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Eventual Periodicity and

"One-Dimensional" Queries

GREGORY L. McCOLM

Abstract We expand on the automata-like behavior of monadic second or-
der relations investigated by Buchi and Ladner. We present a generalization
of their representation theorem and use it to separate the intersection of the
classes of monadic existential second order and monadic universal second or-
der queries from the class of one-dimensional inductive queries.

0 Introduction In this article, we compare monadic second order logic to
monadic least fixed point logic.

The first notion applies to second order sentences: the dimension of a sec-
ond order sentence is the maximum arity of its quantified relation variables. Most
of the work on this notion of dimension is restricted to one-dimensional ("mo-
nadic") second order relations, starting with the automata-like behavior of mo-
nadic second order queries described in Buchi [5] and Ladner [17]. These papers
extended Ehrenfeucht's [9] pebble game-theoretic characterization of the Fraisse
[12] equivalence relation for first order relations to monadic second order rela-
tions.

We will use this game in order to compare monadic second order logic with
a slightly smaller logic whose relation with monadic second order logic is signif-
icant. Recall that on ordered structures, by Fagin [10], existential second order
logic corresponds to NPTIME, whereas by Immerman [14] and Vardi [22]
PTIME corresponds to a logic called Least Fixed Point (LFP) by computer sci-
entists (see Aho & Ullman [3], Chandra & Harel [6], and Immerman [15]) and
Positive Elementary Induction by logicians (see Moschovakis [20]).

One of the deepest problems in logic and theoretical computer science is the
relationship between LFP and second order logic. First of all, LFP <Ξ π{. On
9ί = <ω, + ,x,ΐ,0>, where " ί " refers to exponentiation, LFP = Π} (Kleene [16]).
On the other hand, over any class of finite structures, LFP is closed under ne-
gation (see [15]) and hence over such a class LFP Q Δ{. Since a number of que-
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ries (e.g., "the digraph has an even number of vertices") are known to be in Δ{
but not LFP, over the class of all finite structures we have LFP £ Δ{.

We will look at a simpler case of the problem: we will compare monadic sec-
ond order logic (all second order quantifications range over unary relations) to
0«e-dimensional LFPs, where "dimension" is the number of "recursion variables"
needed for the induction. This notion of dimension in LFP is described in [6],
de Rougemont [21], Dublish & Maheshwari [8], etc. Comparisons have already
been made between one-dimensional LFPs and monadic second order formulas,
mostly using the latter to investigate the former; much of the work seems con-
centrated on the expression of Transitive Closure-type queries. For example, Fa-
gin [11] proved that connectivity (on finite graphs) is not monadic existential
second order, and de Rougemont [21] proved that even on ordered graphs non-
connectivity is not monadic Π}, from which it follows that nonconnectivity is
not one-dimensional LFP on finite ordered graphs ([21] also has a small cata-
logue of basic results on Transitive Closure and Connectivity). Then Ajtai & Fa-
gin [4] used probabilistic methods to prove that the negation of transitive closure
(on finite directed graphs) is not monadic existential second order. On the other
hand, Kanellakis (see [4]) observed that on finite nondirected graphs the nega-
tion of transitive closure is monadic universal second order, whereas McColm
showed that the negation of transitive closure on finite nondirected graphs is not
one-dimensional positive elementary inductive. This last result is unlike the oth-
ers in that it distinguishes monadic Π} from one-dimensional LFP.

We will develop a representation theorem for monadic second order logic on
certain "chain-like" classes of digraphs, and we will prove that on such classes
of digraphs all monadic second order queries are both monadic existential and
monadic universal second order definable; on the other hand, on such classes,
there exist monadic second order queries that are not one-dimensional inductive.
One consequence will be that there exist queries that are all at once two-dimen-
sional inductive, two-dimensional coinductive, monadic second order, but not
one-dimensional inductive —and these will not be too hard to find. In order to
do all this, we will extend the results of [5] via [17] to these chain-like graphs.
We will also use a surgical method introduced in McColm [18] for "construct-
ing" least fixed points.

/ Second order definitions We will be working on relational structures. (A
relational structure can be regarded as a sort of stripped-down relational data-
base.) A schema is a tuple σ = (Rudι),(R29d2)9.. . ,(i?m,dm); {c l f . . .,cn}9

where each Rt is a relation symbol for dΓary relations, and each Cj is a constant
symbol. A relational structure of schema σ is a tuple

& — \Λ,K\ , . . . , Km, C\ , . . . , Cn )

where A is some set, Rf c Adi for each /, and cf E A for eachy. We call 1811 =
A the domain of 2ί, and Rf is the interpretation of Λ,- in 21, while cf is the in-
terpretation of Cj in 81. We will consider the constant symbols as labels, and re-
fer to an interpretation of a constant as a labelled vertex. We will usually be
interested in all structures of a particular schema σ, especially in all finite struc-
tures of a particular schema σ. For example, if σ = (Arc,2); 0 , then the set of
all finite structures of the schema σ is precisely the set of all finite directed graphs
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with no labelled vertices (we call a directed graph a digraph; in a digraph, if there
is an arc from vertex x to vertex y, we say that x is the tail of the arc, while y is
the head).

Let C be a class of structures of a common schema, closed under isomor-
phism. A query on C is a set (R £ β. Given a logic £ , a query (R is indefinable
if there exists an ^-sentence (viz., an £-formula with no free variables) θ such
that for each 21 G C, 21 G (R iff 2t 1= θ, where "211= θ " means that "21 satisfies
θ". In the literature, such an (R is often called a Boolean query \ as is often the
case, we will confuse (R and θ when no confusion would result.

One notational note: When we have a formula over structures of a partic-
ular schema σ, it is obvious that the constant symbols of σ may be used in the
formula. Sometimes constant symbols may be added to a schema to prevent silly
problems with the definitions. For example, in defining Transitive Closure (TC)
on (di)graphs, we use the schema (Arc,2); {a, b], and investigate the dimension
of the (0-ary) query TC(#, b). That way no recursion variables need be used to
remember a and b. (Often, when such constant symbols are added, they are called
parameters to distinguish them psychologically from any "original" constants.)

We will define the First Order (FO) and Second Order (SO) formulas as
usual; an SO formula is monadic if all of its second order variables range over
unary relations. There is a hierarchy of monadic second order formulas. First,
the monadic existential SO formulas are of the form

3Sl3S2 " 3Sŷ  θ( . . . ,Sl ,S2, . . . , Sfr),

where each variable S, ranges over unary relations, and θ has no second order
quantifications. Let ^ 1 denote the monadic existential formulas. The monadic
universal SO formulas, which we denote ιΠ\, are of the form

VS1VS2 vS/c θ(... 9Sι,S2,... ,Sk)9

where each Sf is a unary relation variable and θ has no second order quantifica-
tions. Note that a relation query is *Σ*-definable iff its complement is J In-
definable. Say that a query is ^{-definable iff it is both ^{-definable and * In-
definable.

This hierarchy can be built up further: a formula is ι Σ^+1-definable iff it is
of the form

lSι*S2 ••• 3 S k θ ( . . . 9 S ι , S 2 9 . . . , S k ) 9

where Su... ,Sk are unary relation variables and θ is Ήi-definable; 1 Π^ + 1

is defined similarly, and the intersection of these two is ιAι

n+i. Note that
1 Πi, ι Σλ

n C
 1 Aι

n+ι for all n, and that a query is monadic SO iff it is ι E^-definable
for some n.

As an example, consider acyclicity on graphs. Acyclicity on finite graphs can
be expressed as

VS{3XS(ΛΓ)

-> 3JC{S(X) & [VuW[(S(u) & Edge(w,x) & S(v) & Edge(x, υ)) -• u = v])9

and hence acyclicity is universal monadic SO. Nevertheless, as an implicit con-
sequence of [11], acyclicity is not existential monadic SO.
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We now massage the results in Chandra et al. [7] to get them into the form
that we want them. We will be playing pebble games. The first is a sort of peb-
ble game that lives in the lore (see Moschovakis [19], Aczel [1], and [7]). Recall
that a second order sentence is in prenexform if it is of the form

θ a QιS1Q2S2 . . • QtSsQs+ιxs+ι Qtxt θ(Sl9.. .9S59x5+l9... , * , ) ,

where each S, , / < s, is a second order variable ranging over the rf,-ary relations,
and each Xj, j > s, is a first order variable, and 0 is quantifier-free. Suppose that
all of the -ι symbols in 0 have been pushed down to the atomic level. The game
G(θ), played on a structure 2ί, works as follows.

There are two players, whom we shall call Eloise and Abelard following a
recent text on such things. On the /-th move, / < s, if Qι is existential, Eloise
chooses a d rary relation S, c 1211̂ '; if Qi is universal, Abelard chooses S, . On
they-th move, s <j < t, if Qj is existential, Eloise chooses an element xι G |2l|
if Qj is universal, Abelard chooses jt, . Finally, they reach 0(x,S), where x is the
tuple of chosen vertices and S is the tuple of chosen unary relations. The game
continues as follows. If θ = φ v ψ, Eloise chooses ϋ = φ or ϋ = ψ9 and the game
continues as #(x',S) (this is a disjunctive move) where x' is a list of some of the
variables of x. If 0 = φ & ψ, Abelard chooses ϋ = φ or ϋ = ψ, and the game con-
tinues as #(x',S) (this is a conjunctive move). The game continues in this way
until it reaches an atomic (or negated atomic) subformula ϋ of 0, with tuples y,S.
If t?(y) = R(y), where R is a relative symbol interpreted by the relation Rn or
a relation variable interpreted by the previously chosen monadic relation Rn

9

then Elosie wins iff 2t t= R(y); if i? = -</?, then Eloise wins iff 2t Ψ R(y). The
ending is similar if t?(y) is Sz(y) or -ιS/(y). In G(θ), we say that a player wins
if the game admits a winning strategy for that player. Clearly, Eloise wins on 21
iff 211= θ. Call this first kind of game the θ-definition game.

This game can be used to prove results about comparison games, which
are more widespread in the literature. Inspired by the back-and-forth partial
isomorphism construction of [12], Ehrenfeucht [9] proposed the following
r-comparison game. Take two structures 21 and 93 of a common schema σ =
((/?i,tfi),... ,(Rn,dn); Ci,... ,cw) and two sets of r pebbles, pu . . . ,pr for 21
and qi9...9qrfoτ 93. There are two players, whom we call the Spoiler and the
Duplicator after a recent paper on this sort of thing. There will be r pairs of
moves, the /-th pair of moves consisting of the Spoiler choosing a structure, and
placing the /-th pebble of that structure on some element of the structure, and
the Duplicator responding by placing the /-th pebble of the other structure on
an element of the other structure. In the end, aΪ9... ,ar E |2l| and bu...,
br G 1931 are pebbled. The Duplicator wins iff the map cf *-+ cf, α7 •-> bj defines an
isomorphism between the restrictions 21 Γ A' = {A\ Rf Γ A\ . . . > and 93 \ Bf =
< £ ' , * ? M ' , . . . > , w h e r e Λ ' = {al9...9 ar,c?9... ,c%] and B ' = {bu..., br,cf,
. . . , c®}. If the Duplicator has a winning strategy, write

2l= r93.

This game is associated with the notion of the quantifier depth of a (FO) for-
mula. First of all, if θ is an atomic formula, then depth(0) = 0. By induction,
define depth(0 &ψ) = depth(0 vψ) = max (depth(0), depth(^)}, depth(-«0) =
depth(0), and depth(3x0) = depth(Vx0) = depth(0) + 1. We get:
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Theorem 1.1 (see [9])
(i) For each r, =r is an equivalence relation with finitely many FO-definable

equivalence classes. (Easily, r < s => =s is a refinement of =r.)

(ii) //2l ΞEdepth(0) S3 and 211= θ, then 33 1= θ.

In essence, the Spoiler is trying to distinguish between the two structures
whereas the Duplicator is trying to demonstrate their similarity.

Many variations of this comparison game have been developed, especially
a game developed in [11] for monadic SO logic. Here the game starts with a
pair of sets of s crayons and a pair of sets of r pebbles for two structures 21 =
(A, Rf,..., cf,... > and 33 = (B, / ? ? , . . . , c p , . . . >. The /-th pair of moves, / <
s, consists of the Spoiler choosing a structure and using the /-th crayon of that
structure to color some of the elements of that structure; the Duplicator responds
by using the /-th crayon to color some of the elements of the other structure (we
permit an element to have several colors). The j-th pair of moves, j > s, consists
of the Spoiler pebbling an element and the Duplicator responding likewise as
above. In the end, we get s pairs of unary relations, Sf,..., S* on 21 and Sf,
. . . , S;? on 33, and the usual r pairs of elements: ax,..., ar G |2l| and bx,...,
br E 1331. Once again, the Duplicator wins if the correspondence #, •-> bh cf -*
cf is a partial isomorphism with respect to R\,..., and Sλ,.... If the Duplica-
tor wins the (5*, r)-comparison game of 21 and 33, write

We get:

Theorem 1.2 (see [11], [17])
(i) For each s, r, =s>r is an equivalence relation with finitely many SO-definable

equivalence classes.
(ii) If depth (θ)<r and S is a list of no more than s unary relation variables, and

if Q is a list of (SO) quantifications, then: //2l =s r 33 and 21 N QS 0(S),
/*OT»hQS0(S).

The above machinery is used to prove the following result lurking under the
surface of [5] and is brought out explicitly in [17]. Fix a schema σ = (Arc,2),
(Rι, 1 ) , . . . , (Rm, 1); 0 . We will be using the following definition a lot.

Definition A directed chain is a digraph of the form <{ 1,2,...,«},{(/,/ + 1):
1 </</?}>, where 1 is the tail and n is the head. A nondirected chain is an acy-
clic connected graph with no vertices of degree greater than 2.

Let Σ + be the class of all σ-structures where Arc defines a finite (directed)
chain. Note that Σ + corresponds with all the finite strings of 2 m symbols as fol-
lows. Each string is actually an m-tuple of Os and Is, and the string ιx ιm ap-
plies to element x G |2ί| iff for each /, ιf = if Rf(x) then 1 else 0. Viewing the
elements of Σ+ as strings, we can define the regular subsets of Σ + as those de-
fined by regular sets of strings, viz., by deterministic finite automata. A version
of Theorem 1.2 is used to prove the following:

Theorem 1.3 (cf. [5] via [17]) A set d c Σ+ is Σ-regular iff there exists a mo-
nadic second order φ such that for each 2 ί G Σ + , 2tG(2/#'2ll=</>.
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The proof of this theorem actually establishes that the (finitely many) equiv-
alence classes of =SyΓ themselves correspond to Σ-regular sets.

2 Configurations We now generalize Theorems 1.2 and 1.3 to classes of
graphs that consist of many chains glued together. In this section, we prove a
representation theorem about monadic SO queries over such classes of graphs.
We first construct representations of these classes of graphs. From graph theory
we use the notion of a "multidigraph": a multidigraph is a digraph-like object
with vertices and arcs from vertices to vertices where we allow several arcs to run
from the same vertex to the same vertex (a pair of arcs from the same vertex to
the same vertex is often called a lune); we also allow an arc to run from a ver-
tex back to the same vertex—this is called a loop (a vertex is permitted to sport
any number of loops). To represent multidigraphs in finite model theory, we can
use the following: recalling that a structure is two-sorted if it has two mutually
disjoint universes, we say that a multidigraph is a two-sorted structure 9W =
< F, A, H, Γ>, where Fis the set of vertices of SDΪ, A is the set of arcs of Wl, and
H, Tc VxA are the relations

H(v, α) ss "i; is the head of the arc #",

T(v, α) s "υ is the tail of the arc α",

where a»H(VαG^4)(3!t;e V)H(v,α) & (Vα GA)(3lv e V)T(v,α). Say that
the indegree of a vertex is the number of arcs going in and that the outdegree is
the number of arcs going out.

Take a digraph ©. A subdigrαph φ of © is a digraph whose vertices are ver-
tices of ®, such that for every x,y in φ, φ 1= Arc(x, j>) iff © 1= Arc(x, y). We de-
fined subgraphs of graphs similarly.

We will take a single multidigraph and assign to it a class of digraphs as fol-
lows. On a digraph ®, a c/zα//! φ is a connected subdigraph of © consisting of
unlabelled vertices of indegree and outdegree 1 in ®. Given a digraph ®, let
P i , . . . , ρn be its maximal chains; as before, a maximal chain has a distinguished
tail and a distinguished head, being the two "endpoints" of the chain: a vertex
of ® is distinguished if either its indegree or its outdegree is not 1. Many tech-
nicalities are avoided by not considering infinite digraphs, e.g., digraphs with in-
finite one-way chains (viz., subdigraphs like <{ 1,2,3,... },{(/,/+ 1): 1 < /}»,
or digraphs with arcs from one distinguished vertex to another.

We have a digraph ® with maximal chains pu... 9ρn and distinguished ver-
tices Vι,..., vm. The configuration C for © is a multidigraph constructed as fol-
lows. The distinguished vertices of © are the vertices (F) of C. As for the arcs
(A) of C, given a maximal chain p of ®, let Ep be an arc in C from the distin-
guished tail of p to the distinguished head. Note that the configuration for © will
have no nonisolated unlabelled nodes of indegree and outdegree 1. Hence if C
has a nonisolated undistinguished node, it is not a configuration of any digraph;
we will ignore such multidigraphs. Note that this definition flops if © has any
cyclic components (a cyclic component has no distinguished vertices, and hence
its image in the configuration is ill-defined); for most of this paper, we will stick
to (di)graphs without cyclic components.

(A minor modification allows us to deal with cyclic components: we can al-
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low our configurations to have isolated nodes with single loops representing cy-
clic components. Note that such an isolated node w in such a configuration C
does not correspond to any particular vertex v of a digraph © of configuration
C because all the nodes of that component are automorphically equivalent. All
that one need do is notice that a relation holding for one node in the cycle holds
for them all, so, in a sense, w somehow represents all of the nodes in that cy-
cle; the only issue is how large the cycle is.)

If C = < V,A, H, T) is a multidigraph, let [C] = {©: © has C as a configura-
tion). Since each digraph © has precisely one configuration, for each maximal
chain p of ©, we can s e t / ® ^ ) = |p | , where \p\ is the number of vertices of
p, and/® defines © conversely, for each function/M -* {0,1,2,3,... }, there
is precisely one structure & G [C] such that/ = /@.

Incidentally, if © E [C], then there exists a map TΓI from the nodes of C onto
the distinguished vertices of © (and perhaps some undistinguished vertices on cy-
clic components of ©). If τr0 is an automorphism on C, then TΓI ° τr0 is a differ-
ent witness to the fact that © E [C]. In addition, if © has cyclic components,
there may be many witnesses of © E [C]. For the rest of this paper, when we
say that © E [C] for some © and C, we will presume that some witness TΓ : C -•
© has been fixed.

We will be investigating "C-w.ev.p." queries:

Definition Let C = < V, A, H, T) and 5 g [ c ]. S is C-weakly eventually peri-
odic (or just C-w.ev.p.) if, for each © E [C] and each a E A, there exist Nand
r such that for any ®i,®2 e [C], if/©,(*') = /®2(α') = /©(*') for each a' E
A - {a}, and if N<f&ι (a) =/®2(α) - r, then © ^ S iff ®2 E 5. If C = <{*,>>},
{α},{Uα)},{(Λ^)}>orC = <{x,^},{«,Z7},{(x,α),(Λ6M,{U*),U«)}>,and5is
C-w.ev.p., we say that S is weakly eventually periodic.

Given © E S, the minimal TV that works for each arc a of C is the outset of
© in S, and the minimal r that works for each arc a of C is the period of © in S.

A C-w.ev.p. query S thus "eventually" becomes periodic in the sense that for
any ©, when we extend © by lengthening its chain by adding new vertices one
at a time to get a sequence ®i,®2,..., eventually we will reach a period of
length r such that &tGS iff ® / + τ E S.

We now whip out the Buchi-Ladner theorem (Theorem 1.3) to get the fol-
lowing lemma. Note that by the world-famous Pumping Lemma of automata
theory (see, e.g., Hopcroft and Ullman [13]), a set S of strings of one symbol
a is regular iff {\an \ : an E S] is weakly eventually periodic.

Lemma 2.1 Fix a configuration C. Every monadic second order query on [C]
is C-w. ev.p.

Proof: Let C = < V, A, H, T), and fix @ E [C] and a E A. Let &n be the graph
associated with the function

f(a') =iϊa = a' then n else/Θ(α')

for each n > 0. Let C <Ξ |®| be the maximal chain associated with the arc α, and
for any SO θ, let Gθ = [ n: &n f= θ}. Let dx be the distinguished tail and d2 the
distinguished head of C, and let D = |®| - C - {du . . . ,dm] list the vertices
outside the chain.
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Now let Sw be the digraph consisting of a directed chain of n vertices; we
ignore the silly case n = 0. By Theorem 1.3, if Ψ is monadic SO and G* =
{n: (£„ t= Ψ}9 then Gψ is weakly eventually periodic. If we can prove that for
each monadic SO θ on [C], there exists monadic SO Ψ such that G θ = Gψ, we
will be done. The idea is to have Ψ be the same as θ, as far as Abelard-Eloise
games go, except that the moves made on vertices outside of C are made on "vir-
tual vertices", i.e., they are not in the structure but are simulated by logical con-
nectives.

From θ, we construct Ψ using Abelard-Eloise games. But first we set some
groundwork. In the Abelard-Eloise game of Ψ on ©„, the game is the same as
that of θ on &n except that if Abelard or Eloise choose a vertex to pebble, then
either the pebble will be in C = Cn (and the pebbling will take place as before),
or the pebbler will pebble some di9 which will correspond to a conjunctive or
disjunctive move setting "pebble := d". Similarly, when (unary) relations are to
be played, the player will color the vertices of C and also choose, via a conjunc-
tive or disjunctive move, which vertices rf, should be colored as well. Several new
relations now appear:

<£„ N Arc/(x) • &n N Aic(dj9x),

<£„ N AΓC/(JC) s ©„ t= Arc(x, dj),

dn t= Arciji ) = ©„ 1= Aic(di9dj),

and for the relation variable 5, ,

SΛNS i y ( ) = ®ntSi(dj).

The idea will be to "replace" θ, piece by piece, with another formula Ψ. We
will actually replace θ with an expression containing the sub formulas of θ, re-
place each sub formula with an expression containing its sub formulas, and so on
down. When the replacing is done, we will replace the "atomic" expressions
Arc/, Arc/, Arc^ , and S# with formulas, and the result will be Ψ. For simplic-
ity, suppose that

θ = QiSx QSSS Qs+ιx{ Qs+rxr 0(x,S),

where θ is quantifier-free. Replacing θ with some Ψ works as follows.
First, if θ Ξ 35/ #(S, ) for some SO formula #, Eloise will choose some

S i C C a n d ^ c {l,...,m} = [m] such that S? = Sf U [dj:j G Kx). Hence
this SO quantification move consists of a coloring of points in C and a choice
of Kλ. Replace 3S{ d(Sx) with

3S{ V *(Si ;* i ) ,

where φ(Sχ Kι) = d9 where K\ is noted for future reference. Similarly, if θ s
vSi ϋ(Sx)y replace it with

vSj Λ ^(Si ^i)
AΊS[m]
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Continue in the same vein down the SO quantifications. For example, if
Θ,(S;K) s 3S, t>/(S,S/), replace it with

3S, V φi(S,Si;K9Ki),
KiC[m]

where <ρ, (S, S, ;K, Kt) s #,-, where Jf/ is noted for future reference.
Now for the sequence of FO quantifications. Given 0, let θk^j be θ with each

occurrence of xk replaced by djf viz., Arc(**,#/) is replaced by Arc/(#/), each
occurrence of Aτc(xhxk) is replaced by Arc/ί*/), each occurrence of Asct(xk)
is replaced by Arc/7, each occurrence of AτcJ~(xk) is replaced by Arc,-/, and each
occurrence of Sj(xk) is replaced by Sjj. If θ/(x,S;K) s vx, tf(x, JC, , S ; K ) , replace
it with

m

vxk ύ(x,xkiS;K) A Λ ύk-j(x,S;K).

Similarly, if θ/(x,S) s 3jty $(x,x, ,S;K), replace it with
m

3**0(x,x*,S;K)v V ^-v(x,S;K).

Continue until all quantifications are gone and you have a massive expression
ϋ, which is actually an SO sentence over the class of finite chains except that it
also contains Arc/, Arc/, Arc//, and S^ for each i,j, as unary or 0-ary predi-
cates.

As d\ is the distinguished tail of C, we write

ArcΓ(x) Ξ vy "iArc(^,x) and Arc^x) = FALSE.

Similarly, as d2 is the distinguished head of C, write

Arc^~(x) s FALSE and Arcf (x) Ξ Vj -iArc(x,^).

And if / > 2, then Arc/(x) ^ AΓC7

Γ(Λ:) ^ FALSE. As Arc/, is fixed throughout
{®n:n G ω} for each fixed ij, let Arc^ s Arc(dhdj), which is TRUE or
FALSE, depending on du dj. Finally, the symbol 5̂ ,- is replaced with TRUE if
it lies within an expression #(— — ,ϋΓ, ), where j E Kiy and FALSE if it lies
within an expression ΰ( — —, AT,), wherey ^ AT/. The result of all this replacing
is an SO formula Ψ designed for chain structures.

It is straightforward, if tedious, to verify that Eloise wins the game for θ on
&n iff she wins for Ψ o n g w . It follows that &n 1= θ iff (£„ N V for each n, and
the lemma follows.

We now strengthen the notion of weakly eventually periodic.

Definition Let C = < V, A, H, T) and S c [c]. S is C-eventually periodic (or
just C-ev.p.) if there exist TV, r such that for each ® E [C] and each aEA, for
any ©^©2, E [C], if/^ (*') =/®2(α/) =/©(*') for each a'GA- {a}, and if
N<f&ι(a) =/©,(«) - r, then ® i G S iff ®2 E S. If C = <{x,^},{a},{(x,a)},
{(y,a)}} or C = (Uj},(fl,6},((^fl),(Λ&)),{(x,ft),(Λβ)}>, and Sis C-ev.p., we
say that 5 is eventually periodic.
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Notice the distinction: if S is C-ev.p., then there exists a single pair N> τ wit-
nessing S being C-ev.p., whereas if S is merely C-w.ev.p., then for each ®, there
is a pair N, τ witnessing S being C-w.ev.p. in that case.

Lemma 2.2 Fix a configuration C. Every monadic second-order query on [C]
is C-ev.p.

Proof: Towards contradiction, suppose that

Θ S Q I S Γ QsSsQs+iXi Qs+rXr 0(x,S)

has θ being quantifier-free, and that there exist ®i,®2, Ξ [C] such that if
Λ^,τ, are the outset and period of ®, respectively (and each Nt9τt exist by
Lemma 2.1), then Nt < Nί+\ and τt < τ/+i for each t, and either lim^α, Nt = oo
or lim^oo r, = oo.

Let ® < ®' mean that for each arc a,f®(a) </©' (α), and using a thinning
argument we can find a subsequence {®,,}/€ω such that/®, (α) < / ^ (α) for
all #, /. In fact, without loss of generality we can suppose that [&t}tsω satisfies
/®,(α) <f®t+ι(a) for all α,ί. Let /(α) = lim^c/©,^) for each area, and let
M > I {a) for each finite I (a) and let Γbe such that if t > T, then for each arc a,
ί(a) < oo =*/<a,(flr) = I (a) and /(*) = oo =>/βί(α) > M.

Recall from the comment after Theorem 1.3 that each of the finitely many
equivalence classes of =StΓ on finite chains is eventually periodic, and let N' be
the maximum outset of any of these classes, and r' the least common multiple
of all the periods. Choose any & = &t9 t > Γ, and let

/(®>β) (<*') = i f a = <*' &/<»(«) > N Γ + N' + r^r'

then/©(α) - rjV

else/ e (a'),

and let [®;α] be the resulting digraph. Now, a =SfΓ game, with all moves re-
stricted to any chain of & and the corresponding chain of [&; a], gives the Dupli-
cator a winning strategy. Hence, as all the SO moves are for unary relations,
© = s r [®; a], and repeating for each maximal chain of ©, it follows that © and
[® a] have the same outset and period. Choose another configuration arc a\
and the same is truσof [©;a] and [[©;a] a'], and so on. Repeating as often
as possible, we find that the outset and period of ®, is the same as that of some
® E [C] all of whose chains are no longer than N' + Nτ + rττ'. Since this is
true of all ®,, t > Γ, [Nt: t > T] and {τt: t > T} are both finite, giving us our
contradiction.

We now need a characterization of the C-ev.p. functions /®.

Definition Let S <Ξ ω. Recall that S is an arithmetic progression if there ex-
ist N, rEω such that S = {N + kτ:k Eω}. Call N the outset and r the period
of S. Say that S £ ω is rational if it is a finite union of arithmetic progressions.
If Aήth(N, τ) = {N+kτ:keω], say that S = UA:<m Arith(Λ^, τ>) is oϊpattern

{(su... ,sm) G 5: (V* < m)tat < ΛT* + τ*)h

and call maxxNk the outset and the least common multiple lcm^r^ the period
of 5.
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We say that S <Ξ ωd is rational if there exists M and rational sets J(i9j) £Ξ ω,
/ < d and j < M, such that S is the union of Cartesian products S = U {Hi<d

/(/,y):y<M}.
On the other hand, say that S Q ωd is eventually periodic if there exist TV, r

such that for each k < d,if nk> TV, then

( Λ i , . . . , /ι*_i ,nk,nk+u...,nd) GS

iff (« i , . . . , /!*_!, ̂  + r, nk+ι,..., nd) G 5.

Lemma 2.3 4̂ subset of ωd is eventually periodic iff it is rational.

Proof: First, suppose that 5 <Ξ ωd is rational:

5 = U { Π ^ / ( / , y ) : y < M } .

For each /,y < M, /(/,./) has outset N(i,j) and period r(/,y), and if TV is the max-
imum N(iJ) and r is the least common multiple of all the τ(i,j)9 then TV and
T witness the eventual periodicity of S.

Conversely, suppose that S is eventually periodic, with outset TV and period
r. For each tuple k = ( k x , . . . , kd) E {1,2, ...,N+τ]d, and each / < d, let
/(/,k) = if ki < TV then {£,} else ( y U ( ί ; + / τ : / G ω | , and /(/,k) is rational.
Easily,

S = U (IW/(/, k ) : k G S Π ( l JV+τ) r f ).

It follows that if C is a configuration, all monadic SO queries are "rational"
in the following sense.

Definition Fix a configuration C. For any ® G [C], let/© be a function
from the arcs of C to ω such that for any arc a, f^(a) is the number of vertices
in the chain in ® corresponding to the arc a. Let ax,..., ad be the arcs of C, and
let F(&) be the tuple (/Θ(tfi),... ,f®(ad)). For any set S^[C], let

F(S) = (F(Θ) :®GS).

Call a set S ̂  [c] C-rational if F(S) is rational (in ω^).

Lemma 2.4 Lei C f e β configuration. Then every C-rational query is ιA\-
definable.

Proof: Let C = (C,A9H,T). As the class of C-rational queries is closed under
negation, it suffices to prove that every C-rational query is ^{-definable.

The first step is to verify that every rational class of finite chains is ^ ί -
definable. An arithmetic progression of chains, with distinguished tail t0 and dis-
tinguished head Λo, and with outset TV and period r is ^{-definable using

3S{(V5 E S)(distU0,s) > TV) &

(3seS)(dist(tθ9s)=N) &

( V 5 G 5 - {h0}) ("next 5 ' G 5 u p from s is distance r") & S(h0)}.

As an eventually periodic set is a finite union of arithmetic sets, eventually pe-
riodic sets are !Σ}-definable.

Now, if S is C-rational, it corresponds with some ω'^4'-rational S. In ιΣ\,
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given distinguished x, y, we can assert the existence of chains from x to y of
lengths decreed by 5. Hence we write, if the /-th arc is the one from xt(<i) to xΛ(/),

3*i x\c\lSi ' ' S\A\ ("There is a pattern for a C rational set
s.t. S\9..., S\A\ is of that pattern").

This is ιΣ\-definable, and we are done.

Theorem 2.5 On [C], a query is C-rational iff it is C-ev.p. iff it is monadic
SO iff it is ^{-definable.

Hence on [C], all monadic second order queries are ̂ {-definable. One cy-
clic comment: When Fagin [11] proved that Connectivity is not ^1-definable,
his proof actually achieved the following. Let & be a digraph and let [&, n] con-
sist of all digraphs consisting of ® with n additional cyclic components.

Theorem 2.6 (Essentially, [11]) Let C be a configuration, and fix n>\. IfR
is a ιΣ\-definable class of structures, and ifRΠ [C] is infinite, then for some
® E [C], RΠ [&,n] is also infinite.

Given a configuration C, let

(O= U ( U I®.*]).

As far as ιA\ is concerned, cyclic components are invisible within any (C), so
we could ignore them and restrict our attention to [C]. Nevertheless, in ιΣ\ the
existence of cyclic components can be asserted, whereas in ιΏ\ the existence of
cyclic components can be denied. It follows that on any (C), all monadic second
order relations are ^^-definable.

Clearly, all of the above can be applied to (nondirected) graphs.

3 On positive elementary induction For logistical reasons, we will be using
the formulation of LFP that appears in [20].

We start with the positive SO formulas. Intuitively speaking, an SO formula
ψ is positive if, for each relation variable in φ, there is no -i sign anywhere in
front of it. The positive SO formulas are constructed as follows. First, if there
are no relation variables in φ, then φ is positive SO. If S is a relation variable,
then for any list x of (FO) variables and constants, 5(x) is positive SO. If φ and
Φ are positive SO, then so are φ & φ, φ v φ, 3xφ, and Vxφ. (As a technicality,
we will presume that a positive SO formula has no SO quantifications.) It is easy
to show that if φ is positive SO, then v is monotonic in the following sense: for
each x,X, Y,φ(x,X) &X^Y^ φ(x, 7).

A system of SO formulas

φ = <po(uo,So,. >Sp)> - - - »^( u^»5 0,. . . ,SV)

is operative if, for each /, u, and 5Z have the same number of arguments (we al-
low 0-ary u, , S, ). We will be dealing with positive SO operative systems of for-
mulas, i.e., operative systems as above where each ψι is positive SO with relation
v a r i a b l e s So,.. . , S V .
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Now suppose we have our positive elementary operative system φ = φOi

...9φv. Since we will not be dealing with transfinite inductions, we restrict our-
selves to the following: for each / and each number n9 we get a system of iterates

^?+1(x, )-^(x/,^δ,...,^),
and it is easily verified that for each /, n, φ" c= φ*l+1, and hence, on a finite struc-
ture, there exists an n such that φ"+ι = φf; we denote these iterates by φ°° =
<Po\ » <P7 A query is a positive elementary inductive least fixed point (LFP)
if it is one of the relations listed in some least (simultaneous) fixed point of some
operative system of positive elementary SO formulas.

As an example, consider connectivity on digraphs. This uses the system

φo(Sγ) = VXVyS1(x,J>),

<P\(x,y,Sι) s x = y v 3z[Arc(x,Z) & Sχ(z9y)].

Easily, for any digraph 21, 211= VxVy [TC(*, y) -> φ?(x, y)], and hence 211= <Po
iff 21 is connected.

One bit of lore: (<^S°,..., φ™) is the least (simultaneous) fixed point of the
system φ0,..., φv in the following sense: if XOi..., Xv was a fixed point of
φ0,..., φv9 then <pι° <Ξ Xt for each /. To see this, note that for each /,0 Q Xh

and by the monotonicity of <ph φf^ Q Xt => φ\ ^ Xt for all ξ. And so every LFP
query is Π} -definable.

We will need two definitions. First, the notion of dimension. Let φ be a pos-
itive SO operative system of formulas ^, (u, , S o , . . . , Sv), and let dt be the arity
of the relation variable S, and thus the length of the tuple of "recursion vari-
ables" uf . Let dφ = max(ί/0» »dv) be the dimension of the system φ. If R is
a positive elementary inductive relation, let

dR = min{<^: all φ such that R = φ™}

be the dimension of R. Let ^LFP be the class of all rf-dimensional LFP queries.
Note that dL¥P^dU\.

Second, we can construct a hierarchy from ^LFP as follows. Let ^LFP! =
^LFP. If C is a class of structures of a given schema and R is ^LFPΛ-definable,
let (β,R) = {(W,R%): 21 G β ) , where (21, R%) is the expansion of the structure
21 by adding the relation Rn. Then a query S is ^LFP/ί+1-definable on β if there
exists a ^LFP^-definable R such that 5 is ^LFP-definable over (C,Z?). Let
^LFP ω = U/ieω ^LFP/z* a n d ^LFP ω is the least class of queries containing all the
FO queries and closed under Boolean operations and rf-dimensional inductions.
Easily ^LFPΛ c dUι

n, but that is all that is immediate. It is known (see Addison
& Kleene [2]) that on 9Ϊ, \Jd

 dL¥Pω ί Δ^, but perhaps things are different else-
where.

4 One-dimensional inductions During the last decade, LFP has been sep-
arated from Σ} and Π} on classes of finite structures. The standard technique
has been to choose some query that looks like it is not in LFP either because it
is NP-complete (like Blarge clique, as in [14]) or because it is obviously not in
Ltίto = UkeωLΪ>ω> where L^ω is FO logic with only k variables allowed, ex-
panded by arbitrary disjunctions (like the oft-cited example, "there are evenly
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many vertices", which is implicitly dealt with in [11]). Of course, a wide num-
ber of techniques have been used, but these are the two kinds of queries that have
been exhibited.

A toy version of this problem is the separation of ίU\ from *LFP. This is
not always possible. For example, it is easily seen that for any monadic SO θ,
if Cn is the chain of n vertices, then [n: Cn 1= θ} is eventually periodic, and thus
all monadic SO sentences are ̂ FP-definable o n ( C w : « G ω ) . The purpose of
this section is to prove that this separation holds over the class of all graphs, and
in fact it holds for certain highly behaved classes of graphs. We will actually
prove something stronger. Recall that λl£¥ω is the least class of queries contain-
ing *LFP and closed under Boolean operations, first order quantifications, and
one-dimensional inductions. We will prove that for some CuC2i *LFPω ^

ιA\
on [Cj] U [C2], from which it will follow that on some [C], *LFPω e

 1A\,
(Note that *LFPω c [jk

 ιn\, so that on any [C], all the ̂ FP^queries are C-
rational, and thus ! LFP ω c

 ιA\.) First, we exhibit a query that ιA\ can rep-
resent.

Proposition 4.1 Let Cx and C2 be distinct configurations, and let 6 = [C{] U
[C2]. "21 G [Cx]" is ̂ {-definable on C.

Outline of proof: The proof is similar to the proof of Theorem 2.5. Let C\ have
nodes c\,..., cn, and arcs ax,..., am, and again, let H(c, a) = "c is the head of
a", and Γ(c, a) = "c is the tail of a". Again, we write a ̂ 1 sentence θ{ saying
that

3*! - xn 3S! - Sm\ Λ [(H(chaj) & T(ck,aj)) ->

"Sj is the chain from distinguished
node xk to distinguished node x"\

&Vx\JxeSj\,

and for all 21 G 6, 511= θj iff 21 E [Cj]. Similarly, we construct a ^{-sentence
θ 2 such that for all 2ί G 6, 2ί N θ 2 iff 21 G [C2]. Since θ{ is equivalent to - iθ 2

on e, "21 G [Ci]" is ιA\-definable on C.

We might as well mention 2-dimensional inductions somewhere in this article.

P r o p o s i t i o n 4 . 2 IfCγ and C 2 are distinct configurations, then " ® G [C\] " is
2LFP expressible in [ d ] U [C2].

Proof: Without loss of generality, suppose that neither Cγ nor C2 have constant
symbols; we also assume that the arc relation on each configuration is symmet-
ric so we can deal with graphs. If C\ and C2 have a different number of distin-
guished vertices, or if, for some number d Φ 2, one has more distinguished
vertices of degree d than the other, then certainly "® G [Q ] " is FO-expressible.
So imagine that they both have the same number of distinguished vertices, of de-
grees dx > > dk. Ordering the distinguished vertices by degree, let Rι(iJ) =
"in C/, there is an arc from vertex / to vertex j " .

The following is an operative system generating an LFP query:
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φo(So,Si,S2) m 3JC, Xk\ f\ deg(jt,) = d, &

AiS2(Xi,Xj):Rι(Xi,Xj)} &

Vx deg(x) *2-> γ * = */

<Pi(x,y,S09Sl9S2) = deg(y)=2 = deg(x)&

{Edge(x,y)viz[Έdge(x9z) & Sx(z9y)}

<p2(x>y,So,SuS2) s deg(x) * 2 * deg(^) &

3*',y'[Edgt(x9x') & Sx(x\y') & Edge(y'9y)}.

As φ0 fixes the degrees of all the distinguished vertices, for all ® G [C\] U [C2],
®G [ d ] iff ® N ^ ? .

In fact, if -i2LFP = {^R:R G 2LFP}, then "@ G [ d ] " is (2LFP Π
-ι2LFP)-expressible in [Ci] U [C2]. Thus if C is the disjoint union of Cx and C2,
"® f= «x is in configuration # 1 ' " is (2LFP Π -«2LFP)-expressible in [C]. Never-
theless, this query cannot be represented by *LFPω; hence 2LFP — xl^Yω Φ 0 :

Theorem 4.3 There exists a (2LFP Π -<2LFP Π ιΛ\)-definable query that
is not ι LFP^-definable.

Proof: LetC!=<{0,l,2,3},{01,10,12,21,23,32,30,03},i/1,Γ1>andC2 = <{O,l,2,3),
{00,01,11,12,22,23,33,30},//2,Γ2>, where Ht(h9jk) = h=j and Tt(h9jk) =
A = A:, for all A, /,y, A:. By Propositions 4.1 and 4.2, on [CJ U [C2], "2ί G [C^ "
is (2LFP Π i 2 L F P Π JAl)-definable. We claim that "21 G [ Q ] " is not ^ F P ^
definable on [C\] U [C2]. Let i? be any relation on [C\] U [C2] structures that
is preserved under automorphism.

Let %n be the structure in [Cx] whose maximal chains are all of length n, and
let 93rt be the structure in [C2] whose maximal chains are all of length n. For
each /,y, £,0 < t < n + 1, let JC//(O be the Mh node on the maximal chain of arc
ij, such that the distance from the distinguished node / to Xjj(t) is t. By auto-
morphism, for any %, and any i,j9 i'J\ t,%n ¥R(Xij(t)) ++ R(xrj(t)) for any
1LFPω-definable R. Similarly, by automorphism, for any 33̂ , and any i,j9 /,33rt h
^(x / 7 (O)^^(%(O),and,ify = / + l m o d 4 , A:=y+1 mod4, S Λ I=/?(^(O)^

Λ(ΛΓ^(O).

We claim that if Z? is *LFPω-definable, then for each A, i,j, k, t, and suffi-
ciently large n, %n ^R{xhi{t))^^n tR(xjk(t)). This will do the trick, for then,
if <p0,..., φv is a system of positive formulas whose atomic subformulas list only
^FP^-definable relations, φ™9..., φ^ will all be in 1LFPA : + 1, and it follows
that for sufficiently large n9 2ίΛ 1= φ™ iff 33Λ N ^o°. Hence it suffices to prove that
ifn is sufficiently large and R is one-dimensional inductive over some system of
queries T* = Po,... 9Pη, where, for each p9 and each appropriate A, /, j , k9 and
each t<n,%n \=Pp(Xhi(t)) <=>S3Λ ^Pp(Xjk(t))> then for each appropriate A, /,y,
*, and / < i, «π NΛ(xΛl (/)) «*»„ hΛ(Jcyit(O).

To prove this, let φ = φ0,..., φv be a one-dimensional operative system of
positive elementary formulas (each of quantifier depth < r) in the schema
(Arc,2),(P0,l), ΛPηΛ) such that R = φ%. Fix n > 2 r + 1 , and 21 = %n and
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S3 = 93*. For each μ, let/ l μ(ί) = if 211= φμ(xOι (0) then 1 else 0, and let/2 0 μ(O =
if SB 1= <Pμ(xoo(t)) then 1 else 0 and let/2 1 μ(O = if 93 N φ~(xOi (0) then 1 else 0.
Now suppose that we get a system S = So,..., Sv such that

»N5μuί/(θ)saι=/ lμ(o = i,

for all arcs ij in 93 and all μ. We claim that (21,P, φ°°) =r (93,P,S), and hence
S is a (simultaneous) fixed point of φ: here is the Duplicator's winning strategy
in the r-Fraisse game.

Suppose that it is the λvth move, and the Spoiler plays ak on (21,P, φ°°) If
ak is on chain ij, where / + 1 = y mod 4, then the Duplicator responds with bk

on chain ij of (93,P,S) in the corresponding position. If ak is on chain y7, / +
1 =y mod 4, the Duplicator responds as follows. If ak is within distance 2n~k of
any pebbled or distinguished points, the Duplicator responds with bk the corre-
sponding distance to that pebbled or distinguished point: bk is on chain jj if t <
2n~k, chain ii if n + 1 - t < 2n~k, and within distance 2""* of the previously
pebbled bι if ak was within distance 2n~k of the previously pebbled ah On the
other hand, if ak = xy/(O is not within distance 2n~k of any pebbled or distin-
guished vertices, then by induction, at least one of X\\(t)^, I = 1,2,3,4, is not
within 2n~k of any pebbled vertices and thus may be pebbled.

On the other hand, if the Spoiler plays bk on (93,P,S), the Duplicator re-
sponds essentially with the above strategy in reverse. Again, if bk is on chain
ij, i 4- 1 =y mod 2, then the Duplicator responds with the corresponding ak on
chain ij in (2l,P, φ°°). If bk = Xu(t), then the Duplicator responds with ak =
Xij(t) if / is small, ak = Xji(t),j+l=l mod 2, if t is large, appropriately near
or not near previously pebbled vertices if t is in between.

By playing the above strategy, the Duplicator wins; and thus (21,P, <p°°) =r

(93,P,S), and S is a (simultaneous) fixed point of φ. As φ°° is that least simul-
taneous fixed point of φ,f2oμ(t),f2\μ(t) <f\μ{t) for all μ, t.

On the other hand, consider the system T = TO,...9TP, where

2 I h Γ μ ( ^ (O)=93t=/ 2 ( V(O = l

for all arcs ij G {01,10,23,32), and all μ, in 21, and for all other arcs, and all μ, let

« N 7^(^(0) = » N / 2 i μ ( O = l.

Again, if n is sufficiently large, (H^JPJT) Ξ=Γ (93,2,?,^°°) by a strategy quite
similar to that of the previous game, and T is a fixed point of φ. Again, as φ°°
is the least fixed point of φ, by using automorphisms we see that/ 1 / x(O <

/20μ(O,/21M(O.
Hence, for all μ, t,fXμ(t) =/ 2 o μ (0 =/2iμ(O. Hence, for each appropriate

Λ, /, y, k, and t < n, 21 1= R(xhJ(t)) & 93 1= R(xjfk(t)). Using any JLFPΛ-
expressible queries P, we find that 1LFPΠ + 1 cannot distinguish between Cγ and
C2, and the theorem is proven.

Let Cι and C2 be the configurations of the above proof, and let C = C\ U C2.
Using the same construction as above, we can see that on [C], the query "x is
in the component of c y is (2LFP Π -i2LFP Π ιA\ )-expressible but not ^ F P ^
expressible.
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5 Some future directions Although there is more to be done with monadic
logics, perhaps we should start thinking more about, say, rf-dimensional logic,
And although some techniques (like the surgery on monotonic relations described
above) already developed are likely to be helpful, others (like eventual period-
icity) seem more dubious. Even 2-dimensional induction is different. The C-
rational queries are a proper subset of the 2LFP-definable queries: the reader is
invited to confirm that the set of all finite chains of lengths {1,2,4,8,16,...} is
2LFP-definable. Investigating 2 LFP and 2Σ\ will involve an entirely different
kettle of fish.

Some general results would be desirable. For example, by Lemma 4.6 of [15],
for any d, dL¥Pι, - ^ L F P j c 2 ί / LFP. The version we use is this: letφθ9...9φy

be any ^-dimensional system, with second order variables 5 0 , . . . ,SV. Let
Φi(x) = S,(x) for all x, so that | x | w + 1 = |x |^ for all x, i. One can construct
the Stage Comparison relations <θt7Γ as usual. Then an element of maximal
stage (for the /-th induction) satisfies the Immermanesque formula

max(x) s Vy[y <φ.tφi x v x <Φlti/>i y],

so that -κp/(χ) ** 3y[max(y) & y <φh<Pι x ] . By repeatedly iterating this con-
struction, we get ^LFP*, V L F P * C ώ L F P for all n. Thus, ^LFP,, c 2 ί / LFP.
Is this inclusion proper? Even the inclusion ^LFP c 2dh¥P is not known to be
proper, viz., for a fixed arity k9 it is not known if ^LFP, d = 1,2,3,..., gener-
ates an infinite hierarchy of £-ary queries (but see [6], [15], and especially [8] for
varying k). Also, is there a d such that dLFP = ^LFPω? There must be a million
of these questions.
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on LFP queries alone; the material on SO queries was developed in 1991. I would like
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