}$. Define \sim on $\mathfrak{A}^{*} \times \mathfrak{A}^{*}$ by $\Phi_{1} \sim \Phi_{2} \Leftrightarrow$ $\exists \Psi \Phi_{1}=\Psi\left(T_{1} \vec{x}\right)\left(T_{2} \vec{x}\right) \wedge \Phi_{2}=\Psi\left(T_{2} \vec{x}\right)\left(T_{1} \vec{x}\right)$. Let \approx be the transitive closure of \sim. Since \sim is reflexive and symmetric, \approx is an equivalence relation.
(1) ~ is a logical relation.

In particular, if $y \notin \vec{x}$ and $\Phi_{1} \sim \Phi_{2}$ then $\lambda y \Phi_{1} \sim \lambda y \Phi_{2}$. Thus
$(2) \approx$ is a logical relation.
Thus, as in Example 8 of [13], putting [Φ] $=\{\Psi: \Phi \approx \Psi\}$ and $[\Phi][\Psi]=$ $[\Phi \Psi]$, we obtain a model $\mathfrak{B}=\left\{[\Phi]: \Phi \in \mathfrak{A}^{*}\right\}$. Moreover, the map $\Phi \mapsto[\Phi]$ is a total homomorphism of \mathfrak{A}^{*} onto \mathfrak{B}.

Now suppose $\Phi_{1}, \Phi_{2} \in \mathfrak{Y}, \Phi_{1} \neq \Phi_{2}$, and $\Phi_{1} \approx \Phi_{2}$. By (2) there exists a, $b \in \mathfrak{A}^{\circ}, a \neq b$, and $a \approx b$. Thus, there exists $a_{1}, \ldots, a_{n-1} \in \mathfrak{A}^{\circ}$ such that $a \sim$ $a_{1} \sim \ldots \sim a_{n-1} \sim b$. Hence, there exists $\Psi_{1}, \ldots, \Psi_{n} \in \mathfrak{U}^{*}$ such that

$$
\begin{aligned}
a & =\Psi_{1}\left(T_{1} \vec{x}\right)\left(T_{2} \vec{x}\right) \wedge \\
a_{1} & =\Psi_{1}\left(T_{2} \vec{x}\right)\left(T_{1} \vec{x}\right) \wedge \\
a_{1} & =\Psi_{2}\left(T_{1} \vec{x}\right)\left(T_{2} \vec{x}\right) \wedge \\
\cdot & \\
\cdot & \cdot \\
a_{n-1} & =\Psi_{n}\left(T_{1} \vec{x}\right)\left(T_{2} \vec{x}\right) \wedge \\
b & =\Psi_{n}\left(T_{2} \vec{x}\right)\left(T_{1} \vec{x}\right) .
\end{aligned}
$$

Thus

$$
\begin{aligned}
& \lambda \vec{x} a=\lambda \vec{x}\left(\lambda \vec{x} \Psi_{1}\right) \vec{x}\left(T_{1} \vec{x}\right)\left(T_{2} \vec{x}\right) \wedge \\
& \lambda \vec{x}\left(\lambda \vec{x} \Psi_{1}\right) \vec{x}\left(T_{2} \vec{x}\right)\left(T_{1} \vec{x}\right)=\lambda \vec{x}\left(\lambda \vec{x} \Psi_{2}\right) \vec{x}\left(T_{1} \vec{x}\right)\left(T_{2} \vec{x}\right) \wedge \\
& \cdot \\
& \cdot \\
& \lambda \vec{x}\left(\lambda \vec{x} \Psi_{n}\right) \vec{x}\left(T_{2} \vec{x}\right)\left(T_{1} \vec{x}\right)=\lambda \vec{x} b .
\end{aligned}
$$

So $\widetilde{E}_{n}(a b \vec{\Phi}, \vec{x})$ is solvable in \mathfrak{A}^{*}, therefore it is solvable in \mathfrak{A}. This is a contradiction.

Thus $\mathfrak{A} \subseteq \mathfrak{B}$.
Finally, $[\vec{x}]$ is a solution of $E(\vec{\Phi}, \vec{x})$ in \mathfrak{B}.
Corollary $1 E(\vec{\Phi}, \vec{x})$ is solvable in every functionally complete extension of $\mathfrak{A} \Leftrightarrow E(\vec{\Phi}, \vec{x})$ is no counterexample interpretable in \mathfrak{A}.
Corollary $2 \quad E(\vec{\Phi}, \vec{x})$ is solvable in some extension of $\mathfrak{A} \Leftrightarrow$ it is solvable in some total homomorphic image of \mathfrak{A}^{*} which extends \mathfrak{A}.
Corollary $3 \quad M \vec{x}=N \vec{x}$ is not solvable in any model \Leftrightarrow for some n

$$
\begin{gathered}
\lambda \vec{x}(\lambda x y x)=\lambda \vec{x} u_{1} \vec{x}(M \vec{x})(N \vec{x}) \wedge \\
\lambda \vec{x} u_{1} \vec{x}(N \vec{x})(M \vec{x})=\lambda \vec{x} u_{2} \vec{x}(M \vec{x})(N \vec{x}) \wedge \\
\cdot \\
\cdot \\
\cdot \\
\lambda \vec{x} u_{n} \vec{x}(N \vec{x})(M \vec{x})=\lambda \vec{x}(\lambda x y y)
\end{gathered}
$$

is solvable in every model.
Example 6. Consistency ([11]): $M=N$ is false in every nontrivial model \Leftrightarrow $u M=\lambda x y x \wedge u N=\lambda x y y$ is solvable in every model.
Definition Functional equations of the form $M \vec{x}=\lambda x y x$ or equivalently $M \vec{x}=\lambda x y y$ are called isolated. Functional equations of the form $M \vec{x}=N$ are semi-isolated.
Example 7. Semi-isolated functional equations: $M \vec{x}=N$ has a solution in all models \Leftrightarrow it has a λ definable (possibly with a type 0 parameter) solution in \mathcal{P}_{n} for all sufficiently large n ([11]). Here n depends only on N.

Example 5 continued: Let Σ consist of \perp, \sqcup, and constants $F \in \underbrace{0 \rightarrow(\ldots(0}_{n} \rightarrow$ $0) \ldots$) for various n. For $T \in \bar{\Lambda}(\Sigma)$ put $T^{n} \equiv \underbrace{T(\ldots(T}_{n} \perp) \ldots)$. We shall
show that $T x=x$ is solvable in every model of $\lambda \sqcup$ if and only if $\lambda \sqcup \vdash T^{n+1}=$ T^{n} for some n. Note that, since the axioms of $\lambda \sqcup$ are typically ambiguous [12], the corresponding result follows for the typed λ calculus.

For this it suffices to construct a universal model of $\lambda \sqcup$ in which \subseteq is locally finite. With a little more care we can construct such a model which is generated by its 1 -section. In this model \subseteq is not only locally finite but also recursive. The decidability of the word problem for $\lambda \sqcup$ follows immediately.

As a preliminary we need some simple results about the first-order theory of upper semilattices with smallest element and monotone functions. Consider the first-order language with the constant \perp, function symbols F of various arities, the binary function symbol \sqcup (infixed), and the binary relation symbol \subseteq. Let J be the following set of sentences:

```
\(\forall x x \sqcup x \subseteq x\)
\(\forall x \quad \perp \subseteq x\)
\(\forall x \forall y \quad x \sqcup y \subseteq y \sqcup x\)
\(\forall x \forall y \forall z \quad x \sqcup(y \sqcup z) \subseteq(x \sqcup y) \sqcup z\)
\(\forall x \forall y \forall z \quad(x \sqcup y) \sqcup z \subseteq x \sqcup(y \sqcup z)\)
\(\forall x \forall y \quad x \subseteq x \sqcup y\)
\(\forall x \forall y \forall z \quad x \subseteq y \wedge y \subseteq z \rightarrow x \subseteq z\)
\(\forall x y \forall u v \quad x \subseteq u \wedge y \subseteq v \rightarrow x \sqcup y \subseteq u \sqcup v\)
\(\forall x_{1} \ldots x_{n} \forall y_{1} \ldots y_{n} x_{1} \subseteq y_{1} \wedge \ldots \wedge x_{n} \subseteq y_{n} \rightarrow F x_{1} \ldots x_{n} \subseteq F y_{1} \ldots y_{n}\).
```

Obviously, if we define $x=y \leftrightarrow x \subseteq y \wedge y \subseteq x$ then $=$ is a congruence. For what follows it is convenient to think of the terms of J as independent of the association of U's and the order of arguments of U's. This is harmless since U is associative and commutative.

We write $a \subseteq b$ if a is a subterm of $b . a \preccurlyeq b \Leftrightarrow \exists c \subseteq b \mathcal{J} \vdash a \subseteq c . a$ is in normal form if
$a \equiv \perp$,
$a \equiv F a_{1} \ldots a_{n}$ where each a_{i} is in normal form, or
$\mathrm{a} \equiv F_{1} a_{11} \ldots a_{1 n_{1}} \sqcup \ldots \sqcup F_{m} a_{m 1} \ldots a_{m n_{m}}$ where each $F_{i} a_{i 1} \ldots a_{i n_{i}}$ is in normal form and $i \neq j \rightarrow \mathcal{J} H F_{i} a_{i 1} \ldots a_{i n_{i}} \subseteq F_{j} a_{j 1} \ldots a_{j n,}$.
The following facts are easily verified:
(1) $J \vdash F a_{1} \ldots a_{n} \subseteq a \sqcup b \rightarrow \mathcal{J} \vdash F a_{1} \ldots a_{n} \subseteq a \vee \mathcal{J} \vdash F a_{1} \ldots a_{n} \subseteq b$.
(2) $\mathfrak{J} \vdash F a_{1} \ldots a_{n} \subseteq G b_{1} \ldots b_{m} \rightarrow F \equiv G \wedge$ for $1 \leq i \leq n \mathfrak{J} \vdash a_{i} \subseteq b_{i}$.
(3) $J H F a_{1} \ldots a_{n} \subseteq \perp$.
(4) For each a there is a unique normal b such that $J \vdash a=b$.
(5) If $a \leq b \wedge \mathcal{J} \vdash b \subseteq c$ then there exists $d \subseteq c$ such that $\mathcal{J} \vdash a \subseteq d$.
(6) If a is normal and $b \leftrightarrows a$ then $3 \nvdash a \subseteq b$.
(7) \preccurlyeq is transitive, reflexive, and $a \preccurlyeq b \wedge b \preccurlyeq a \Leftrightarrow J \vdash a=b$. Let $J_{a}=\mathfrak{J} \cup$ $\{b \subseteq c: b, c \nless a\}$.
(8) $J_{a} \vdash b \subseteq a \Rightarrow \mathfrak{J} \vdash b \subseteq a$.

Let \mathbb{Q} be the free model of \mathfrak{J}. We consider \mathbb{Q} modulo $=$ as an algebra with $x \subseteq$ $y \Leftrightarrow x \sqcup y=y$. Since \mathscr{P}_{ω} contains all functions on its ground domain \odot_{ω}°, we may assume that this algebra $\subseteq \mathscr{P}_{\omega}$, and that its domain is $\mathscr{P}_{\omega}^{\circ}$. Let \mathfrak{M} be its Gandy hull in \mathscr{P}_{ω} ([11]; briefly, to build \mathfrak{M} take all elements of $\mathscr{P}_{\omega} \lambda$-definable from
parameters in Q, and "collapse" the result to an extensional model of genuine set theoretic functionals).

Now define $\Phi \sqcup \Psi=\lambda z(\Phi z) \sqcup(\Psi z)$ and define a logical relation $\subseteq=$ $\subseteq{ }_{\tau}$ on by $\Phi \subseteq \Psi \Leftrightarrow \Phi \sqcup \Psi=\Psi$.

Claim $\quad \Phi \subseteq \Psi \Leftrightarrow \Phi \sqcup \Psi=\Psi$.
Proof: By induction on types. The basis case is by definition so we proceed to the induction step. Suppose $\Phi \subseteq \Psi$. By induction hypothesis $X \subseteq X$, for X of lower type, so $\Phi X \subseteq \Psi X$. Thus by induction hypothesis $\Phi X \sqcup \Psi X=\Psi X$. Thus $\Phi \sqcup \Psi=\Psi$ by definition of \sqcup. Now suppose $\Phi \sqcup \Psi=\Psi$. Now \subseteq is a partial ordering of its field. In addition, by the construction of $\mathfrak{M}, \perp \subseteq \perp, F \subseteq F$ and $\sqcup \subseteq \sqcup$ so by the fundamental theorem of logical relations ([13]) $\forall x x \subseteq x$. Thus \subseteq is a partial ordering. Suppose $X_{1} \subseteq X_{2}$. We have $\Phi X_{2} \sqcup \Psi X_{2}=(\Phi \sqcup$ $\Psi) X_{2}=\Psi X_{2}$ so by induction hypothesis $\Phi X_{2} \subseteq \Psi X_{2}$. But $\Phi X_{1} \subseteq \Phi X_{2}$ so $\Phi X_{1} \subseteq \Psi X_{2}$. Hence $\Phi \subseteq \Psi$.

In particular, $\mathfrak{M} \vDash \lambda \sqcup$, i.e., $\lambda \sqcup \vdash T_{1} \subseteq T_{2} \Rightarrow \mathfrak{M} \vDash T_{1} \subseteq T_{2}$. We shall prove the converse.

Definition For $T \in \bar{\Lambda}(\Sigma)=\bar{\Lambda}$ we define the notion of $\lambda \sqcup$ normal form as follows: $T \in \tau$ is in $\lambda \sqcup$ normal form if
(a) $T \equiv \lambda x_{1} \ldots x_{t} \perp$
(b) $T \equiv \lambda x_{1} \ldots x_{t} F\left(T_{1} x_{1} \ldots x_{t}\right) \ldots\left(T_{n} x_{1} \ldots x_{t}\right)$ where each T_{i} is in $\lambda \sqcup$ normal form and $F \in \underbrace{0 \rightarrow(\ldots(0}_{n} \rightarrow 0) \ldots)$
(c) $T \equiv \lambda x_{1} \ldots x_{t} x_{i}\left(T_{1} x_{1} \ldots x_{t}\right) \ldots\left(T_{n} x_{1} \ldots x_{t}\right)$ where each T_{i} is in $\lambda \sqcup$ normal form and $n=t(i)$
(d) $T \equiv \lambda x_{1} \ldots x_{t}\left(T_{1} x_{1} \ldots x_{t}\right) \sqcup \ldots \sqcup\left(T_{n} x_{1} \ldots x_{t}\right)$ where $n>1$, each T_{i} is in $\lambda \sqcup$ normal form and each T_{i} is of type (b) or (c).

It is easy to see that every term has a $\lambda \sqcup$ normal form.
Lemma Suppose $T_{1}, T_{2} \in \bar{\Lambda}_{\mathfrak{M}}^{\tau}$ and $\lambda \sqcup H T_{1} \subseteq T_{2}$. Then there exist $U_{1} \ldots$ $U_{t} \in \bar{\Lambda}_{\mathfrak{M}}$ such that $\mathfrak{M} \nRightarrow T_{1} U_{1} \ldots U_{t} \subseteq T_{2} U_{1} \ldots U_{t}$.

Proof: We may assume that T_{1} and T_{2} are in $\lambda \sqcup$ normal form. The proof is by induction on $\left|T_{1}\right|+\left|T_{2}\right|$. We distinguish the following cases:
$T_{1} \equiv$ (1) $\lambda x_{1} \ldots x_{t} \perp$
(2) $\lambda x_{1} \ldots x_{t} F\left(T_{11} x_{1} \ldots x_{t}\right) \ldots\left(T_{1 n} x_{1} \ldots x_{t}\right)$
(3) $\lambda x_{1} \ldots x_{t}\left(T_{11} x_{1} \ldots x_{t}\right) \sqcup \ldots \sqcup\left(T_{1 n} x_{1} \ldots x_{t}\right)$
(4) $\lambda x_{1} \ldots x_{t} x_{i}\left(T_{11} x_{1} \ldots x_{t}\right) \ldots\left(T_{1 n} x_{1} \ldots x_{t}\right)$
$T_{2} \equiv$ (a) $\lambda x_{1} \ldots x_{t} \perp$
(b) $\lambda x_{1} \ldots x_{t} G\left(T_{21} x_{1} \ldots x_{t}\right) \ldots\left(T_{2 m} x_{1} \ldots x_{t}\right)$
(c) $\lambda x_{1} \ldots x_{t}\left(T_{21} x_{1} \ldots x_{t}\right) \sqcup \ldots \sqcup\left(T_{2 m} x_{1} \ldots x_{t}\right)$
(d) $\lambda x_{1} \ldots x_{t} x_{J}\left(T_{21} x_{1} \ldots x_{t}\right) \ldots\left(T_{2 m} x_{1} \ldots x_{t}\right)$.

Now the cases when $T_{1} \equiv(1)$ are impossible and the cases when $T_{2} \equiv$ (a) are trivial.

Case $T_{1} \equiv(2)$. The cases when $T_{2} \equiv(\mathrm{~b})$ or $T_{2} \equiv(\mathrm{~d})$ are immediate or follow directly from the induction hypothesis. Thus we may assume $T_{2} \equiv$ (c).

For $1 \leq j \leq m \lambda \sqcup H T_{1} \subseteq T_{2 j}$ so by induction hypothesis there exist $U_{1 j} \ldots U_{t j} \in \bar{\Lambda}_{\mathfrak{M}}$ such that $\mathfrak{M} \nRightarrow T_{1} U_{1 j} \ldots U_{t j} \subseteq T_{2 j} U_{1 j} \ldots U_{t j}$. Let H be new and for $1 \leq i \leq t$ set

$$
U_{i} \equiv \lambda y_{1} \ldots y_{k} H\left(U_{i 1} y_{1} \ldots y_{k}\right) \ldots\left(U_{i m} y_{1} \ldots y_{k}\right)
$$

Suppose $\mathfrak{M} \vDash T_{1} U_{1} \ldots U_{t} \subseteq T_{2} U_{1} \ldots U_{t}$. Then for some $1 \leq j \leq m \mathfrak{M} \vDash$ $T_{1} U_{1} \ldots U_{t} \subseteq T_{2 j} U_{1} \ldots U_{t}$. Thus $\lambda \sqcup \vdash T_{1} U_{1} \ldots U_{t} \subseteq T_{2 j} U_{1} \ldots U_{t}$. Hence, $\lambda \sqcup \vdash T_{1} U_{1 j} \ldots U_{t j}=\left[\lambda u_{1} \ldots u_{m} u_{j} / H\right] T_{1} U_{1} \ldots U_{t} \subseteq\left[\lambda u_{1} \ldots u_{m} u_{j} / H\right] T_{2 j} U_{1} \ldots$ $U_{t}=T_{2 j} U_{1 j} \ldots U_{t j}$ and $\mathfrak{M} \vDash T_{1} U_{1 j} \ldots U_{t j} \subseteq T_{2 j} U_{1 j} \ldots U_{t j}$. This is a contradiction.

Case $T_{1} \equiv(3)$. For some $1 \leq i \leq n \lambda \sqcup \forall T_{1 i} \subseteq T_{2}$, so this case follows immediately from the induction hypothesis.

Case $T_{1} \equiv(4)$. This case is obvious when $T_{2} \equiv(\mathrm{~b})$.
Subcase $T_{2} \equiv(\mathrm{c})$. Now for $1 \leq j \leq m \lambda \sqcup \Downarrow T_{1} \subseteq T_{2 j}$, so by induction hypothesis $\exists U_{1 j} \ldots U_{t j} \in \bar{\Lambda}_{\mathfrak{M}}$ such that $\mathfrak{M} \nRightarrow T_{1} U_{1 j} \ldots U_{t j} \subseteq T_{2 j} U_{1 j} \ldots U_{t j}$. Let H be new and set

$$
U_{i} \equiv \lambda y_{1} \ldots y_{k} H\left(U_{i 1} y_{1} \ldots y_{k}\right) \ldots\left(U_{i m} y_{1} \ldots y_{k}\right)
$$

We have $T_{1} U_{1} \ldots U_{t}=H\left(U_{i 1}\left(T_{11} U_{1} \ldots U_{t}\right) \ldots\left(T_{1 n} U_{1} \ldots U_{t}\right)\right) \ldots\left(U_{i m}\left(T_{11} U_{1}\right.\right.$ $\left.\left.\ldots U_{t}\right) \ldots\left(T_{1 n} U_{1} \ldots U_{t}\right)\right)$. The remainder of this case proceeds as in case $T_{1} \equiv$ (2) $T_{2} \equiv$ (c).

Subcase $T_{2} \equiv(\mathrm{~d})$. This case is obvious unless $i=j$ (so $n=m$). For some $1 \leq$ $l \leq n, \lambda \sqcup \forall T_{1 l} \subseteq T_{2 l}$ so by induction hypothesis there exist $V_{1} \ldots V_{t+k} \in \bar{\Lambda}_{\mathfrak{M}}$ such that $\mathfrak{M} \not \nexists T_{1 l} V_{1} \ldots V_{t+k} \subseteq T_{2 l} V_{1} \ldots V_{t+k}$. Let H be new and set

$$
\begin{aligned}
U_{i} & \equiv \lambda y_{1} \ldots y_{n} H\left(y_{l} V_{t+1} \ldots V_{t+k}\right)\left(V_{i} y_{1} \ldots y_{n}\right) \\
U_{r} & \equiv V_{r} \text { if } r \neq i
\end{aligned}
$$

We have $T_{1} U_{1} \ldots U_{t} \underset{\beta \eta}{=} H\left(T_{11} U_{1} \ldots U_{t} V_{t+1} \ldots V_{t+k}\right)\left(V_{i}\left(T_{11} U_{1} \ldots U_{t}\right) \ldots\right.$ $\left.\left(T_{1 n} U_{1} \ldots U_{t}\right)\right)$ and $T_{2} U_{1} \ldots U_{t}=H\left(T_{2 l} U_{1} \ldots U_{t} V_{t+1} \ldots V_{t+k}\right)\left(V_{i}\left(T_{2 l} U_{1} \ldots\right.\right.$ $\left.\left.U_{t}\right) \ldots\left(T_{2 n} U_{1} \ldots U_{t}\right)\right)$. If $\mathfrak{M} \vDash T_{1} U_{1} \ldots U_{t} \subseteq T_{2} U_{1} \ldots U_{t}$ then $\mathfrak{M} \vDash T_{1 l} U_{1} \ldots$ $U_{t} V_{t+1} \ldots V_{t+k} \subseteq T_{2 l} U_{1} \ldots U_{t} V_{t+1} \ldots V_{t+k}$. Hence, $\lambda \sqcup \vdash T_{1 l} U_{1} \ldots U_{t} V_{t+1} \ldots$ $V_{t+k} \subseteq T_{2 l} U_{1} \ldots U_{t} V_{t+1} \ldots V_{t+k}$. Thus $\lambda \sqcup \vdash T_{1} V_{1} \ldots V_{t+k}=[\lambda u v v / H]$ $T_{1 l} U_{1} \ldots U_{t} V_{t+1} \ldots V_{t+k} \subseteq[\lambda u v v / H] T_{2 l} U_{1} \ldots U_{t} V_{t+1} \ldots V_{t+k}=T_{2 l} V_{1} \ldots$ V_{t+k}. Thus $\mathfrak{M} \vDash T_{1 l} V_{1} \ldots V_{t+k} \subseteq T_{2 l} V_{1} \ldots V_{t+k}$. This is a contradiction.

From the proof of the lemma we obtain $\lambda \sqcup \vdash T_{1} \subseteq T_{2} \Leftrightarrow$
$T_{1} \equiv(1)$ or
$T_{1} \equiv(2)$ and
$T_{2} \equiv(\mathrm{~b})$ and $F \equiv G$ and for $1 \leq i \leq n \lambda \sqcup \vdash T_{1 i} \subseteq T_{2 i}$ or
$T_{2} \equiv$ (c) and for some $1 \leq j \leq m \lambda \sqcup \vdash T_{1} \subseteq T_{2 j}$ or
$T_{1} \equiv$ (3) and for $1 \leq i \leq n \lambda \sqcup \vdash T_{1 i} \subseteq T_{2}$ or

```
\(T_{1} \equiv(4)\) and
    \(T_{2} \equiv\) (c) and for some \(1 \leq j \leq m \lambda \sqcup \vdash T_{1} \subseteq T_{2 j}\) or
    \(T_{2} \equiv(\mathrm{~d})\) and \(i=j\) and for \(1 \leq k \leq n \lambda 山 \vdash T_{1 k} \subseteq T_{2 k}\).
```

Thus we have the
Proposition $\quad \mathfrak{M} \vDash T_{1} \subseteq T_{2} \Leftrightarrow \lambda \sqcup \vdash T_{1} \subseteq T_{2}$. Moreover, in \mathfrak{M}, \subseteq is locally finite (i.e., intervals are finite) and recursive.

Corollary 1 If $T x=x$ is solvable in every model of $\lambda \sqcup$ then for some $n \lambda \sqcup \vdash T^{n+1}=T^{n}$.

Proof: If $\mathfrak{M} \vDash T U=U$ then for all $n \mathfrak{M} \vDash T^{n} \subseteq U$. Thus for some $n \mathfrak{M} \vDash$ $T^{n+1}=T^{n}$.

Corollary $2 \lambda ப$ has the finite model property, i.e., invalid equations have finite countermodels.

Proof sketch: Construct \mathfrak{M}_{a} for \mathfrak{J}_{a} as \mathfrak{M} was constructed for \mathfrak{J} using \mathcal{P}_{n} for sufficiently large n. There exists a total homomorphism from \mathfrak{M} onto \mathfrak{M}_{a}. In particular $\mathfrak{M}_{a} \vDash \lambda \sqcup$. Now apply the proposition for appropriate a.

REFERENCES

[1] Andrews, Peter B., "Resolution in type theory," The Journal of Symbolic Logic, vol. 36 (1971), pp. 414-432.
[2] Church, Alonzo, "A formulation of the simple theory of types," The Journal of Symbolic Logic, vol. 5 (1940), pp. 56-68.
[3] Dezani-Ciancaglini, M., "Characterization of normal forms possessing inverses in the $\lambda \beta \eta$ calculus," Theoretical Computer Science, vol. 2 (1976), pp. 323-337.
[4] Friedman, Harvey, "Equality between functionals," Springer Lecture Notes in Mathematics, vol. 453 (1975), pp. 22-37.
[5] Gödel, Kurt, "Über eine bisher noch nicht benutzen Erweiterung des finiten Standpunktes," Dialectica, vol. 12 (1958), pp. 280-287.
[6] Jacopini, G., "A condition for identifying two elements of whatever model of combinatory logic," pp. 213-219 in λ-Calculus and Computer Science Theory, C. Bohm, ed., Springer Lecture Notes in Computer Science, vol. 37, SpringerVerlag, Berlin, 1975.
[7] Scott, Dana, Lectures on a mathematical theory of computation, Oxford University Computer Lab Tech. Monograph PRG 19.
[8] Statman, Richard, "On the existence of closed terms in the typed λ calculus I," pp. 511-534 in Combinatory Logic, Lambda Calculus and Formalism, eds., R. Hindley and J. Seldin, Academic Press, New York, 1980.
[9] Statman, Richard, "On the existence of closed terms in the typed λ calculus II," Theoretical Computer Science, vol. 15, pp. 329-338.
[10] Statman, Richard, "Embeddings, homomorphisms and λ-definability," manuscript, 1982.
[11] Statman, Richard, "Completeness, invariance and λ-definability," The Journal of Symbolic Logic, vol. 47, no. 1 (1981), pp. 297-306.
[12] Statman, Richard, " λ-definable functionals and $\beta \eta$ conversion," Archiv für Mathematische Logik Grundlagenforschung, vol. 22 (1983), pp. 1-6.
[13] Statman, Richard, "Logical relations and the typed λ-calculus," to appear in Information and Control.

Department of Mathematics
Carnagie-Mellon University
Pittsburgh, Pennsylvania 15213

[^0]: *Support for this paper was provided by NSF grant MCS 8301558. The author would also like to thank the referee for his useful comments and corrections.

