Notre Dame Journal of Formal Logic Volume 27, Number 1, January 1986

Solving Functional Equations at Higher Types; Some Examples and Some Theorems

RICHARD STATMAN*

The solvability of higher type functional equations has been studied by a number of authors. Roughly speaking the literature sorts into four topics: constructive solvability (e.g., Gödel [5], Scott [7]); solvability in all models, i.e., unification (e.g., Andrews [1], Statman [8] and [9]); solvability in models of A.C. (e.g., Church [2], Friedman [4]); and the solvability of special classes of equations (e.g., Scott [7]). In this note we shall consider yet a fifth topic, namely, the solvability of functional equations in extensions of models.

Our main result is the no counterexample theorem. This theorem equates the unsolvability of E in every extension of \mathfrak{A} with the solvability of some other \tilde{E} in \mathfrak{A} . The theorem can be iterated and applied to λ theories (in extended languages) as well as to models. Thus, it can be used to explain, in a general way, a phenomenon well illustrated by the case of $\lambda \sqcup$.

 $\lambda \sqcup$ is the theory of upper semilattices of monotone functionals. $\lambda \sqcup$ has the property that each of its models can be extended to solve all the fixed point equations

$$Mx = x$$

This is a simple consequence of a Scott-type completion argument. It is also an immediate corollary to the no counterexample theorem.

We adopt for the most part the notation and terminology of [8] and [9].

Types τ have the form $\tau(1) \rightarrow (\dots (\tau(t) \rightarrow 0) \dots)$.

If S is a set of objects (terms, functionals, etc.), S^{τ} is the set of all members of S of type τ .

66

^{*}Support for this paper was provided by NSF grant MCS 8301558. The author would also like to thank the referee for his useful comments and corrections.

If Σ is a set of constants $\Lambda(\Sigma)$ is the set of all terms with constants from Σ . $\overline{\Lambda}(\Sigma)$ is the set of all closed members of $\Lambda(\Sigma)$. $\Lambda = \Lambda(\phi)$. *M*, *N* range over $\overline{\Lambda}$. *B*, *C*, *K*, *I*, *W*, *S* are the usual combinators. $\mathfrak{A}, \mathfrak{B}, \ldots$ range over models of the typed λ calculus. \mathfrak{A}^* is the result of adjoining infinitely many indeterminates of each type to \mathfrak{A} . $\mathfrak{R} = \mathfrak{R}_{\tau} \subseteq \mathfrak{A}^{\tau} \times \ldots \times \mathfrak{A}^{\tau}$ is logical if $\mathfrak{R}(\Phi_1, \ldots, \Phi_n) \Leftrightarrow \forall \Psi_1 \ldots \Psi_n \ \mathfrak{R}(\Psi_1, \ldots, \Psi_n) \to \mathfrak{R}(\Phi_1 \Psi_1, \ldots, \Phi_n \Psi_n)$ (this is, of course, no restriction on \mathfrak{R}_0).

Definition Functional equations $E = E(\vec{y}, \vec{x})$ have the form

 $M\vec{y}\vec{x} = N\vec{y}\vec{x}$

where $M, N \in \overline{\Lambda}$. By λ abstraction this is perfectly general. Given the parameters \vec{y} , we wish to solve for \vec{x} .

Example 1. Solvability in all models for all choices of parameters: In this case we may assume $\vec{y} = \phi$ [9]. Then *E* is solvable in all models if and only if $M\vec{x}$ and $N\vec{x}$ are unifiable.

Functional equations are closed under conjunction (see [4]).

Example 2. (Dezani) Invertibility: $BMx = I \wedge BxM = I$ is solvable in all models if and only if M is a hereditary permutation [3]. A solution, if it exists, is given by $\lambda y \underbrace{M(\dots(My)\dots)}_{n}$ for some n.

Functional equations are in general not closed under negation; however, in one important case, they are.

Example 3. Models of A.C. ([4]): Let \mathfrak{A} be a model of A.C. and let $\vec{\Phi} \subseteq \mathfrak{A}$. Then either $E(\vec{\Phi}, \vec{x})$ is solvable in \mathfrak{A} or

$$\lambda \vec{x} z \vec{x} (M \vec{\Phi} \vec{x}) = \lambda u v u \wedge \lambda \vec{x} z \vec{x} (N \vec{\Phi} \vec{x}) = \lambda u v v$$

is solvable in \mathfrak{A} (so $E(\vec{\Phi}, \vec{x})$ is not solvable in any extension of \mathfrak{A}).

Definition $\mathfrak{B} \supseteq \mathfrak{A}$ is called *functionally complete* (over \mathfrak{A}) if no extension of \mathfrak{A} solves more functional equations, with parameters from \mathfrak{A} , than \mathfrak{B} .

Example 4. Upper semilattices of monotone functionals: Let $\bot \in 0$ ($\bot_{\tau} \equiv \lambda x_1 \dots x_t \bot$) and $\Box \equiv \Box_{\tau} \in \tau \to (\tau \to \tau)$ (for greater clarity we shall infix \Box). Let $\lambda \Box$ be the following equations:

Let \mathfrak{A} be a model of $\lambda \sqcup$. Then the fixed point equation

$$Mx = x$$

is solvable in every functionally complete extension of \mathfrak{A} . For if $\Phi, \Psi \in \mathfrak{A}$ define $\Phi \subseteq \Psi \Leftrightarrow \Phi \sqcup \Psi = \Psi$, then \subseteq is a partial order and a logical relation. Thus we can apply a Scott-type completion argument.

Given
$$E$$
, for z_0 , $z_1 \in 0$ define $\tilde{E}_n \equiv \tilde{E}_n(z_0 z_1 \vec{y}, \vec{u})$ to be
 $\lambda \vec{x} z_0 = \lambda \vec{x} u_1 \vec{x} (M \vec{y} \vec{x}) (N \vec{y} \vec{x}) \land$
 $\lambda \vec{x} u_1 \vec{x} (N \vec{y} \vec{x}) (M \vec{y} \vec{x}) = \lambda \vec{x} u_2 \vec{x} (M \vec{y} \vec{x}) (N \vec{y} \vec{x}) \land$
 \vdots
 $\lambda \vec{x} u_n \vec{x} (N \vec{y} \vec{x}) (M \vec{y} \vec{x}) = \lambda \vec{x} z_1$.

A solution to $\tilde{E}_n(ab\vec{\Phi}, \vec{u})$ for $a \neq b$ is called a *counterexample* to $E(\vec{\Phi}, \vec{x})$. $E(\vec{\Phi}, \vec{x})$ is said to be *no counterexample interpretable* in \mathfrak{A} if for each $a \neq b$ and *n*, $\tilde{E}_n(ab\vec{\Phi}, \vec{u})$ has itself a counterexample in \mathfrak{A} . The reader might wish to compare these notions to [6].

Example 5. The fixed point equation Mx = x: The fixed point equation is no counterexample interpretable in any model of $\lambda \sqcup$. For put $M^n = \underbrace{M(\ldots, (M_{\perp}), \ldots)}_{n}$, and suppose \mathfrak{A} is a model of $\lambda \amalg$ and Ψ is a solution of

 $\tilde{E}_n(ab, \vec{u})$. We have $a = \Psi_1 M^1 M^2 M^1 \subseteq \Psi_2 M^2 M^3 M^2 \subseteq \Psi_3 M^3 M^4 M^3 \subseteq \ldots = b$ so $a \subseteq b$. Symmetrically $b \subseteq a$ so a = b. The rest is simply an exercise in the definition. Observe that this gives an alternative proof of Example 4.

The No Counterexample Theorem

 $E(\vec{\Phi}, \vec{x})$ is solvable in an extension of $\mathfrak{A} \Leftrightarrow E(\vec{\Phi}, \vec{x})$ has no counterexample in \mathfrak{A} .

Proof: Clearly it suffices to show \leftarrow , so assume that $E(\vec{\Phi}, \vec{x})$ has no counterexample in \mathfrak{A} . Let $T_1 \equiv M\vec{\Phi}$ and $T_2 \equiv N\vec{\Phi}$. Define \sim on $\mathfrak{A}^* \times \mathfrak{A}^*$ by $\Phi_1 \sim \Phi_2 \Leftrightarrow$ $\exists \Psi \Phi_1 = \Psi(T_1\vec{x})(T_2\vec{x}) \land \Phi_2 = \Psi(T_2\vec{x})(T_1\vec{x})$. Let \approx be the transitive closure of \sim . Since \sim is reflexive and symmetric, \approx is an equivalence relation.

(1) ~ is a logical relation.

In particular, if $y \notin \vec{x}$ and $\Phi_1 \sim \Phi_2$ then $\lambda y \Phi_1 \sim \lambda y \Phi_2$. Thus

(2) \approx is a logical relation.

Thus, as in Example 8 of [13], putting $[\Phi] = \{\Psi: \Phi \approx \Psi\}$ and $[\Phi][\Psi] = [\Phi\Psi]$, we obtain a model $\mathfrak{B} = \{[\Phi]: \Phi \in \mathfrak{A}^*\}$. Moreover, the map $\Phi \mapsto [\Phi]$ is a total homomorphism of \mathfrak{A}^* onto \mathfrak{B} .

Now suppose Φ_1 , $\Phi_2 \in \mathfrak{A}$, $\Phi_1 \neq \Phi_2$, and $\Phi_1 \approx \Phi_2$. By (2) there exists a, $b \in \mathfrak{A}^\circ$, $a \neq b$, and $a \approx b$. Thus, there exists $a_1, \ldots, a_{n-1} \in \mathfrak{A}^\circ$ such that $a \sim a_1 \sim \ldots \sim a_{n-1} \sim b$. Hence, there exists $\Psi_1, \ldots, \Psi_n \in \mathfrak{A}^*$ such that

$$a = \Psi_{1}(T_{1}\vec{x})(T_{2}\vec{x}) \land \\ a_{1} = \Psi_{1}(T_{2}\vec{x})(T_{1}\vec{x}) \land \\ a_{1} = \Psi_{2}(T_{1}\vec{x})(T_{2}\vec{x}) \land \\ \vdots \\ \vdots \\ a_{n-1} = \Psi_{n}(T_{1}\vec{x})(T_{2}\vec{x}) \land \\ b = \Psi_{n}(T_{2}\vec{x})(T_{1}\vec{x}) .$$

Thus

$$\begin{split} \lambda \vec{x} & a = \lambda \vec{x} (\lambda \vec{x} \Psi_1) \vec{x} (T_1 \vec{x}) (T_2 \vec{x}) \land \\ \lambda \vec{x} (\lambda \vec{x} \Psi_1) \vec{x} (T_2 \vec{x}) (T_1 \vec{x}) &= \lambda \vec{x} (\lambda \vec{x} \Psi_2) \vec{x} (T_1 \vec{x}) (T_2 \vec{x}) \land \end{split}$$

$$\lambda \vec{x} (\lambda \vec{x} \Psi_n) \vec{x} (T_2 \vec{x}) (T_1 \vec{x}) = \lambda \vec{x} b .$$

So $\tilde{E}_n(ab\vec{\Phi}, \vec{x})$ is solvable in \mathfrak{A}^* , therefore it is solvable in \mathfrak{A} . This is a contradiction.

Thus $\mathfrak{A} \subseteq \mathfrak{B}$.

Finally, $[\vec{x}]$ is a solution of $E(\vec{\Phi}, \vec{x})$ in \mathfrak{B} .

Corollary 1 $E(\vec{\Phi}, \vec{x})$ is solvable in every functionally complete extension of $\mathfrak{A} \Leftrightarrow E(\vec{\Phi}, \vec{x})$ is no counterexample interpretable in \mathfrak{A} .

Corollary 2 $E(\vec{\Phi}, \vec{x})$ is solvable in some extension of $\mathfrak{A} \Leftrightarrow it$ is solvable in some total homomorphic image of \mathfrak{A}^* which extends \mathfrak{A} .

Corollary 3 $M\vec{x} = N\vec{x}$ is not solvable in any model \Leftrightarrow for some n

$$\lambda \vec{x} (\lambda xy x) = \lambda \vec{x} u_1 \vec{x} (M \vec{x}) (N \vec{x}) \land$$
$$\lambda \vec{x} u_1 \vec{x} (N \vec{x}) (M \vec{x}) = \lambda \vec{x} u_2 \vec{x} (M \vec{x}) (N \vec{x}) \land$$

$$\lambda \vec{x} u_n \vec{x} (N \vec{x}) (M \vec{x}) = \lambda \vec{x} (\lambda x y y)$$

is solvable in every model.

Example 6. Consistency ([11]): M = N is false in every nontrivial model \Leftrightarrow $uM = \lambda xy x \wedge uN = \lambda xy y$ is solvable in every model.

Definition Functional equations of the form $M\vec{x} = \lambda xy x$ or equivalently $M\vec{x} = \lambda xy y$ are called *isolated*. Functional equations of the form $M\vec{x} = N$ are *semi-isolated*.

Example 7. Semi-isolated functional equations: $M\vec{x} = N$ has a solution in all models \Leftrightarrow it has a λ definable (possibly with a type 0 parameter) solution in \mathcal{O}_n for all sufficiently large n ([11]). Here n depends only on N.

Example 5 continued: Let Σ consist of \bot , \sqcup , and constants $F \in \underbrace{0 \to (\dots, 0)}_{n} \to$

0)...) for various *n*. For $T \in \overline{\Lambda}(\Sigma)$ put $T^n \equiv \underbrace{T(\ldots(T_{\perp})\ldots)}_{n}$. We shall

show that Tx = x is solvable in every model of $\lambda \sqcup$ if and only if $\lambda \sqcup \vdash T^{n+1} = T^n$ for some *n*. Note that, since the axioms of $\lambda \sqcup$ are typically ambiguous [12], the corresponding result follows for the typed λ calculus.

For this it suffices to construct a universal model of $\lambda \sqcup$ in which \subseteq is locally finite. With a little more care we can construct such a model which is generated by its 1-section. In this model \subseteq is not only locally finite but also recursive. The decidability of the word problem for $\lambda \sqcup$ follows immediately.

As a preliminary we need some simple results about the first-order theory of upper semilattices with smallest element and monotone functions. Consider the first-order language with the constant \perp , function symbols *F* of various arities, the binary function symbol \sqcup (infixed), and the binary relation symbol \subseteq . Let 3 be the following set of sentences:

```
 \begin{array}{ll} \forall x \ x \ \sqcup x \subseteq x \\ \forall x & \bot \subseteq x \\ \forall x \forall y & x \ \sqcup y \subseteq y \ \sqcup x \\ \forall x \forall y \forall z & x \ \sqcup (y \ \sqcup z) \subseteq (x \ \sqcup y) \ \sqcup z \\ \forall x \forall y \forall z & (x \ \sqcup y) \ \sqcup z \subseteq x \ \sqcup (y \ \sqcup z) \\ \forall x \forall y \forall z & x \subseteq x \ \sqcup y \\ \forall x \forall y \forall z & x \subseteq y \land y \subseteq z \rightarrow x \subseteq z \\ \forall xy \forall uv & x \subseteq u \land y \subseteq v \rightarrow x \ \sqcup y \subseteq u \ \sqcup v \\ \forall x_1 \dots x_n \forall y_1 \dots y_n \ x_1 \subseteq y_1 \land \dots \land x_n \subseteq y_n \rightarrow Fx_1 \dots x_n \subseteq Fy_1 \dots y_n. \end{array}
```

Obviously, if we define $x = y \leftrightarrow x \subseteq y \land y \subseteq x$ then = is a congruence. For what follows it is convenient to think of the terms of 3 as independent of the association of \sqcup 's and the order of arguments of \sqcup 's. This is harmless since \sqcup is associative and commutative.

We write $a \subseteq b$ if a is a subterm of b. $a \leq b \Leftrightarrow \exists c \subseteq b \ \Im \models a \subseteq c$. a is in normal form if

 $a \equiv \bot$, $a \equiv Fa_1 \dots a_n$ where each a_i is in normal form, or $a \equiv F_1a_{11} \dots a_{1n_1} \sqcup \dots \sqcup F_ma_{m1} \dots a_{mn_m}$ where each $F_ia_{i1} \dots a_{in_i}$ is in normal form and $i \neq j \rightarrow \Im \not\vdash F_ia_{i1} \dots a_{in_i} \subseteq F_ja_{j1} \dots a_{jn_j}$.

The following facts are easily verified:

(1) 3 + Fa₁...a_n ⊆ a ⊔ b → 3 + Fa₁...a_n ⊆ a ∨ 3 + Fa₁...a_n ⊆ b.
(2) 3 + Fa₁...a_n ⊆ Gb₁...b_m → F ≡ G ∧ for 1 ≤ i ≤ n 3 + a_i ⊆ b_i.
(3) 3 # Fa₁...a_n ⊆ ⊥.
(4) For each a there is a unique normal b such that 3 + a = b.
(5) If a ≤ b ∧ 3 + b ⊆ c then there exists d ⊆ c such that 3 + a ⊆ d.
(6) If a is normal and b ≤ a then 3 ⊭ a ⊆ b.
(7) ≤ is transitive, reflexive, and a ≤ b ∧ b ≤ a ⇔ 3 + a = b. Let 3_a = 3 ∪ {b ⊆ c: b, c ≤ a}.
(8) 3_a + b ⊆ a ⇒ 3 + b ⊆ a.

Let \mathfrak{A} be the free model of 3. We consider \mathfrak{A} modulo = as an algebra with $x \subseteq y \Leftrightarrow x \sqcup y = y$. Since \mathcal{P}_{ω} contains all functions on its ground domain $\mathcal{P}_{\omega}^{\circ}$, we may assume that this algebra $\subseteq \mathcal{P}_{\omega}$, and that its domain is $\mathcal{P}_{\omega}^{\circ}$. Let \mathfrak{M} be its Gandy hull in \mathcal{P}_{ω} ([11]; briefly, to build \mathfrak{M} take all elements of $\mathcal{P}_{\omega} \lambda$ -definable from

parameters in α , and "collapse" the result to an extensional model of genuine set theoretic functionals).

Now define $\Phi \sqcup \Psi = \lambda z(\Phi z) \sqcup (\Psi z)$ and define a logical relation $\subseteq = \subseteq$ on by $\Phi \subseteq \Psi \Leftrightarrow \Phi \sqcup \Psi = \Psi$.

Claim $\Phi \subseteq \Psi \Leftrightarrow \Phi \sqcup \Psi = \Psi.$

Proof: By induction on types. The basis case is by definition so we proceed to the induction step. Suppose $\Phi \subseteq \Psi$. By induction hypothesis $X \subseteq X$, for X of lower type, so $\Phi X \subseteq \Psi X$. Thus by induction hypothesis $\Phi X \sqcup \Psi X = \Psi X$. Thus $\Phi \sqcup \Psi = \Psi$ by definition of \sqcup . Now suppose $\Phi \sqcup \Psi = \Psi$. Now \subseteq is a partial ordering of its field. In addition, by the construction of \mathfrak{M} , $\bot \subseteq \bot$, $F \subseteq F$ and $\sqcup \subseteq \sqcup$ so by the fundamental theorem of logical relations ([13]) $\forall x x \subseteq x$. Thus \subseteq is a partial ordering. Suppose $X_1 \subseteq X_2$. We have $\Phi X_2 \sqcup \Psi X_2 = (\Phi \sqcup \Psi)X_2 = \Psi X_2$ so by induction hypothesis $\Phi X_2 \subseteq \Psi X_2$. But $\Phi X_1 \subseteq \Phi X_2$ so $\Phi X_1 \subseteq \Psi X_2$. Hence $\Phi \subseteq \Psi$.

In particular, $\mathfrak{M} \models \lambda \sqcup$, i.e., $\lambda \sqcup \models T_1 \subseteq T_2 \Rightarrow \mathfrak{M} \models T_1 \subseteq T_2$. We shall prove the converse.

Definition For $T \in \overline{\Lambda}(\Sigma) = \overline{\Lambda}$ we define the notion of $\lambda \sqcup$ normal form as follows: $T \in \tau$ is in $\lambda \sqcup$ normal form if

(a) $T \equiv \lambda x_1 \dots x_t \perp$

(b) $T \equiv \lambda x_1 \dots x_t F(T_1 x_1 \dots x_t) \dots (T_n x_1 \dots x_t)$ where each T_i is in $\lambda \sqcup$ normal form and $F \in \underbrace{0 \to (\dots, (0 \to 0) \dots)}_n \to 0) \dots$

(c) $T \equiv \lambda x_1 \dots x_t x_i (T_1 x_1 \dots x_t) \dots (T_n x_1 \dots x_t)$ where each T_i is in $\lambda \sqcup$ normal form and n = t(i)

(d) $T \equiv \lambda x_1 \dots x_t (T_1 x_1 \dots x_t) \sqcup \dots \sqcup (T_n x_1 \dots x_t)$ where n > 1, each T_i is in $\lambda \sqcup$ normal form and each T_i is of type (b) or (c).

It is easy to see that every term has a $\lambda \sqcup$ normal form.

Lemma Suppose $T_1, T_2 \in \overline{\Lambda}_{\mathfrak{M}}^{\tau}$ and $\lambda \sqcup \not \vdash T_1 \subseteq T_2$. Then there exist $U_1 \ldots U_t \in \overline{\Lambda}_{\mathfrak{M}}$ such that $\mathfrak{M} \not \models T_1 U_1 \ldots U_t \subseteq T_2 U_1 \ldots U_t$.

Proof: We may assume that T_1 and T_2 are in $\lambda \sqcup$ normal form. The proof is by induction on $|T_1| + |T_2|$. We distinguish the following cases:

 $T_{1} \equiv (1) \ \lambda x_{1} \dots x_{t} \perp$ $(2) \ \lambda x_{1} \dots x_{t} \ F(T_{11}x_{1} \dots x_{t}) \dots (T_{1n}x_{1} \dots x_{t})$ $(3) \ \lambda x_{1} \dots x_{t} \ (T_{11}x_{1} \dots x_{t}) \ \sqcup \dots \sqcup \ (T_{1n}x_{1} \dots x_{t})$ $(4) \ \lambda x_{1} \dots x_{t} \ x_{t} \ (T_{11}x_{1} \dots x_{t}) \dots (T_{1n}x_{1} \dots x_{t})$ $T_{2} \equiv (a) \ \lambda x_{1} \dots x_{t} \ \bot$ $(b) \ \lambda x_{1} \dots x_{t} \ G(T_{21}x_{1} \dots x_{t}) \dots (T_{2m}x_{1} \dots x_{t})$ $(c) \ \lambda x_{1} \dots x_{t} \ (T_{21}x_{1} \dots x_{t}) \ \sqcup \dots \sqcup \ (T_{2m}x_{1} \dots x_{t})$ $(d) \ \lambda x_{1} \dots x_{t} \ x_{t} \ (T_{21}x_{1} \dots x_{t}) \dots (T_{2m}x_{1} \dots x_{t}).$

Now the cases when $T_1 \equiv (1)$ are impossible and the cases when $T_2 \equiv (a)$ are trivial.

Case $T_1 \equiv (2)$. The cases when $T_2 \equiv (b)$ or $T_2 \equiv (d)$ are immediate or follow directly from the induction hypothesis. Thus we may assume $T_2 \equiv (c)$.

For $1 \le j \le m \lambda \sqcup \notin T_1 \subseteq T_{2j}$ so by induction hypothesis there exist $U_{1j} \ldots U_{tj} \in \overline{\Lambda}_{\mathfrak{M}}$ such that $\mathfrak{M} \notin T_1 U_{1j} \ldots U_{tj} \subseteq T_{2j} U_{1j} \ldots U_{tj}$. Let *H* be new and for $1 \le i \le t$ set

$$U_i \equiv \lambda y_1 \dots y_k \ H(U_{i1}y_1 \dots y_k) \dots (U_{im}y_1 \dots y_k) \ .$$

Suppose $\mathfrak{M} \models T_1 U_1 \ldots U_t \subseteq T_2 U_1 \ldots U_t$. Then for some $1 \leq j \leq m \mathfrak{M} \models T_1 U_1 \ldots U_t \subseteq T_{2j} U_1 \ldots U_t$. Thus $\lambda \sqcup \models T_1 U_1 \ldots U_t \subseteq T_{2j} U_1 \ldots U_t$. Hence, $\lambda \sqcup \models T_1 U_{1j} \ldots U_{tj} = [\lambda u_1 \ldots u_m u_j / H] T_1 U_1 \ldots U_t \subseteq [\lambda u_1 \ldots u_m u_j / H] T_{2j} U_1 \ldots U_t = T_{2j} U_{1j} \ldots U_{tj}$ and $\mathfrak{M} \models T_1 U_{1j} \ldots U_{tj} \subseteq T_{2j} U_{1j} \ldots U_{tj}$. This is a contradiction.

Case $T_1 \equiv (3)$. For some $1 \le i \le n \land \sqcup \# T_{1i} \subseteq T_2$, so this case follows immediately from the induction hypothesis.

Case $T_1 \equiv (4)$. This case is obvious when $T_2 \equiv (b)$.

Subcase $T_2 \equiv (c)$. Now for $1 \le j \le m \lambda \sqcup \not\models T_1 \subseteq T_{2j}$, so by induction hypothesis $\exists U_{1j} \ldots U_{tj} \in \overline{\Lambda}_{\mathfrak{M}}$ such that $\mathfrak{M} \not\models T_1 U_{1j} \ldots U_{tj} \subseteq T_{2j} U_{1j} \ldots U_{tj}$. Let *H* be new and set

$$U_i \equiv \lambda y_1 \dots y_k H(U_{i1}y_1 \dots y_k) \dots (U_{im}y_1 \dots y_k) ...$$

We have $T_1 U_1 \dots U_t \underset{\beta\eta}{=} H(U_{i1}(T_{11}U_1 \dots U_t) \dots (T_{1n}U_1 \dots U_t)) \dots (U_{im}(T_{11}U_1 \dots U_t))$ $\dots U_t) \dots (T_{1n}U_1 \dots U_t))$. The remainder of this case proceeds as in case $T_1 = (2) T_2 = (c)$.

Subcase $T_2 = (d)$. This case is obvious unless i = j (so n = m). For some $1 \le l \le n, \lambda \sqcup \not\models T_{1l} \subseteq T_{2l}$ so by induction hypothesis there exist $V_1 \ldots V_{t+k} \in \overline{\Lambda}_{\mathfrak{M}}$ such that $\mathfrak{M} \not\models T_{1l}V_1 \ldots V_{t+k} \subseteq T_{2l}V_1 \ldots V_{t+k}$. Let *H* be new and set

$$U_i \equiv \lambda y_1 \dots y_n H(y_l V_{t+1} \dots V_{t+k}) (V_i y_1 \dots y_n)$$

$$U_r \equiv V_r \text{ if } r \neq i .$$

We have $T_1 U_1 \ldots U_t \stackrel{=}{_{\beta\eta}} H(T_{1/}U_1 \ldots U_t V_{t+1} \ldots V_{t+k}) (V_i(T_{11}U_1 \ldots U_t) \ldots (T_{1n}U_1 \ldots U_t))$ and $T_2 U_1 \ldots U_t \stackrel{=}{_{\beta\eta}} H(T_{2l}U_1 \ldots U_t V_{t+1} \ldots V_{t+k}) (V_i(T_{2l}U_1 \ldots U_t))$. $U_t (T_{2n}U_1 \ldots U_t))$. If $\mathfrak{M} \models T_1 U_1 \ldots U_t \subseteq T_2 U_1 \ldots U_t$ then $\mathfrak{M} \models T_{1l}U_1 \ldots U_t V_{t+1} \ldots V_{t+k} \subseteq T_{2l}U_1 \ldots U_t V_{t+1} \ldots V_{t+k}$. Hence, $\lambda \sqcup \models T_{1l}U_1 \ldots U_t V_{t+1} \ldots V_t V_{t+k} \subseteq T_{2l}U_1 \ldots U_t V_{t+1} \ldots V_{t+k}$. Thus $\lambda \sqcup \models T_1 V_1 \ldots V_{t+k} = [\lambda uv \ v/H]$ $T_{1l}U_1 \ldots U_t V_{t+1} \ldots V_{t+k} \subseteq [\lambda uv \ v/H] T_{2l}U_1 \ldots U_t V_{t+1} \ldots V_{t+k} = T_{2l}V_1 \ldots V_{t+k}$. This is a contradiction.

From the proof of the lemma we obtain $\lambda \sqcup \vdash T_1 \subseteq T_2 \Leftrightarrow$

 $T_{1} \equiv (1) \text{ or}$ $T_{1} \equiv (2) \text{ and}$ $T_{2} \equiv (b) \text{ and } F \equiv G \text{ and for } 1 \le i \le n \text{ } \lambda \square + T_{1i} \subseteq T_{2i} \text{ or}$ $T_{2} \equiv (c) \text{ and for some } 1 \le j \le m \text{ } \lambda \square + T_{1} \subseteq T_{2j} \text{ or}$ $T_{1} \equiv (3) \text{ and for } 1 \le i \le n \text{ } \lambda \square + T_{1i} \subseteq T_{2} \text{ or}$ $T_1 \equiv (4)$ and

 $T_2 \equiv$ (c) and for some $1 \le j \le m \lambda \sqcup \vdash T_1 \subseteq T_{2j}$ or $T_2 \equiv$ (d) and i = j and for $1 \le k \le n \lambda \sqcup \vdash T_{1k} \subseteq T_{2k}$.

Thus we have the

Proposition $\mathfrak{M} \models T_1 \subseteq T_2 \Leftrightarrow \lambda \sqcup \models T_1 \subseteq T_2$. Moreover, in \mathfrak{M}, \subseteq is locally finite (i.e., intervals are finite) and recursive.

Corollary 1 If Tx = x is solvable in every model of $\lambda \sqcup$ then for some $n \lambda \sqcup + T^{n+1} = T^n$.

Proof: If $\mathfrak{M} \models TU = U$ then for all $n \mathfrak{M} \models T^n \subseteq U$. Thus for some $n \mathfrak{M} \models T^{n+1} = T^n$.

Corollary 2 $\lambda \sqcup$ has the finite model property, i.e., invalid equations have finite countermodels.

Proof sketch: Construct \mathfrak{M}_a for \mathfrak{I}_a as \mathfrak{M} was constructed for \mathfrak{I} using \mathfrak{O}_n for sufficiently large n. There exists a total homomorphism from \mathfrak{M} onto \mathfrak{M}_a . In particular $\mathfrak{M}_a \models \lambda \sqcup$. Now apply the proposition for appropriate a.

REFERENCES

- [1] Andrews, Peter B., "Resolution in type theory," *The Journal of Symbolic Logic*, vol. 36 (1971), pp. 414-432.
- [2] Church, Alonzo, "A formulation of the simple theory of types," *The Journal of Symbolic Logic*, vol. 5 (1940), pp. 56-68.
- [3] Dezani-Ciancaglini, M., "Characterization of normal forms possessing inverses in the $\lambda\beta\eta$ calculus," *Theoretical Computer Science*, vol. 2 (1976), pp. 323-337.
- [4] Friedman, Harvey, "Equality between functionals," Springer Lecture Notes in Mathematics, vol. 453 (1975), pp. 22-37.
- [5] Gödel, Kurt, "Über eine bisher noch nicht benutzen Erweiterung des finiten Standpunktes," *Dialectica*, vol. 12 (1958), pp. 280–287.
- [6] Jacopini, G., "A condition for identifying two elements of whatever model of combinatory logic," pp. 213-219 in λ-Calculus and Computer Science Theory, C. Bohm, ed., Springer Lecture Notes in Computer Science, vol. 37, Springer-Verlag, Berlin, 1975.
- [7] Scott, Dana, Lectures on a mathematical theory of computation, Oxford University Computer Lab Tech. Monograph PRG 19.
- [8] Statman, Richard, "On the existence of closed terms in the typed λ calculus I," pp. 511-534 in Combinatory Logic, Lambda Calculus and Formalism, eds., R. Hindley and J. Seldin, Academic Press, New York, 1980.
- [9] Statman, Richard, "On the existence of closed terms in the typed λ calculus II," *Theoretical Computer Science*, vol. 15, pp. 329-338.
- [10] Statman, Richard, "Embeddings, homomorphisms and λ -definability," manuscript, 1982.

RICHARD STATMAN

- [11] Statman, Richard, "Completeness, invariance and λ-definability," *The Journal of Symbolic Logic*, vol. 47, no. 1 (1981), pp. 297-306.
- [12] Statman, Richard, " λ -definable functionals and $\beta\eta$ conversion," Archiv für Mathematische Logik Grundlagenforschung, vol. 22 (1983), pp. 1–6.
- [13] Statman, Richard, "Logical relations and the typed λ -calculus," to appear in *Information and Control*.

Department of Mathematics Carnagie-Mellon University Pittsburgh, Pennsylvania 15213

74