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Eventual Periodicity and
“"One-Dimensional” Queries

GREGORY L. McCOLM

Abstract We expand on the automata-like behavior of monadic second or-
der relations investigated by Buchi and Ladner. We present a generalization
of their representation theorem and use it to separate the intersection of the
classes of monadic existential second order and monadic universal second or-
der queries from the class of one-dimensional inductive queries.

0 Introduction In this article, we compare monadic second order logic to
monadic least fixed point logic.

The first notion applies to second order sentences: the dimension of a sec-
ond order sentence is the maximum arity of its quantified relation variables. Most
of the work on this notion of dimension is restricted to one-dimensional (“mo-
nadic”) second order relations, starting with the automata-like behavior of mo-
nadic second order queries described in Buchi [S] and Ladner [17]. These papers
extended Ehrenfeucht’s [9] pebble game-theoretic characterization of the Fraisse
[12] equivalence relation for first order relations to monadic second order rela-
tions.

We will use this game in order to compare monadic second order logic with
a slightly smaller logic whose relation with monadic second order logic is signif-
icant. Recall that on ordered structures, by Fagin [10], existential second order
logic corresponds to NPTIME, whereas by Immerman [14] and Vardi [22]
PTIME corresponds to a logic called Least Fixed Point (LFP) by computer sci-
entists (see Aho & Ullman [3], Chandra & Harel [6], and Immerman [15]) and
Positive Elementary Induction by logicians (see Moschovakis [20]).

One of the deepest problems in logic and theoretical computer science is the
relationship between LFP and second order logic. First of all, LFP < IT}. On
R = (w,+,%,1,0), where “1” refers to exponentiation, LFP = II} (Kleene [16]).
On the other hand, over any class of finite structures, LFP is closed under ne-
gation (see [15]) and hence over such a class LFP < Al. Since a number of que-
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ries (e.g., “the digraph has an even number of vertices”) are known to be in A}
but not LFP, over the class of all finite structures we have LFP & A}.

We will look at a simpler case of the problem: we will compare monadic sec-
ond order logic (all second order quantifications range over unary relations) to
one-dimensional LFPs, where “dimension” is the number of “recursion variables”
needed for the induction. This notion of dimension in LFP is described in [6],
de Rougemont [21], Dublish & Maheshwari [8], etc. Comparisons have already
been made between one-dimensional LFPs and monadic second order formulas,
mostly using the latter to investigate the former; much of the work seems con-
centrated on the expression of Transitive Closure-type queries. For example, Fa-
gin [11] proved that connectivity (on finite graphs) is not monadic existential
second order, and de Rougemont [21] proved that even on ordered graphs non-
connectivity is not monadic IT}, from which it follows that nonconnectivity is
not one-dimensional LFP on finite ordered graphs ([21] also has a small cata-
logue of basic results on Transitive Closure and Connectivity). Then Ajtai & Fa-
gin [4] used probabilistic methods to prove that the negation of transitive closure
(on finite directed graphs) is not monadic existential second order. On the other
hand, Kanellakis (see [4]) observed that on finite nondirected graphs the nega-
tion of transitive closure is monadic universal second order, whereas McColm
showed that the negation of transitive closure on finite nondirected graphs is not
one-dimensional positive elementary inductive. This last result is unlike the oth-
ers in that it distinguishes monadic II} from one-dimensional LFP.

We will develop a representation theorem for monadic second order logic on
certain “chain-like” classes of digraphs, and we will prove that on such classes
of digraphs all monadic second order queries are both monadic existential and
monadic universal second order definable; on the other hand, on such classes,
there exist monadic second order queries that are not one-dimensional inductive.
One consequence will be that there exist queries that are all at once two-dimen-
sional inductive, two-dimensional coinductive, monadic second order, but not
one-dimensional inductive —and these will not be too hard to find. In order to
do all this, we will extend the results of [5] via [17] to these chain-like graphs.
We will also use a surgical method introduced in McColm [18] for “construct-
ing” least fixed points.

1 Second order definitions We will be working on relational structures. (A
relational structure can be regarded as a sort of stripped-down relational data-
base.) A schema is a tuple 0 = (R,d;),(R,,d5),...,(Ry,dn); {Cly...5Cn}s
where each R; is a relation symbol for dj-ary relations, and each c; is a constant
symbol. A relational structure of schema ¢ is a tuple

2[=<A’R%(y---9R?[nyclm,---yc3[>

where A is some set, R € A% for each i, and ¢} € A for each j. We call |U| =
A the domain of U, and R is the interpretation of R; in %, while ¢ is the in-
terpretation of c; in Y. We will consider the constant symbols as /abels, and re-
fer to an interpretation of a constant as a labelled vertex. We will usually be
interested in all structures of a particular schema o, especially in all finite struc-
tures of a particular schema . For example, if 0 = (Arc,2); &, then the set of
all finite structures of the schema ¢ is precisely the set of all finite directed graphs
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with no labelled vertices (we call a directed graph a digraph; in a digraph, if there
is an arc from vertex x to vertex y, we say that x is the fail of the arc, while y is
the head).

Let C be a class of structures of a common schema, closed under isomor-
phism. A query on C is a set ® S C. Given a logic £, a query ® is £-definable
if there exists an £-sentence (viz., an £-formula with no free variables) © such
that for each ¥ € C, A € R iff A F O, where “Y F O” means that “Y satisfies
©”. In the literature, such an ® is often called a Boolean query; as is often the
case, we will confuse ® and © when no confusion would result.

One notational note: When we have a formula over structures of a partic-
ular schema g, it is obvious that the constant symbols of ¢ may be used in the
formula. Sometimes constant symbols may be added to a schema to prevent silly
problems with the definitions. For example, in defining Transitive Closure (TC)
on (di)graphs, we use the schema (Arc,2); {a, b}, and investigate the dimension
of the (0-ary) query TC(a, b). That way no recursion variables need be used to
remember a and b. (Often, when such constant symbols are added, they are called
parameters to distinguish them psychologically from any “original” constants.)

We will define the First Order (FO) and Second Order (SO) formulas as
usual; an SO formula is monadic if all of its second order variables range over
unary relations. There is a hierarchy of monadic second order formulas. First,
the monadic existential SO formulas are of the form

38,38, -+ - 38, 0(...,81,82,-.-,5),

where each variable S; ranges over unary relations, and 6 has no second order
quantifications. Let ! L] denote the monadic existential formulas. The monadic
universal SO formulas, which we denote 'II{, are of the form

VSIVSy - VS 0(...,81,82,...,8),

where each S; is a unary relation variable and 6 has no second order quantifica-
tions. Note that a relation query is ! I!-definable iff its complement is 'II}-
definable. Say that a query is ' Al-definable iff it is both ! Li-definable and 'II} -
definable.

This hierarchy can be built up further: a formula is ! L}, ;-definable iff it is
of the form

351352 EISkG(...,Sl,Sz,...,Sk),

where Sy, ..., S are unary relation variables and 8 is 'II}-definable; 'II},,
is defined similarly, and the intersection of these two is !AL,,. Note that
1L,'zh = 1AL, for all n, and that a query is monadic SO iff it is ! L} -definable
for some n.

As an example, consider acyclicity on graphs. Acyclicity on finite graphs can
be expressed as

vS{3xS(x)
—3ax{S(x) & [Vuvv[(S(u) & Edge(u,x) & S(v) & Edge(x, v)) > u=vl},

and hence acyclicity is universal monadic SO. Nevertheless, as an implicit con-
sequence of [11], acyclicity is not existential monadic SO.
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‘We now massage the results in Chandra et al. [7] to get them into the form
that we want them. We will be playing pebble games. The first is a sort of peb-
ble game that lives in the lore (see Moschovakis [19], Aczel [1], and [7]). Recall
that a second order sentence is in prenex form if it is of the form

0=0:51028 -+ QrSsQsi1Xs+1 -+ QX 0(S1,. .., Ses Xsa1s -+ -5 X1),

where each §;, i < s, is a second order variable ranging over the d;-ary relations,
and each x;, j > s, is a first order variable, and 6 is quantifier-free. Suppose that
all of the - symbols in § have been pushed down to the atomic level. The game
G(0), played on a structure 9, works as follows.

There are two players, whom we shall call Eloise and Abelard following a
recent text on such things. On the i-th move, i < s, if Q; is existential, Eloise
chooses a d;-ary relation S; S |%|%; if Q; is universal, Abelard chooses S;. On
the j-th move, s < j < ¢, if Q; is existential, Eloise chooses an element x; € |¥|;
if Qj is universal, Abelard chooses x;. Finally, they reach 6 (x,S), where x is the
tuple of chosen vertices and S is the tuple of chosen unary relations. The game
continues as follows. If § = ¢ v ¢, Eloise chooses ¢ = ¢ or ¢ = ¢, and the game
continues as ¢ (x’,S) (this is a disjunctive move) where x’ is a list of some of the
variables of x. If 6 = ¢ & ¥, Abelard chooses 4 = ¢ or & = ¢, and the game con-
tinues as J(x’,S) (this is a conjunctive move). The game continues in this way
until it reaches an atomic (or negated atomic) subformula ¢ of 8, with tuples y,S.
If 9(y) = R(y), where R is a relative symbol interpreted by the relation R¥ or
a relation variable interpreted by the previously chosen monadic relation RY,
then Elosie wins iff % F R(y); if ¢ = R, then Eloise wins iff % ¥ R(y). The
ending is similar if J(y) is S;(y) or =S;(y). In G(O), we say that a player wins
if the game admits a winning strategy for that player. Clearly, Eloise wins on U
iff A E O©. Call this first kind of game the O©-definition game.

This game can be used to prove results about comparison games, which
are more widespread in the literature. Inspired by the back-and-forth partial
isomorphism construction of [12], Ehrenfeucht [9] proposed the following
r-comparison game. Take two structures A and B of a common schema o =
((Ry,dy),...,(R,,dy); €y, ..., Cpy) and two sets of r pebbles, py,...,p, for A
and ¢y, ..., q, for B. There are two players, whom we call the Spoiler and the
Duplicator after a recent paper on this sort of thing. There will be r pairs of
moves, the i-th pair of moves consisting of the Spoiler choosing a structure, and
placing the i-th pebble of that structure on some element of the structure, and
the Duplicator responding by placing the i-th pebble of the other structure on
an element of the other structure. In the end, ay,...,a, € |¥| and b,,...,
b, € || are pebbled. The Duplicator wins iff the map ¢ = ¢, a; ~ b; defines an
isomorphism between the restrictions ¥ 1 A’ =(A,RY¥ 1 4,...)and B | B’ =
(B "RP' A,...),where A ={ay,...,a,c,...,cE}and B’ = {b,,...,b,,cP,

..,¢3) If the Duplicator has a winning strategy, write

E" %-

This game is associated with the notion of the quantifier depth of a (FO) for-
mula. First of all, if 0 is an atomic formula, then depth(#) = 0. By induction,
define depth(6 & ) = depth(6 v ¥) = max {depth(8), depth(y)}, depth(—0) =
depth(8), and depth(3x0) = depth(vx6) = depth(6) + 1. We get:



EVENTUAL PERIODICITY 277

Theorem 1.1 (see [9])

(i) For each r, =, is an equivalence relation with finitely many FO-definable
equivalence classes. (Easily, r < s = = is a refinement of =,.)

i) IfY =gepth(o) B and A E G, then B EEG.

In essence, the Spoiler is trying to distinguish between the two structures
whereas the Duplicator is trying to demonstrate their similarity.

Many variations of this comparison game have been developed, especially
a game developed in [11] for monadic SO logic. Here the game starts with a
pair of sets of s crayons and a pair of sets of r pebbles for two structures 9 =
(A,RY,...,c,...>and B=(B,RP,...,cP,...). The i-th pair of moves, i <
s, consists of the Spoiler choosing a structure and using the i-th crayon of that
structure to color some of the elements of that structure; the Duplicator responds
by using the i-th crayon to color some of the elements of the other structure (we
permit an element to have several colors). The j-th pair of moves, j > s, consists
of the Spoiler pebbling an element and the Duplicator responding likewise as
above. In the end, we get s pairs of unary relations, S{,...,S¥ on % and SP,
..., 83 on B, and the usual r pairs of elements: ay,...,a, € |%| and by,...,
b, € |B|. Once again, the Duplicator wins if the correspondence a; - b;, c}‘ -

cj23 is a partial isomorphism with respect to Ry,..., and Si,. ... If the Duplica-
tor wins the (s, r)-comparison game of 9 and B, write
A=, B.
We get:

Theorem 1.2 (see [11], [17])

(i) For each s,r, =, , is an equivalence relation with finitely many SO-definable
equivalence classes.

(ii) If depth(0) < r and S is a list of no more than s unary relation variables, and
if Q is a list of (SO) quantifications, then: if A =, , B and A F QS 6(S),
then BEQS 6(S).

The above machinery is used to prove the following result lurking under the
surface of [5] and is brought out explicitly in [17]. Fix a schema o = (Arc,2),
(Ry,1),...,(R,,1); ©. We will be using the following definition a lot.

Definition A directed chain is a digraph of the form ¢{1,2,...,n},{(i,i+ 1):
1 = i< n}), where 1 is the tail and n is the head. A nondirected chain is an acy-
clic connected graph with no vertices of degree greater than 2.

Let 7 be the class of all o-structures where Arc defines a finite (directed)
chain. Note that ™ corresponds with all the finite strings of 2" symbols as fol-
lows. Each string is actually an m-tuple of Os and 1s, and the string ¢; - - * ¢,, ap-
plies to element x € |¥| iff for each i,t; = if R¥(x) then 1 else 0. Viewing the
elements of L% as strings, we can define the regular subsets of L% as those de-
fined by regular sets of strings, viz., by deterministic finite automata. A version
of Theorem 1.2 is used to prove the following:

Theorem 1.3 (cf. [5] via [17]) A set @ € TV is T-regular iff there exists a mo-
nadic second order ¢ such that for each Y € L, A € Q iff A F 6.
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The proof of this theorem actually establishes that the (finitely many) equiv-
alence classes of =; , themselves correspond to L-regular sets.

2 Configurations We now generalize Theorems 1.2 and 1.3 to classes of
graphs that consist of many chains glued together. In this section, we prove a
representation theorem about monadic SO queries over such classes of graphs.
We first construct representations of these classes of graphs. From graph theory
we use the notion of a “multidigraph”: a multidigraph is a digraph-like object
with vertices and arcs from vertices to vertices where we allow several arcs to run
from the same vertex to the same vertex (a pair of arcs from the same vertex to
the same vertex is often called a /une); we also allow an arc to run from a ver-
tex back to the same vertex —this is called a /oop (a vertex is permitted to sport
any number of loops). To represent multidigraphs in finite model theory, we can
use the following: recalling that a structure is two-sorted if it has two mutually
disjoint universes, we say that a multidigraph is a two-sorted structure It =
(V, A, H, Ty, where Vis the set of vertices of I, A is the set of arcs of M, and
H, T < V x A are the relations

H(v,a) = “vis the head of the arc a”,
T(v,a) = “v is the tail of the arc a”,

where M F (Vvae A)(3lvE V)H(v,a) & (Vae A)(3lv € V)T (v,a). Say that
the indegree of a vertex is the number of arcs going in and that the outdegree is
the number of arcs going out.

Take a digraph ®. A subdigraph © of § is a digraph whose vertices are ver-
tices of &, such that for every x, b in 9,  FArc(x, y) iff @ E Arc(x, y). We de-
fined subgraphs of graphs similarly.

We will take a single multidigraph and assign to it a class of digraphs as fol-
lows. On a digraph ©, a chain 9 is a connected subdigraph of ®& consisting of
unlabelled vertices of indegree and outdegree 1 in @. Given a digraph ©, let
o1, - - ., P, be its maximal chains; as before, a maximal chain has a distinguished
tail and a distinguished head, being the two “endpoints” of the chain: a vertex
of ® is distinguished if either its indegree or its outdegree is not 1. Many tech-
nicalities are avoided by not considering infinite digraphs, e.g., digraphs with in-
finite one-way chains (viz., subdigraphs like <{1,2,3,...},{(i,i + 1):1 <i}}),
or digraphs with arcs from one distinguished vertex to another.

We have a digraph @ with maximal chains py,. .., p, and distinguished ver-
tices vy, . .., U,. The configuration C for ® is a multidigraph constructed as fol-
lows. The distinguished vertices of & are the vertices (V) of C. As for the arcs
(A) of ¢, given a maximal chain p of @, let E, be an arc in C from the distin-
guished tail of p to the distinguished head. Note that the configuration for ¢ will
have no nonisolated unlabelled nodes of indegree and outdegree 1. Hence if C
has a nonisolated undistinguished node, it is not a configuration of any digraph;
we will ignore such multidigraphs. Note that this definition flops if @ has any
cyclic components (a cyclic component has no distinguished vertices, and hence
its image in the configuration is ill-defined); for most of this paper, we will stick
to (di)graphs without cyclic components.

(A minor modification allows us to deal with cyclic components: we can al-
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low our configurations to have isolated nodes with single loops representing cy-
clic components. Note that such an isolated node w in such a configuration C
does not correspond to any particular vertex v of a digraph @ of configuration
C because all the nodes of that component are automorphically equivalent. All
that one need do is notice that a relation holding for one node in the cycle holds
for them all, so, in a sense, w somehow represents all of the nodes in that cy-
cle; the only issue is how large the cycle is.)

If c =<V, A, H, T) is a multidigraph, let [C] = {®: & has C as a configura-
tion}. Since each digraph & has precisely one configuration, for each maximal
chain p of @, we can set fy(E,) = |p|, where |p| is the number of vertices of
p, and fg defines &; conversely, for each function f: 4 — {0,1,2,3, ... }, there
is precisely one structure @ € [C] such that f = f.

Incidentally, if @ € [C], then there exists a map 7; from the nodes of C onto
the distinguished vertices of @ (and perhaps some undistinguished vertices on cy-
clic components of ). If m, is an automorphism on C, then 7 o 7, is a differ-
ent witness to the fact that @ € [C]. In addition, if & has cyclic components,
there may be many witnesses of @ € [C]. For the rest of this paper, when we
say that & € [C] for some & and C, we will presume that some witness 7:C —
& has been fixed.

We will be investigating “C-w.ev.p.” queries:

Definition Let C=(V,A,H,TYyand S € [C]. S is C-weakly eventually peri-
odic (or just C-w.ev.p.) if, for each @ € [C] and each a € A, there exist N and
7 such that for any ©;,®, € [C], if fg,(a¢’) = fg,(a’) = fy(a’) for each a’ €
A—{a},andif N< fg, (a) = fg,(a) — 7, then @, € Siff B, € S. If C =({x, y},
{a}, {(x,a)},{(y,a)}) or C ={{x, y},{a,b},{(x,a),(»,b)},{(x,D),(¥,a)}), and S is
C-w.ev.p., we say that S is weakly eventually periodic.

Given @ € S, the minimal N that works for each arc a of C is the outset of
® in S, and the minimal 7 that works for each arc a of C is the period of @ in S.

A C-w.ev.p. query S thus “eventually” becomes periodic in the sense that for
any ¢, when we extend @ by lengthening its chain by adding new vertices one
at a time to get a sequence ¢,d,, ..., eventually we will reach a period of
length 7 such that @, € S iff @,,, € S.

We now whip out the Buchi-Ladner theorem (Theorem 1.3) to get the fol-
lowing lemma. Note that by the world-famous Pumping Lemma of automata
theory (see, e.g., Hopcroft and Ullman [13]), a set S of strings of one symbol
a is regular iff {|a"| :a" € S} is weakly eventually periodic.

Lemma 2.1 Fix a configuration C. Every monadic second order query on [C]
is C-w.ev.p.

Proof: Let C=(V,A,H,T), and fix @ € [C] and @ € A. Let §,, be the graph
associated with the function

fla’) =if a =a’ then n else fg(a’)

for each n > 0. Let C < || be the maximal chain associated with the arc a, and
for any SO O, let Gg = {n: ®, F O]}. Let d; be the distinguished tail and d, the
distinguished head of C, and let D = |®| — C = {d,, ..., d,,} list the vertices
outside the chain.
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Now let €, be the digraph consisting of a directed chain of # vertices; we
ignore the silly case n = 0. By Theorem 1.3, if ¥ is monadic SO and GY =
{n:G, E ¥}, then GY is weakly eventually periodic. If we can prove that for
each monadic SO © on [C], there exists monadic SO ¥ such that Gg = G¥, we
will be done. The idea is to have ¥ be the same as O, as far as Abelard-Eloise
games go, except that the moves made on vertices outside of C are made on “vir-
tual vertices”, i.e., they are not in the structure but are simulated by logical con-
nectives.

From O, we construct ¥ using Abelard-Eloise games. But first we set some
groundwork. In the Abelard-Eloise game of ¥ on §,,, the game is the same as
that of © on &, except that if Abelard or Eloise choose a vertex to pebble, then
either the pebble will be in C = C,, (and the pebbling will take place as before),
or the pebbler will pebble some d;, which will correspond to a conjunctive or
disjunctive move setting “pebble := d;”. Similarly, when (unary) relations are to
be played, the player will color the vertices of C and also choose, via a conjunc-
tive or disjunctive move, which vertices d; should be colored as well. Several new
relations now appear:

S, F Arcf (x) = @, F Arc(d;, x),

G, F Arcj (x) = §, F Arc(x, d)),

€, FArc;i( ) = ®, FArc(d;, d)),
and for the relation variable S;,

(Sm I=SU( ) = @n |=S,(dj)

The idea will be to “replace” O, piece by piece, with another formula ¥. We
will actually replace © with an expression containing the subformulas of ©, re-
place each subformula with an expression containing its subformulas, and so on
down. When the replacing is done, we will replace the “atomic” expressions
Arc;-”, Arcj, Arc;, and S;; with formulas, and the result will be ¥. For simplic-
ity, suppose that

O0=08 - QsSs Qsi1Xy * -+ Qs+rX, 0(x,8),

where 0 is quantifier-free. Replacing © with some ¥ works as follows.

First, if © = 3S; &(S;) for some SO formula ¢, Eloise will choose some
SicCand K, S {1,...,m} = [m] such that S® = S§ U {d;:j € K;}. Hence
this SO quantification move consists of a coloring of points in C and a choice
of K. Replace 315, #(S;) with

a‘Sl V ¢(S1;K1)a

Kis[m]

where ¢(S1; K;) = 8, where K| is noted for future reference. Similarly, if © =
vS; 8(S,), replace it with

vS: A e(S1:Ky).
Kiclm]
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Continue in the same vein down the SO quantifications. For example, if
0;(S;K) = 35; 9;(S, S;), replace it with

S 'V «i(8,5:K,K)),
K;c[m]
where ¢; (S, S;;K, K;) = &;, where K; is noted for future reference.

Now for the sequence of FO quantifications. Given 0, let 6;_,; be 6 with each
occurrence of x, replaced by d;, viz., Arc(xy, X;) is replaced by Arcf (x)), each
occurrence of Arc(x;, x,) is replaced by Arc; (x;), each occurrence of Arcf (xx)
is replaced by Arcy;, each occurrence of Arc; (xi) is replaced by Arcj;, and each
occurrence of S;(x;) is replaced by S;;. If 6;(x,S;K) = vx; #(x, x;,S;K), replace
it with

m
VX 8 (X, X, S;K) A A 34 (X, S;K).
Jj=1

Similarly, if ©,(x,S) = 3x; #(x, x;,S;K), replace it with

m
I 3(X, x4, 8;K) v V 9, (%,S;K).
j=1
Continue until all quantifications are gone and you have a massive expression
d, which is actually an SO sentence over the class of finite chains except that it
also contains Arc}, Arc;, Arc;;, and S;; for each i, j, as unary or 0-ary predi-
cates.
As d, is the distinguished tail of C, we write

Arcy(x) = vy mArc(y,x) and Arcy(x) = FALSE.
Similarly, as d, is the distinguished head of C, write
Arcs; (x) = FALSE and Arci(x) = Vy nArc(x, ).

And if i > 2, then Arc;t(x) © Arcy (x) & FALSE. As Arcy; is fixed throughout
{®,:n € w} for each fixed i,j, let Arc;; = Arc(d;,d;), which is TRUE or
FALSE, depending on d;, d;. Finally, the symbol S;; is replaced with TRUE if
it lies within an expression & (—;—, K;), where j € K;, and FALSE if it lies
within an expression ¢ (—;—, K;), where j & K;. The result of all this replacing
is an SO formula ¥ designed for chain structures.

It is straightforward, if tedious, to verify that Eloise wins the game for © on
§, iff she wins for ¥ on §,,. It follows that @, F © iff €, F ¥ for each n, and
the lemma follows.

We now strengthen the notion of weakly eventually periodic.

Definition LetC=<(V,A,H,T)and S € [C]. S is C-eventually periodic (or
just C-ev.p.) if there exist N, 7 such that for each @ € [C] and each @ € A, for
any @;,8,, € [C], if fg,(a’) =f,(a’) =fs(a’) for each a’ € A — {a}, and if
N < fg,(a) = fg,(a) — 7, then @, € Siff @, € S. If C =({x,y},{a},{(x,a)},
{(»,a)}> or C =({x,y},{a,b},{(x,a),(»,D)},{(x,b),(y,a)}), and S is C-ev.p., we
say that S is eventually periodic.
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Notice the distinction: if S is C-ev.p., then there exists a single pair N, 7 wit-
nessing S being C-ev.p., whereas if S is merely C-w.ev.p., then for each &, there
is a pair N, 7 witnessing S being C-w.ev.p. in that case.

Lemma 2.2 Fix a configuration C. Every monadic second-order query on [C]
is C-ev.p.

Proof: Towards contradiction, suppose that

0=0,8 -+ Os8sQss1X1 - Qsir X, 0(x,S)

has 6 being quantifier-free, and that there exist ®,;,®,,... € [C] such that if
N;, 7, are the outset and period of §, respectively (and each N,, 7, exist by
Lemma 2.1), then N, =< N, and 7, < 7,,, for each ¢, and either lim,_, o, N; = o
or lim,_,, 7, = oo.

Let @ < @’ mean that for each arca, fg(a) < fu (a), and using a thinning
argument we can find a subsequence {¥,,};e,, such that fg, (a) < f@,”(a) for
all g, i. In fact, without loss of generality we can suppose that {@,},ea', satisfies
Sfo,(a) = fg,,, (a) for all a,t. Let [(a) = lim,, fg,(a) for each arca, and let
M > [(a) for each finite /(a) and let T be such that if = T, then for each arca,
l(a) < o = fgy (a) =1(a) and I(a) = o = fg (a) > M.

Recall from the comment after Theorem 1.3 that each of the finitely many
equivalence classes of =, , on finite chains is eventually periodic, and let N’ be
the maximum outset of any of these classes, and 7’ the least common multiple
of all the periods. Choose any & = ®,, t = T, and let

Jo,o(@)=ifa=0a"& fo(a) > Nr + N' + 777’
then fgy(a) — 777’
else f(a’),

and let [®; @] be the resulting digraph. Now, a =, , game, with all moves re-
stricted to any chain of & and the corresponding chain of [¢; a], gives the Dupli-
cator a winning strategy. Hence, as all the SO moves are for unary relations,
® =, [@;a], and repeating for each maximal chain of @, it follows that ¢ and
[@; a] have the same outset and period. Choose another configuration arc a’,
and the same is true of [§;a] and [[@; a];a’], and so on. Repeating as often
as possible, we find that the outset and period of @, is the same as that of some
& € [C] all of whose chains are no longer than N’ + N7 + 777" Since this is
trueofall @, t =T, {N,:t=T} and {7,:t = T} are both finite, giving us our
contradiction.

We now need a characterization of the C-ev.p. functions f.

Definition Let S S w. Recall that S is an arithmetic progression if there ex-
ist N, 7 € w such that S = (N + k7:k € w}. Call N the outset and 7 the period
of S. Say that S € w is rational if it is a finite union of arithmetic progressions.
If Arith(N, 7) = {N + k1: k € w}, say that S = Ug<,, Arith(Ny, 7;) is of pattern

{(S15-..,8n) €ES: (VK= m)(s < N+ 14)},

and call max, N the outset and the least common multiple lcmy 7, the period
of S.



EVENTUAL PERIODICITY 283

We say that S € w? is rational if there exists M and rational sets J (i, j) S w,
i <dandj< M, such that S is the union of Cartesian products S = U {Il;<4
J(i,j):j <= Mj}.

On the other hand, say that S € w? is eventually periodic if there exist N, 7
such that for each k < d, if n, = N, then

(Niy.o oy g1, Ay Ngy1s- .- Hg) €S
iff (ny,...,0_1, 0+ T, Ny 1,...,0g) ES.
Lemma 2.3 A subset of w? is eventually periodic iff it is rational.
Proof: First, suppose that S € »? is rational:
S=UMi<aJ (i, )):j = M}.

For each i, j <= M, J(i, ) has outset N(i,j) and period 7(i,j), and if N is the max-
imum N (i, j) and 7 is the least common multiple of all the 7 (i, j), then N and
7 witness the eventual periodicity of S.

Conversely, suppose that S is eventually periodic, with outset N and period
7. For each tuple k = (ky,...,kz) € {1,2,...,N + 7}, and each i < d, let
J(i,k) =if k; < N then {k;} else {k;} U {k; + t7:t € w}, and J(i,k) is rational.
Easily,

S=U{zqJ(i,k):kESN(L,...,N+ 7}9)}.
It follows that if C is a configuration, all monadic SO queries are “rational”

in the following sense.

Definition Fix a configuration C. For any @ € [C], let fg be a function
from the arcs of C to w such that for any arc a, fg(a) is the number of vertices
in the chain in ® corresponding to the arc a. Let a4, . . ., a, be the arcs of C, and
let F(®) be the tuple (fg(ai),...,fg(ay)). For any set S < [C], let

F(S) ={F(®):® e S}.
Call a set S < [C] C-rational if F(S) is rational (in w9).
Lemma 2.4 Let C be a configuration. Then every C-rational query is ' Al-
definable.

Proof: Let C =(C,A,H,T). As the class of C-rational queries is closed under
negation, it suffices to prove that every C-rational query is ! Z}-definable.
The first step is to verify that every rational class of finite chains is 'Z}-
definable. An arithmetic progression of chains, with distinguished tail ¢, and dis-
tinguished head 4, and with outset N and period 7 is ! £}-definable using

1S{(vs € S)(dist(#y,5) = N) &
(3s € S)(dist(Zy,s) = N) &
(Vs €S — {ho}) (“next s’ € S up from s is distance 7”’) & S(hg)}.

As an eventually periodic set is a finite union of arithmetic sets, eventually pe-
riodic sets are ! £i-definable.
Now, if S is C-rational, it corresponds with some w!“4l-rational S. In 'Z},
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given distinguished x, y, we can assert the existence of chains from x to y of
lengths decreed by S. Hence we write, if the i-th arc is the one from x,(;) t0 Xy,

3x; -+ - X3S -+ S| {“There is a pattern for a C rational set
s.t. Sy,...,8)4) is of that pattern”}.

This is ! £1-definable, and we are done.

Theorem 2.5 On [C], a query is C-rational iff it is C-ev.p. iff it is monadic
SO iff it is ' Al-definable.

Hence on [C], all monadic second order queries are 'Al-definable. One cy-
clic comment: When Fagin [11] proved that Connectivity is not ! L} -definable,
his proof actually achieved the following. Let & be a digraph and let [®, »] con-
sist of all digraphs consisting of & with n additional cyclic components.

Theorem 2.6 (Essentially, [11]) Let C be a configuration, and fixn = 1. If R
is a 'Ti-definable class of structures, and if R N [C] is infinite, then for some
& € [C], RN [@, n] is also infinite.

Given a configuration C, let

o= U ( ) [@),n]).
®elc] \new
As far as !Al is concerned, cyclic components are invisible within any (C), so
we could ignore them and restrict our attention to [C]. Nevertheless, in 1%l the
existence of cyclic components can be asserted, whereas in 'TI} the existence of
cyclic components can be denied. It follows that on any (C),