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Solving Functional Equations at Higher Types;

Some Examples and Some Theorems

RICHARD STATMAN*

The solvability of higher type functional equations has been studied by a
number of authors. Roughly speaking the literature sorts into four topics: con-
structive solvability (e.g., Gόdel [5], Scott [7]); solvability in all models, i.e.,
unification (e.g., Andrews [1], Statman [8] and [9]); solvability in models of
A.C. (e.g., Church [2], Friedman [4]); and the solvability of special classes of
equations (e.g., Scott [7]). In this note we shall consider yet a fifth topic, namely,
the solvability of functional equations in extensions of models.

Our main result is the no counterexample theorem. This theorem equates
the unsolvability of E in every extension of SI with the solvability of some other
E in 21. The theorem can be iterated and applied to λ theories (in extended lan-
guages) as well as to models. Thus, it can be used to explain, in a general way,
a phenomenon well illustrated by the case of λU.

λU is the theory of upper semilattices of monotone functionals. λU has the
property that each of its models can be extended to solve all the fixed point equa-
tions

Mx = x .

This is a simple consequence of a Scott-type completion argument. It is also an
immediate corollary to the no counterexample theorem.

We adopt for the most part the notation and terminology of [8] and [9].

Types r have the form τ( l ) - * ( . . . (τ(t) -* 0 ) . . . ) .

If S is a set of objects (terms, functionals, etc.), S r is the set of all mem-

bers of S of type r.

*Support for this paper was provided by NSF grant MCS 8301558. The author would
also like to thank the referee for his useful comments and corrections.
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If Σ is a set of constants Λ(Σ) is the set of all terms with constants from
Σ. A(Σ) is the set of all closed members of Λ(Σ). Λ = Λ(φ).
M, TV range over Λ.
B, C, K, I, W, S are the usual combinators.
21, 33,.. .range over models of the typed λ calculus.
21* is the result of adjoining infinitely many indeterminates of each type
to 21.
(R = « τ c 2Γ X...X 21/ is logical if (Λ(ΦU..., Φn) # v * i . . . Ψrt « ( * ! ,

/I

. . . ,Ϋ Λ ) - ΛίΦ! * ! , . . . , ΦΛΫΛ)
(this is, of course, no restriction on (Ro).

Definition Functional equations E = E(y, x) have the form

Myx = Nyx

where M, TVe Λ. By λ abstraction this is perfectly general. Given the parame-
ters y, we wish to solve for x.

Example 1. Solvability in all models for all choices of parameters: In this case
we may assume y — φ [9]. Then E is solvable in all models if and only if Mx
and Nx are unifiable.

Functional equations are closed under conjunction (see [4]).
Example 2. (Dezani) Invertibility: BMx = /Λ BXM = / is solvable in all

models if and only if M is a hereditary permutation [3]. A solution, if it exists,
is given by λvM(. . . (My)...) for some n.

I )

n

Functional equations are in general not closed under negation; however,
in one important case, they are.

Example 3. Models of A.C. ([4]): Let 21 be a model of A.C. and let Φ c 2ί.
Then either E(Φ, x) is solvable in 2ί or

λxzx(MΦx) = λuvu Λ λxzx(NΦx) = λuvv

is solvable in 2ί (so £(<£, x) is not solvable in any extension of 21).

Definition 93 3 21 is called functionally complete (over 21) if no extension of
21 solves more functional equations, with parameters from 2ί, than 33.

Example 4. Upper semilattices of monotone functionals: Let J_ GO (_Lr =
λx{... xtL) and UΞ=U reτ->(τ->τ) (for greater clarity we shall infix U). Let
λU be the following equations:

JL U / = /
λxx U x = I

λxyx U y = λxyy LJ x
λxyzx U(yUz)= λxyz {xUy)Uz

λxyx LJ y - λxyz (xz) U (yz)
λxyz (xy) LJ x(y LJ z) = λxyzx(y LJ z) .
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Let 21 be a model of λU. Then the fixed point equation

Mx = x

is solvable in every functionally complete extension of 21. For if Φ, Ψ E 21 define
φ c ψ ^ Φ U Ψ = Ψ, then <Ξ is a partial order and a logical relation. Thus we
can apply a Scott-type completion argument.

Given E, for zo> Z\ E 0 define En s En(zoZ\y9 u) to be

λxzo = \xuxx(Myx)(Nyx) Λ
λxuχX(Nyx)(Myx) = \xu2x(Myx)(Nyx) Λ

\xunx(Nyx)(Myx) = λxz\ .

A solution to En(abΦ, ύ) for a Φ b is called a counterexample to £ ( $ , x).
£(Φ, x) is said to be no counterexample interpretable in 21 if for each a Φ b
and n, En(abΦ, ύ) has itself a counterexample in 21. The reader might wish to
compare these notions to [6].

Example 5. The fixed point equation Mx = x: The fixed point equation
is no counterexample interpretable in any model of λU. For put Mn =
M(... (ML)...), and suppose 21 is a model of λU and Ψ is a solution of

n

En(ab, ύ). We have a = Ψ{M
ιM2Mι c Ψ2M

2M3M2 c Ψ3M
3M4M3 c . . . = b

so a c b. Symmetrically b c a so a = 6. The rest is simply an exercise in the
definition. Observe that this gives an alternative proof of Example 4.

The No Counterexample Theorem
E(Φ, x) is solvable in an extension ofΆ&
E(Φ, x) has no counterexample in 21.

Proof: Clearly it suffices to show <=, so assume that £(<£, x) has no counter-
example in 21. Let Tλ = MΦ and T2 = NΦ. Define ~ on 2ί* x 2ί* by Φj - Φ2 <̂
3 Ψ Φ J = ψ(Tιx)(T2x) Λ Φ2 = Ψ(T2x)(Tιx). Let « be the transitive closure
of —. Since — is reflexive and symmetric, « is an equivalence relation.

(1) - is a logical relation.

In particular, if y £ x and Φi - Φ2 then X ; ^ - λj>Φ2. Thus

(2) « is a logical relation.

Thus, as in Example 8 of [13], putting [Φ] = {Ψ: Φ « Ψ} and [Φ] [Ψ] =
[ΦΨ], we obtain a model 33 = {[Φ]: Φ E 21*}. Moreover, the map Φ •-» [Φ] is
a total homomorphism of 21* onto 33.

Now suppose Φ l f Φ2 E 21, Φi ^ Φ2, and Φ! « Φ2. By (2) there exists α,
b E 21°, a Φ b, and a ~ b. Thus, there exists # ! , . . . , αrt_i E 21° such that # ~
ax - . . . - βΛ_i - b. Hence, there exists Ψι,..., Ψn E 2t* such that
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a = Ψι(Tιx)(T2x)Λ

ax = Ψ2(Tιx)(T2x)Λ

an_{ = Ψn(Tιx)(T2x)Λ
b = Ψrι(T2x)(Tιx) .

Thus

λxa = λj?(λJcΨ1)j?(Γ1x)(Γ2Jc) Λ
λJc(λJcΫ1)Jc(Γ2Jf)(Γ1ί) = \x(\5Nr2)x(Tlx)(T2x) Λ

\x(\5lΨn)x(T2x)(Tιx) = \xb .

So En(abΦ, x) is solvable in 81*, therefore it is solvable in 81. This is a con-
tradiction.

Thus 21 g S3.
Finally, [x] is a solution of E(Φ9 x) in 33.

Corollary 1 E(Φ9 x) is solvable in every functionally complete extension of
21 & E(Φ, x) is no counterexample interpretable in 21.

Corollary 2 E(Φ9 x) is solvable in some extension of% & it is solvable in
some total homomorphic image of 21* which extends 21.

Corollary 3 Mx = Nx is not solvable in any model & for some n

λx(λxyx) = \xuχx(Mx)(Nx) Λ
λxuιx(Nx)(Mx) = λxu2x(Mx)(Nx) Λ

λxunx(Nx)(Mx) = λx(λxyy)

is solvable in every model.

Example 6. Consistency ([11]): M = N is false in every nontrivial model &
uM = λxyxΛ uN — λxyy is solvable in every model.

Definition Functional equations of the form Mx = λxyx or equivalently
Mx = λxyy are called isolated. Functional equations of the form Mx = N are
semi-isolated.

Example 7. Semi-isolated functional equations: Mx = TV has a solution in all
models & it has a λ definable (possibly with a type 0 parameter) solution in (Pn

for all sufficiently large n ([11]). Here n depends only on N.

Example 5 continued: Let Σ consist of J_, LJ, and constants F £ θ - ^ ( . . . (0y->
n

0 ) . . . ) f o r v a r i o u s n. F o r T G Λ ( Σ ) p u t Tn = T{... ( T ± ) . . . ) . W e s h a l l
n
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show that Tx = x is solvable in every model of λU if and only if λU h Tn+ι =
Tn for some n. Note that, since the axioms of λU are typically ambiguous [12],
the corresponding result follows for the typed λ calculus.

For this it suffices to construct a universal model of λU in which <Ξ is
locally finite. With a little more care we can construct such a model which is gen-
erated by its 1-section. In this model <Ξ is not only locally finite but also recur-
sive. The decidability of the word problem for λU follows immediately.

As a preliminary we need some simple results about the first-order theory
of upper semilattices with smallest element and monotone functions. Consider
the first-order language with the constant _L, function symbols F of various ari-
ties, the binary function symbol U (infixed), and the binary relation symbol <Ξ.
Let 3 be the following set of sentences:

VJC x U x <Ξ x
VΛ: _L C x
v*vy xUy^yUx

Vxvyvz xU (yU z) ^ (xUy) U z
VxVyVz (x U y) U z Q x U (y U z)
vxvy x^xU y
V tVy Vz XCJΛJC^XC^

VxyVuv x^uAy^v ^xUy^uli v
Vxx...xn vvi.. ,yn Xι g yx Λ . . . Λ xn c yn -> Fxx...xn c Fyx.. ,yn.

Obviously, if we define x = y^x^yAy Qx then = is a congruence. For what
follows it is convenient to think of the terms of 3 as independent of the associ-
ation of LΓs and the order of arguments of U's. This is harmless since U is
associative and commutative.

We write a <Ξ b if a is a subterm of b. a < b & 3c ς= b 3 f- a c= c. a is in
normal form if

a = -L,
# = / ^ j . m m an where each #, is in normal form, or
a = Fjfifπ . . . aXnχ U . . . U F m α m l . . . amrlm where each F^a ... ain. is in normal
form and i*j-+3\f F^n . . . a i n . c Fyβ/i . . . ^ .

The following facts are easily verified:

(1) 3YFax...an<^aUb-+3YFax...an<^a\/3YFax...an<^b.
(2) 3 h Λ?i . . . an c G&i . . . 6 m -> F s G Λ for 1 < / < n 3 h ̂ ^ c &,..
(3) 3 I / F έ i ! . . . ^ ^ ± .
(4) For each a there is a unique normal 6 such that 3 \- a = b.
(5) If a < £ Λ 3 h 6 c c then there exists rf g c such that 3 h a c cf.
(6) If α is normal and fo < α then 3 If a c &.
(7) ^ is transitive, reflexive, and α < & Λ & < # * > 3 h ̂  = ^. Let 3α = 3 U
{b^c: b,c£a}.
(8) 3α h b c α => 3 μ ft c βr.

Let CE be the free model of 3. We consider d modulo = as an algebra with x ς=
y &xUy = y. Since (Pω contains all functions on its ground domain (9°ω, we may
assume that this algebra <Ξ (pω9 and that its domain is (P°ω. Let SDΪ be its Gandy
hull in (Pω ([11]; briefly, to build Wl take all elements of (Pω λ-definable from
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parameters in d, and "collapse" the result to an extensional model of genuine
set theoretic functionals).

Now define Φ U t = λz(Φz) U (Ψz) and define a logical relation g =
c o n b y φ c f ^ Φ U Ψ = t .
r 0

Claim Φ c ^ § Φ U Ϋ = f

Proof: By induction on types. The basis case is by definition so we proceed to
the induction step. Suppose Φ <Ξ ψ. By induction hypothesis X <Ξ X, for X of
lower type, so Φ X c ψx. Thus by induction hypothesis ΦX U ΨX= ΨX. Thus
Φ U Ψ = Ψ by definition of U. Now suppose Φ U Ψ = Ψ. Now c is a partial
ordering of its field. In addition, by the construction of SDΪ, _L c ±9 F ^ F
and U c LJ so by the fundamental theorem of logical relations ([13]) V i χ c χ ,
Thus c is a partial ordering. Suppose Xλ Q X2. We have ΦX2 LJ ΨΛf2 = (Φ LJ
Ϋ ) ^ = ψ^f2 so by induction hypothesis ΦX2 Q ΦX2. But ΦΛ^ c Φ ^ 2 so
Φ^i c ψ χ 2 . Hence Φ ς t .

In particular, Wl N λU, i.e., λ LJ h 7i c Γ2 => 9ft f= 7Ί c r 2 . We shall prove
the converse.

Definition For ΓGΛ(Σ) = Λ we define the notion of λ LJ normal form as
follows: ΓG T is in λU normal form if

(a) T= \x{ ...xtl
(b) T=\x{.. .xt F{Txxx ...xt)... (Tnx{ ...xt) where each Tt is in λU n o r m a l
form a n d F E 0 - » ( . . . (0-» 0 ) . . . )

n

(c) ΓΞ= λλ"i...x t Xi(TιXχ.. ,xt)... ( r ^ i . . .X/) where each Γ/ is in λU normal
form and /? = t(i)
(d) Γ Ξ λ^i . . ,xt (TXX\ .. .xt) LJ... LJ (TnXχ.. .xt) where n > 1, each 7} is in
λU normal form and each 7} is of type (b) or (c).

It is easy to see that every term has a λU normal form.

Lemma Suppose Tu T2 G Λ^ and \U\fTx^T2. Then there exist U{...
Ut e λm such that 9DΪ μ 7Ί U{... C/, c T2UX... Ut.

Proof: We may assume that Tx and Γ2 are in λU normal form. The proof is by
induction on |Γi| + \T2\. We distinguish the following cases:

Tx Ξ (1) \χχ . . ,χt _L

(2) λx i . . . ^ F ί Γ π X j . . . ^ ) . . . ( Γ l Λ 7 X ! . . . x r )
(3) \xx.. . ^ {Tnxx.. .X,) U . . . U ( Γ l Λ j f ! . . .xt)
(4) λΛ i . . ^ X / ( Γ π X j . . ^ ^ . . . ( Γ ^ X ! ...Xt)

T2 Ξ (a) λx i . . . xt ±
(b) \xι . . . ^ G(T2Xxx ...X;)... (T2mx{.. .xt)
(c) λ * i . . ,xt (T2xxγ ...xt) L J . . . LJ ( Γ 2 w X ! . . .xt)
(d) λxj . . ,xt Xj \T2\X\ ...xt)... {T2mxx . . .xt).

Now the cases when Tλ = (1) are impossible and the cases when T2 Ξ (a) are
trivial.
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Case Tx Ξ (2). The cases when T2 = (b) or T2 = (d) are immediate or follow
directly from the induction hypothesis. Thus we may assume T2 = (c).

For 1 < j < m λ U \f Tx <Ξ τ2j so by induction hypothesis there exist
UXj... Utj E Am such that 3Dΐ ψ Tx UXj... Utj g Γ2y (/υ . . . Utj. Let H be new
and for 1 < / < ί set

Ui = λyx.. . ^ H(Unyx.. . ^ ) . . . {Uimyx.. .yk) .

Suppose 9K N TXUX . . . Ut ̂  T2UX . . . £/,. Then for some 1 < j < m 3ft N
Tx Ux... Ut c Γ 2 y ̂  . . . C/,. Thus λ U YTX Ux ...Ut c r^-t/i . . . ί/,. Hence,
λ U hTΊ C / u . . . UtJ = [λux.. Mmuj/H]TXUX... Ut c [\W l... umUj/H]T2jUx...
£/, = Γ27 ί/υ . . . ί//y and 2» N 7Ί £/υ . . . Utj c Γ27 C/υ . . . t//y . This is a con-
tradiction.

Case Tx Ξ (3). For some 1 < / < n λ U )/ Txi^T2, so this case follows immedi-
ately from the induction hypothesis.

Ctoe Tx ΞΞ (4). This case is obvious when T2 = (b).

Subcase T2 = (c). Now for 1 <y < m λ U (f 71! <Ξ Γ27, so by induction hypoth-
esis 3 ί/iy... Utj E Λ^ such that W ψ Tx UXj... Utj c Γ27 C/ly . . . t/,y . Let H be
new and set

Ut = λ y x . . , y k H{UiXyx.. . y k ) . . . (Uimyx.. . ^ ) .

W e h a v e TxUx...Ut = H ( U i X ( T x x U x . . . ί / , ) . . . (TXnUx... Ut))... (Uim(TxxUx

... Ut)... (TXnUx... Ut)). The remainder of this case proceeds as in case Tx =

(2) T2 Ξ (c).

Subcase T2 = (d). This case is obvious unless / — j (so n = m). For some 1 <
/ < n, λ U \f Txί <Ξ T2l so by induction hypothesis there exist Vx . . . Vt+k E Λ^
such that 9K |ί Γ ^ . . . K/+A: g T2ίVx... Vt+k. Let Hbe new and set

υt = λyx.. .yn H(γιVt+x... Vt+k){Viyx.. .yn)
Ur= Vr if rΦi .

W e h a v e TxUx...Ut = / / ( Γ ^ ί / j . . . l / , K / + 1 . . . Vt+k) (Vi(TxxUx ...Ut)...
PV

( Γ , Λ t / , . . . £/,)) and T2Uι...U, = HiJ^U, ...U,Vt+ι... Vt+k)( V,(TVUX ...
Pη

Ut)... (T2nUx... £/,)). IfWttTιUι...Utct T2UX ...Ut then m N Γ ^ t / i . . .
UtVt+x... Vt+k c Γ 2 / ί / ! . . . UtVt+ι... Vί+k. Hence, λ U h TxιUx... UtVt+x...
Vt+k ^T2lUx... Ut Vt+X . . . Vt+k. Thus λU h Tx Vx . . . Vt+k = [λuv v/H]
TxιUx ... UtVt+x ... Vt+k c [\uv v/H]T2lUx... UtVM ... Vt+k = T2lVx ...
Vt+k. Thus SEX? (= TxιVx ... Vt+k c T2iVx . . . Vt+k. This is a contradiction.

From the proof of the lemma we obtain λ U \- Tx 9 T2 e>

Tx s (1) or
Tx = (2) and

T2 Ξ= (b) and F = G and for 1 < / < n λU h TXι g Γ2/ or
Γ2 = (c) and for some 1 < j < m λU h 7Ί c Γ2y or

Γ! 35 (3) and for 1 < / < n λU h Γ^ c Γ2 or
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Tx = (4) and
T2 = (c) and for some 1 < j < m λLJ \- Tx c τ2j or
T2 = (d) and / =j and for 1 < k < n λU h Γ l j t c Γ2*.

Thus we have the

Proposition 9JΪ h 7Ί g T2 <* λU h 7Ί g Γ2. Moreover, in 9ϊί, g & foαrf/y
//mte (z.e., intervals are finite) and recursive.

Corollary 1 If Tx = x is solvable in every model of λU then for some
n λU h Tn+ι = Tn.

Proof: If m N TU = U then for all n Wl N Tn g ί/. Thus for some /i 9Λ N

Corollary 2 λLJ Λαs the finite model property', i.e., invalid equations have
finite countermodels.

Proof sketch: Construct 90^ for 3^ as $fl was constructed for 3 using (PΛ for
sufficiently large n. There exists a total homomorphism from 9DΪ onto 9Kβ. In
particular Wla (= λU. Now apply the proposition for appropriate a.
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