Eventual Periodicity and "One-Dimensional" Queries

GREGORY L. McCOLM

Abstract

We expand on the automata-like behavior of monadic second order relations investigated by Buchi and Ladner. We present a generalization of their representation theorem and use it to separate the intersection of the classes of monadic existential second order and monadic universal second order queries from the class of one-dimensional inductive queries.

0 Introduction In this article, we compare monadic second order logic to monadic least fixed point logic.

The first notion applies to second order sentences: the dimension of a second order sentence is the maximum arity of its quantified relation variables. Most of the work on this notion of dimension is restricted to one-dimensional ("monadic") second order relations, starting with the automata-like behavior of monadic second order queries described in Buchi [5] and Ladner [17]. These papers extended Ehrenfeucht's [9] pebble game-theoretic characterization of the Fraisse [12] equivalence relation for first order relations to monadic second order relations.

We will use this game in order to compare monadic second order logic with a slightly smaller logic whose relation with monadic second order logic is significant. Recall that on ordered structures, by Fagin [10], existential second order logic corresponds to NPTIME, whereas by Immerman [14] and Vardi [22] PTIME corresponds to a logic called Least Fixed Point (LFP) by computer scientists (see Aho \& Ullman [3], Chandra \& Harel [6], and Immerman [15]) and Positive Elementary Induction by logicians (see Moschovakis [20]).

One of the deepest problems in logic and theoretical computer science is the relationship between LFP and second order logic. First of all, LFP $\subseteq \Pi_{1}^{1}$. On $\Re=\langle\omega,+, \times, \uparrow, 0\rangle$, where " \uparrow " refers to exponentiation, LFP $=\Pi_{1}^{1}$ (Kleene [16]). On the other hand, over any class of finite structures, LFP is closed under negation (see [15]) and hence over such a class LFP $\subseteq \Delta_{1}^{1}$. Since a number of que-
ries (e.g., "the digraph has an even number of vertices") are known to be in Δ_{1}^{1} but not LFP, over the class of all finite structures we have LFP $\nsubseteq \Delta_{1}^{1}$.

We will look at a simpler case of the problem: we will compare monadic second order logic (all second order quantifications range over unary relations) to one-dimensional LFPs, where "dimension" is the number of "recursion variables" needed for the induction. This notion of dimension in LFP is described in [6], de Rougemont [21], Dublish \& Maheshwari [8], etc. Comparisons have already been made between one-dimensional LFPs and monadic second order formulas, mostly using the latter to investigate the former; much of the work seems concentrated on the expression of Transitive Closure-type queries. For example, Fagin [11] proved that connectivity (on finite graphs) is not monadic existential second order, and de Rougemont [21] proved that even on ordered graphs nonconnectivity is not monadic Π_{1}^{1}, from which it follows that nonconnectivity is not one-dimensional LFP on finite ordered graphs ([21] also has a small catalogue of basic results on Transitive Closure and Connectivity). Then Ajtai \& Fagin [4] used probabilistic methods to prove that the negation of transitive closure (on finite directed graphs) is not monadic existential second order. On the other hand, Kanellakis (see [4]) observed that on finite nondirected graphs the negation of transitive closure is monadic universal second order, whereas McColm showed that the negation of transitive closure on finite nondirected graphs is not one-dimensional positive elementary inductive. This last result is unlike the others in that it distinguishes monadic Π_{1}^{1} from one-dimensional LFP.

We will develop a representation theorem for monadic second order logic on certain "chain-like" classes of digraphs, and we will prove that on such classes of digraphs all monadic second order queries are both monadic existential and monadic universal second order definable; on the other hand, on such classes, there exist monadic second order queries that are not one-dimensional inductive. One consequence will be that there exist queries that are all at once two-dimensional inductive, two-dimensional coinductive, monadic second order, but not one-dimensional inductive - and these will not be too hard to find. In order to do all this, we will extend the results of [5] via [17] to these chain-like graphs. We will also use a surgical method introduced in McColm [18] for "constructing" least fixed points.

1 Second order definitions We will be working on relational structures. (A relational structure can be regarded as a sort of stripped-down relational database.) A schema is a tuple $\sigma=\left(R_{1}, d_{1}\right),\left(R_{2}, d_{2}\right), \ldots,\left(R_{m}, d_{m}\right) ;\left\{c_{1}, \ldots, c_{n}\right\}$, where each R_{i} is a relation symbol for d_{i}-ary relations, and each c_{j} is a constant symbol. A relational structure of schema σ is a tuple

$$
\mathfrak{A}=\left\langle A, R_{1}^{\mathfrak{N}}, \ldots, R_{m}^{\mathfrak{M}}, c_{1}^{\mathfrak{A}}, \ldots, c_{n}^{\mathfrak{Q}}\right\rangle
$$

where A is some set, $R_{i}^{\mathfrak{Q}} \subseteq A^{d_{i}}$ for each i, and $c_{j}^{\mathfrak{Q}} \in A$ for each j. We call $|\mathfrak{A}|=$ A the domain of \mathfrak{A}, and $R_{i}^{\mathfrak{Q}}$ is the interpretation of R_{i} in \mathfrak{A}, while $c_{j}^{\mathfrak{Q}}$ is the interpretation of c_{j} in \mathfrak{A}. We will consider the constant symbols as labels, and refer to an interpretation of a constant as a labelled vertex. We will usually be interested in all structures of a particular schema σ, especially in all finite structures of a particular schema σ. For example, if $\sigma=(\mathrm{Arc}, 2) ; \varnothing$, then the set of all finite structures of the schema σ is precisely the set of all finite directed graphs
with no labelled vertices (we call a directed graph a digraph; in a digraph, if there is an arc from vertex x to vertex y, we say that x is the tail of the arc, while y is the head).

Let \mathcal{C} be a class of structures of a common schema, closed under isomorphism. A query on \mathcal{C} is a set $\mathbb{R} \subseteq \mathcal{C}$. Given a logic \mathscr{L}, a query \mathcal{R} is \mathscr{L}-definable if there exists an $\mathfrak{£}$-sentence (viz., an \mathfrak{L}-formula with no free variables) Θ such that for each $\mathfrak{A} \in \mathcal{C}, \mathfrak{A} \in \mathscr{R}$ iff $\mathfrak{A} \vDash \theta$, where " $\mathfrak{A} \vDash \Theta^{\prime \prime}$ means that " \mathfrak{A} satisfies θ ". In the literature, such an \mathcal{R} is often called a Boolean query; as is often the case, we will confuse R and θ when no confusion would result.

One notational note: When we have a formula over structures of a particular schema σ, it is obvious that the constant symbols of σ may be used in the formula. Sometimes constant symbols may be added to a schema to prevent silly problems with the definitions. For example, in defining Transitive Closure (TC) on (di)graphs, we use the schema (Arc,2); $\{a, b\}$, and investigate the dimension of the (0 -ary) query TC (a, b). That way no recursion variables need be used to remember a and b. (Often, when such constant symbols are added, they are called parameters to distinguish them psychologically from any "original" constants.)

We will define the First Order (FO) and Second Order (SO) formulas as usual; an SO formula is monadic if all of its second order variables range over unary relations. There is a hierarchy of monadic second order formulas. First, the monadic existential $S O$ formulas are of the form

$$
\exists S_{1} \exists S_{2} \cdots \exists S_{k} \theta\left(\ldots, S_{1}, S_{2}, \ldots, S_{k}\right)
$$

where each variable S_{i} ranges over unary relations, and θ has no second order quantifications. Let ${ }^{1} \Sigma_{1}^{1}$ denote the monadic existential formulas. The monadic universal $S O$ formulas, which we denote ${ }^{1} \Pi_{1}^{1}$, are of the form

$$
\forall S_{1} \forall S_{2} \cdots \forall S_{k} \theta\left(\ldots, S_{1}, S_{2}, \ldots, S_{k}\right),
$$

where each S_{i} is a unary relation variable and θ has no second order quantifications. Note that a relation query is ${ }^{1} \Sigma_{1}^{1}$-definable iff its complement is ${ }^{1} \Pi_{1}^{1}$ definable. Say that a query is ${ }^{1} \Delta_{1}^{1}$-definable iff it is both ${ }^{1} \Sigma_{1}^{1}$-definable and ${ }^{1} \Pi_{1}^{1}$ definable.

This hierarchy can be built up further: a formula is ${ }^{1} \Sigma_{n+1}^{1}$-definable iff it is of the form

$$
\exists S_{1} \exists S_{2} \ldots \exists S_{k} \theta\left(\ldots, S_{1}, S_{2}, \ldots, S_{k}\right)
$$

where S_{1}, \ldots, S_{k} are unary relation variables and θ is ${ }^{1} \Pi_{n}^{1}$-definable; ${ }^{1} \Pi_{n+1}^{1}$ is defined similarly, and the intersection of these two is ${ }^{1} \Delta_{n+1}^{1}$. Note that ${ }^{1} \Pi_{n}^{1},{ }^{1} \Sigma_{n}^{1} \subseteq{ }^{1} \Delta_{n+1}^{1}$ for all n, and that a query is monadic SO iff it is ${ }^{1} \Sigma_{n}^{1}$-definable for some n.

As an example, consider acyclicity on graphs. Acyclicity on finite graphs can be expressed as

$$
\begin{aligned}
& \forall S\{\exists x S(x) \\
& \quad \rightarrow \exists x\{S(x) \&[\forall u \forall v[(S(u) \& \operatorname{Edge}(u, x) \& S(v) \& \operatorname{Edge}(x, v)) \rightarrow u=v]\},
\end{aligned}
$$

and hence acyclicity is universal monadic SO. Nevertheless, as an implicit consequence of [11], acyclicity is not existential monadic SO.

We now massage the results in Chandra et al. [7] to get them into the form that we want them. We will be playing pebble games. The first is a sort of pebble game that lives in the lore (see Moschovakis [19], Aczel [1], and [7]). Recall that a second order sentence is in prenex form if it is of the form

$$
\theta \equiv Q_{1} S_{1} Q_{2} S_{2} \cdots Q_{t} S_{s} Q_{s+1} x_{s+1} \cdots Q_{t} x_{t} \theta\left(S_{1}, \ldots, S_{s}, x_{s+1}, \ldots, x_{t}\right)
$$

where each $S_{i}, i \leq s$, is a second order variable ranging over the d_{i}-ary relations, and each $x_{j}, j>s$, is a first order variable, and θ is quantifier-free. Suppose that all of the \neg symbols in θ have been pushed down to the atomic level. The game $G(\theta)$, played on a structure \mathfrak{A}, works as follows.

There are two players, whom we shall call Eloise and Abelard following a recent text on such things. On the i-th move, $i \leq s$, if Q_{i} is existential, Eloise chooses a d_{i}-ary relation $S_{i} \subseteq|\mathfrak{X}|^{d_{i}}$; if Q_{i} is universal, Abelard chooses S_{i}. On the j-th move, $s<j \leq t$, if Q_{j} is existential, Eloise chooses an element $x_{i} \in|\mathfrak{A}|$; if Q_{j} is universal, Abelard chooses x_{i}. Finally, they reach $\theta(\mathbf{x}, \mathbf{S})$, where \mathbf{x} is the tuple of chosen vertices and \mathbf{S} is the tuple of chosen unary relations. The game continues as follows. If $\theta \equiv \varphi \vee \psi$, Eloise chooses $\vartheta=\varphi$ or $\vartheta=\psi$, and the game continues as $\vartheta\left(\mathbf{x}^{\prime}, \mathbf{S}\right)$ (this is a disjunctive move) where \mathbf{x}^{\prime} is a list of some of the variables of \mathbf{x}. If $\theta \equiv \varphi \& \psi$, Abelard chooses $\vartheta=\varphi$ or $\vartheta=\psi$, and the game continues as $\vartheta\left(\mathbf{x}^{\prime}, \mathbf{S}\right)$ (this is a conjunctive move). The game continues in this way until it reaches an atomic (or negated atomic) subformula ϑ of θ, with tuples \mathbf{y}, \mathbf{S}. If $\vartheta(\mathbf{y}) \equiv R(\mathbf{y})$, where R is a relative symbol interpreted by the relation $R^{\mathfrak{\imath}}$ or a relation variable interpreted by the previously chosen monadic relation R^{2}, then Elosie wins iff $\mathfrak{A} \vDash R(\mathbf{y})$; if $\vartheta \equiv \neg R$, then Eloise wins iff $\mathfrak{A} \nexists R(\mathbf{y})$. The ending is similar if $\vartheta(\mathbf{y})$ is $S_{i}(\mathbf{y})$ or $\neg S_{i}(\mathbf{y})$. In $G(\theta)$, we say that a player wins if the game admits a winning strategy for that player. Clearly, Eloise wins on \mathfrak{A} iff $\mathfrak{A} \vDash \theta$. Call this first kind of game the Θ-definition game.

This game can be used to prove results about comparison games, which are more widespread in the literature. Inspired by the back-and-forth partial isomorphism construction of [12], Ehrenfeucht [9] proposed the following r-comparison game. Take two structures \mathfrak{A} and \mathfrak{B} of a common schema $\sigma=$ $\left(\left(R_{1}, d_{1}\right), \ldots,\left(R_{n}, d_{n}\right) ; c_{1}, \ldots, c_{m}\right)$ and two sets of r pebbles, p_{1}, \ldots, p_{r} for \mathfrak{H} and q_{1}, \ldots, q_{r} for \mathfrak{B}. There are two players, whom we call the Spoiler and the Duplicator after a recent paper on this sort of thing. There will be r pairs of moves, the i-th pair of moves consisting of the Spoiler choosing a structure, and placing the i-th pebble of that structure on some element of the structure, and the Duplicator responding by placing the i-th pebble of the other structure on an element of the other structure. In the end, $a_{1}, \ldots, a_{r} \in|\mathfrak{Y}|$ and b_{1}, \ldots, $b_{r} \in|\mathfrak{B}|$ are pebbled. The Duplicator wins iff the map $c_{i}^{\mathfrak{A}} \mapsto c_{i}^{\mathfrak{B}}, a_{i} \mapsto b_{i}$ defines an isomorphism between the restrictions $\mathfrak{A} \upharpoonright A^{\prime}=\left\langle A^{\prime}, R_{1}^{\mathfrak{R}} \upharpoonright A^{\prime}, \ldots\right\rangle$ and $\mathfrak{B} \upharpoonright B^{\prime}=$ $\left\langle B^{\prime}, R_{1}^{\mathfrak{P}} \upharpoonright A^{\prime}, \ldots\right\rangle$, where $A^{\prime}=\left\{a_{1}, \ldots, a_{r}, c_{1}^{\mathscr{Y}}, \ldots, c_{m}^{\mathfrak{Q}}\right\}$ and $B^{\prime}=\left\{b_{1}, \ldots, b_{r}, c_{1}^{\mathfrak{P}}\right.$, $\left.\ldots, c_{m}^{\mathfrak{B}}\right\}$. If the Duplicator has a winning strategy, write

$$
\mathfrak{A} \equiv_{r} \mathfrak{B}
$$

This game is associated with the notion of the quantifier depth of a (FO) formula. First of all, if θ is an atomic formula, then $\operatorname{depth}(\theta)=0$. By induction, define $\operatorname{depth}(\theta \& \psi)=\operatorname{depth}(\theta \vee \psi)=\max \{\operatorname{depth}(\theta), \operatorname{depth}(\psi)\}, \operatorname{depth}(\neg \theta)=$ $\operatorname{depth}(\theta)$, and depth $(\exists x \theta)=\operatorname{depth}(\forall x \theta)=\operatorname{depth}(\theta)+1$. We get:

Theorem 1.1 (see [9])

(i) For each r, \equiv_{r} is an equivalence relation with finitely many FO-definable equivalence classes. (Easily, $r<s \Rightarrow \equiv_{s}$ is a refinement of \equiv_{r}.)
(ii) If $\mathfrak{A} \equiv_{\operatorname{depth}(\theta)} \mathfrak{B}$ and $\mathfrak{A} \vDash \theta$, then $\mathfrak{B} \vDash \theta$.

In essence, the Spoiler is trying to distinguish between the two structures whereas the Duplicator is trying to demonstrate their similarity.

Many variations of this comparison game have been developed, especially a game developed in [11] for monadic SO logic. Here the game starts with a pair of sets of s crayons and a pair of sets of r pebbles for two structures $\mathfrak{A}=$ $\left\langle A, R_{1}^{\mathfrak{Y}}, \ldots, c_{1}^{\mathfrak{Y}}, \ldots\right\rangle$ and $\mathfrak{B}=\left\langle B, R_{1}^{\mathfrak{P}}, \ldots, c_{1}^{\mathfrak{B}}, \ldots\right\rangle$. The i-th pair of moves, $i \leq$ s, consists of the Spoiler choosing a structure and using the i-th crayon of that structure to color some of the elements of that structure; the Duplicator responds by using the i-th crayon to color some of the elements of the other structure (we permit an element to have several colors). The j-th pair of moves, $j>s$, consists of the Spoiler pebbling an element and the Duplicator responding likewise as above. In the end, we get s pairs of unary relations, $S_{1}^{\mathfrak{A}}, \ldots, S_{s}^{\mathfrak{A}}$ on \mathfrak{A} and $S_{1}^{\mathfrak{P}}$, $\ldots, S_{r}^{\mathfrak{B}}$ on \mathfrak{B}, and the usual r pairs of elements: $a_{1}, \ldots, a_{r} \in|\mathfrak{X}|$ and b_{1}, \ldots, $b_{r} \in|\mathfrak{B}|$. Once again, the Duplicator wins if the correspondence $a_{i} \mapsto b_{i}, c_{j}^{\mathscr{Q}} \rightarrow$ $c_{j}^{\mathcal{B}}$ is a partial isomorphism with respect to R_{1}, \ldots, and S_{1}, \ldots If the Duplicator wins the (s, r)-comparison game of \mathfrak{A} and \mathfrak{B}, write

$$
\mathfrak{A} \equiv_{s, r} \mathfrak{B}
$$

We get:
Theorem 1.2 (see [11], [17])
(i) For each $s, r, \equiv_{s, r}$ is an equivalence relation with finitely many SO-definable equivalence classes.
(ii) If depth $(\theta) \leq r$ and \mathbf{S} is a list of no more than s unary relation variables, and if \mathbf{Q} is a list of (SO) quantifications, then: if $\mathfrak{A} \equiv_{s, r} \mathfrak{B}$ and $\mathfrak{A} \vDash \mathbf{Q S} \theta(\mathbf{S})$, then $\mathfrak{B} \vDash \mathbf{Q S} \theta(\mathbf{S})$.

The above machinery is used to prove the following result lurking under the surface of [5] and is brought out explicitly in [17]. Fix a schema $\sigma=$ (Arc,2), $\left(R_{1}, 1\right), \ldots,\left(R_{m}, 1\right) ; \varnothing$. We will be using the following definition a lot.

Definition A directed chain is a digraph of the form $\langle\{1,2, \ldots, n\},\{(i, i+1)$: $1 \leq i<n\}\rangle$, where 1 is the tail and n is the head. A nondirected chain is an acyclic connected graph with no vertices of degree greater than 2.

Let Σ^{+}be the class of all σ-structures where Arc defines a finite (directed) chain. Note that Σ^{+}corresponds with all the finite strings of 2^{m} symbols as follows. Each string is actually an m-tuple of 0 s and 1 s , and the string $\iota_{1} \cdots \iota_{m}$ applies to element $x \in|\mathfrak{Y}|$ iff for each $i, \iota_{i}=$ if $R_{i}^{2 \mathscr{}}(x)$ then 1 else 0 . Viewing the elements of Σ^{+}as strings, we can define the regular subsets of Σ^{+}as those defined by regular sets of strings, viz., by deterministic finite automata. A version of Theorem 1.2 is used to prove the following:

Theorem 1.3 (cf. [5] via [17]) A set $\mathbb{Q} \subseteq \Sigma^{+}$is Σ-regular iff there exists a monadic second order ϕ such that for each $\mathfrak{A} \in \Sigma^{+}, \mathfrak{A} \in \mathbb{Q}$ iff $\mathfrak{A} \vDash \phi$.

The proof of this theorem actually establishes that the (finitely many) equivalence classes of $\equiv_{s, r}$ themselves correspond to Σ-regular sets.

2 Configurations We now generalize Theorems 1.2 and 1.3 to classes of graphs that consist of many chains glued together. In this section, we prove a representation theorem about monadic SO queries over such classes of graphs. We first construct representations of these classes of graphs. From graph theory we use the notion of a "multidigraph": a multidigraph is a digraph-like object with vertices and arcs from vertices to vertices where we allow several arcs to run from the same vertex to the same vertex (a pair of arcs from the same vertex to the same vertex is often called a lune); we also allow an arc to run from a vertex back to the same vertex - this is called a loop (a vertex is permitted to sport any number of loops). To represent multidigraphs in finite model theory, we can use the following: recalling that a structure is two-sorted if it has two mutually disjoint universes, we say that a multidigraph is a two-sorted structure $\mathfrak{M}=$ $\langle V, A, H, T\rangle$, where V is the set of vertices of \mathfrak{M}, A is the set of arcs of \mathfrak{M}, and $H, T \subseteq V \times A$ are the relations

$$
\begin{aligned}
H(v, a) & \equiv " v \text { is the head of the arc } a ", \\
T(v, a) & \equiv " v \text { is the tail of the arc } a "
\end{aligned}
$$

where $\mathfrak{M} \vDash(\forall a \in A)(\exists!v \in V) H(v, a) \&(\forall a \in A)(\exists!v \in V) T(v, a)$. Say that the indegree of a vertex is the number of arcs going in and that the outdegree is the number of arcs going out.

Take a digraph \mathbb{B}. A subdigraph $\mathfrak{S C}$ of \mathbb{F} is a digraph whose vertices are vertices of $\mathfrak{G b}$, such that for every x, y in $\mathfrak{F}, \mathfrak{F} \vDash \operatorname{Arc}(x, y)$ iff $\mathscr{G} \vDash \operatorname{Arc}(x, y)$. We defined subgraphs of graphs similarly.

We will take a single multidigraph and assign to it a class of digraphs as follows. On a digraph \mathbb{H}, a chain \mathfrak{F} is a connected subdigraph of \mathbb{H} consisting of unlabelled vertices of indegree and outdegree 1 in \mathbb{B}. Given a digraph $\mathbb{E S}$, let $\rho_{1}, \ldots, \rho_{n}$ be its maximal chains; as before, a maximal chain has a distinguished tail and a distinguished head, being the two "endpoints" of the chain: a vertex of \mathbb{C} is distinguished if either its indegree or its outdegree is not 1 . Many technicalities are avoided by not considering infinite digraphs, e.g., digraphs with infinite one-way chains (viz., subdigraphs like $\langle\{1,2,3, \ldots\},\{(i, i+1): 1 \leq i\}\rangle$), or digraphs with arcs from one distinguished vertex to another.

We have a digraph © \mathbb{H} with maximal chains $\rho_{1}, \ldots, \rho_{n}$ and distinguished vertices v_{1}, \ldots, v_{m}. The configuration \mathcal{C} for \mathbb{B} is a multidigraph constructed as follows. The distinguished vertices of \mathscr{G} are the vertices (V) of \mathcal{C}. As for the arcs (A) of \mathcal{C}, given a maximal chain ρ of \mathcal{G}, let E_{ρ} be an arc in \mathcal{C} from the distinguished tail of ρ to the distinguished head. Note that the configuration for \mathbb{G} will have no nonisolated unlabelled nodes of indegree and outdegree 1 . Hence if \mathcal{C} has a nonisolated undistinguished node, it is not a configuration of any digraph; we will ignore such multidigraphs. Note that this definition flops if © has any cyclic components (a cyclic component has no distinguished vertices, and hence its image in the configuration is ill-defined); for most of this paper, we will stick to (di)graphs without cyclic components.
(A minor modification allows us to deal with cyclic components: we can al-
low our configurations to have isolated nodes with single loops representing cyclic components. Note that such an isolated node w in such a configuration \mathcal{C} does not correspond to any particular vertex v of a digraph (s) of configuration \mathcal{C} because all the nodes of that component are automorphically equivalent. All that one need do is notice that a relation holding for one node in the cycle holds for them all, so, in a sense, w somehow represents all of the nodes in that cycle; the only issue is how large the cycle is.)

If $\mathcal{C}=\langle V, A, H, T\rangle$ is a multidigraph, let $[\mathcal{C}]=\{\mathfrak{G}: \mathbb{B}\}$ has \mathcal{C} as a configuration $\}$. Since each digraph $(\mathbb{S}$ has precisely one configuration, for each maximal chain ρ of \mathscr{H}, we can set $f_{\mathscr{G}}\left(E_{\rho}\right)=|\rho|$, where $|\rho|$ is the number of vertices of ρ, and $f_{\mathscr{H}}$ defines \mathbb{G}; conversely, for each function $f: A \rightarrow\{0,1,2,3, \ldots\}$, there is precisely one structure $(\mathfrak{G}) \in[\mathcal{C}]$ such that $f=f_{\mathscr{G}}$.

Incidentally, if $\mathfrak{B} \in[\mathcal{C}]$, then there exists a map π_{1} from the nodes of \mathcal{C} onto the distinguished vertices of (\mathbb{S}) (and perhaps some undistinguished vertices on cyclic components of (\mathcal{H}). If π_{0} is an automorphism on \mathcal{C}, then $\pi_{1} \circ \pi_{0}$ is a different witness to the fact that $(\mathscr{B} \in[\mathcal{C}]$. In addition, if \mathscr{B} has cyclic components, there may be many witnesses of $\mathfrak{B} \in[\mathcal{C}]$. For the rest of this paper, when we say that $\mathbb{B} \in[\mathcal{C}]$ for some \mathbb{B} and \mathcal{C}, we will presume that some witness $\pi: \mathcal{C} \rightarrow$ (3) has been fixed.

We will be investigating "C-w.ev.p." queries:
Definition Let $\mathcal{C}=\langle V, A, H, T\rangle$ and $S \subseteq[\mathcal{C}] . S$ is \mathcal{C}-weakly eventually periodic (or just \mathcal{C}-w.ev.p.) if, for each $(\mathcal{G} \in[\mathcal{C}]$ and each $a \in A$, there exist N and τ such that for any $\mathfrak{\Im}_{1}, \mathfrak{G}_{2} \in[\mathcal{C}]$, if $f_{\mathscr{H}_{1}}\left(a^{\prime}\right)=f_{\mathscr{G}_{2}}\left(a^{\prime}\right)=f_{\mathscr{H}}\left(a^{\prime}\right)$ for each $a^{\prime} \in$ $A-\{a\}$, and if $N<f_{\circlearrowleft_{1}}(a)=f_{\mathscr{\leftrightarrow}_{2}}(a)-\tau$, then $\mathscr{B}_{1} \in S$ iff $\mathscr{H}_{2} \in S$. If $\mathcal{C}=\langle\{x, y\}$, $\{a\},\{(x, a)\},\{(y, a)\}\rangle$ or $\mathcal{C}=\langle\{x, y\},\{a, b\},\{(x, a),(y, b)\},\{(x, b),(y, a)\}\rangle$, and S is \mathcal{C}-w.ev.p., we say that S is weakly eventually periodic.

Given $(\mathscr{G} \in S$, the minimal N that works for each arc a of \mathcal{C} is the outset of (S) in S, and the minimal τ that works for each $\operatorname{arc} a$ of \mathcal{C} is the period of \mathcal{S} in S.

A C-w.ev.p. query S thus "eventually" becomes periodic in the sense that for any $(\mathfrak{F}$, when we extend (\mathbb{S}) by lengthening its chain by adding new vertices one at a time to get a sequence $\mathbb{G}_{1}, \mathfrak{B}_{2}, \ldots$, eventually we will reach a period of length τ such that $\mathscr{B}_{t} \in S$ iff $\mathbb{G}_{t+\tau} \in S$.

We now whip out the Buchi-Ladner theorem (Theorem 1.3) to get the following lemma. Note that by the world-famous Pumping Lemma of automata theory (see, e.g., Hopcroft and Ullman [13]), a set S of strings of one symbol a is regular iff $\left\{\left|a^{n}\right|: a^{n} \in S\right\}$ is weakly eventually periodic.

Lemma 2.1 Fix a configuration C. Every monadic second order query on [C] is C -w.ev.p.
Proof: Let $\mathcal{C}=\langle V, A, H, T\rangle$, and fix $\mathbb{G} \in[\mathcal{C}]$ and $a \in A$. Let \mathscr{G}_{n} be the graph associated with the function

$$
f\left(a^{\prime}\right)=\text { if } a=a^{\prime} \text { then } n \text { else } f_{\mathscr{\leftrightarrow}}\left(a^{\prime}\right)
$$

for each $n>0$. Let $C \subseteq|\mathscr{G}|$ be the maximal chain associated with the arc a, and for any SO Θ, let $G_{\Theta}=\left\{n: \bigotimes_{n} \vDash \Theta\right\}$. Let d_{1} be the distinguished tail and d_{2} the distinguished head of C, and let $D=\mid\left(\subseteq \mid-C=\left\{d_{1}, \ldots, d_{m}\right\}\right.$ list the vertices outside the chain.

Now let \mathfrak{C}_{n} be the digraph consisting of a directed chain of n vertices; we ignore the silly case $n=0$. By Theorem 1.3 , if Ψ is monadic SO and $G^{\Psi}=$ $\left\{n: \mathfrak{C}_{n} \vDash \Psi\right\}$, then G^{Ψ} is weakly eventually periodic. If we can prove that for each monadic SO θ on [C], there exists monadic $\operatorname{SO} \Psi$ such that $G_{\theta}=G^{\Psi}$, we will be done. The idea is to have Ψ be the same as Θ, as far as Abelard-Eloise games go, except that the moves made on vertices outside of C are made on "virtual vertices", i.e., they are not in the structure but are simulated by logical connectives.

From θ, we construct Ψ using Abelard-Eloise games. But first we set some groundwork. In the Abelard-Eloise game of Ψ on \mathfrak{C}_{n}, the game is the same as that of Θ on \mathscr{H}_{n} except that if Abelard or Eloise choose a vertex to pebble, then either the pebble will be in $C=C_{n}$ (and the pebbling will take place as before), or the pebbler will pebble some d_{i}, which will correspond to a conjunctive or disjunctive move setting "pebble $:=d_{i}$ ". Similarly, when (unary) relations are to be played, the player will color the vertices of C and also choose, via a conjunctive or disjunctive move, which vertices d_{i} should be colored as well. Several new relations now appear:

$$
\begin{aligned}
\mathfrak{S}_{n} \vDash \operatorname{Arc}_{j}^{+}(x) & \equiv \bigotimes_{n} \vDash \operatorname{Arc}\left(d_{j}, x\right) \\
\mathfrak{S}_{n} \vDash \operatorname{Arc}_{j}^{-}(x) & \equiv \oiint_{n} \vDash \operatorname{Arc}\left(x, d_{j}\right) \\
\mathfrak{\Im}_{n} \vDash \operatorname{Arc}_{i j}() & \equiv \oiint_{n} \vDash \operatorname{Arc}\left(d_{i}, d_{j}\right),
\end{aligned}
$$

and for the relation variable S_{i},

$$
\mathfrak{C}_{n} \vDash S_{i j}() \equiv \mathfrak{J}_{n} \vDash S_{i}\left(d_{j}\right) .
$$

The idea will be to "replace" θ, piece by piece, with another formula Ψ. We will actually replace Θ with an expression containing the subformulas of θ, replace each subformula with an expression containing its subformulas, and so on down. When the replacing is done, we will replace the "atomic" expressions $\operatorname{Arc}_{j}^{+}, \operatorname{Arc}_{j}^{-}, \operatorname{Arc}_{i j}$, and $S_{i j}$ with formulas, and the result will be Ψ. For simplicity, suppose that

$$
\theta \equiv Q_{1} S_{1} \cdots Q_{s} S_{s} Q_{s+1} x_{1} \cdots Q_{s+r} x_{r} \theta(\mathbf{x}, \mathbf{S})
$$

where θ is quantifier-free. Replacing θ with some Ψ works as follows.
First, if $\theta \equiv \exists S_{i} \vartheta\left(S_{i}\right)$ for some SO formula ϑ, Eloise will choose some $S_{1} \subseteq C$ and $K_{1} \subseteq\{1, \ldots, m\}=[m]$ such that $S_{1}^{\bigotimes}=S_{1}^{\S(\mathcal{E}} \cup\left\{d_{j}: j \in K_{1}\right\}$. Hence this SO quantification move consists of a coloring of points in C and a choice of K_{1}. Replace $\exists S_{1} \vartheta\left(S_{1}\right)$ with

$$
\exists S_{1} \bigvee_{K_{1} \subseteq[m]} \varphi\left(S_{1} ; K_{1}\right),
$$

where $\varphi\left(S_{1} ; K_{1}\right) \equiv \vartheta$, where K_{1} is noted for future reference. Similarly, if $\Theta \equiv$ $\forall S_{1} \vartheta\left(S_{1}\right)$, replace it with

$$
\forall S_{1} \bigwedge_{K_{1} \subseteq[m]} \varphi\left(S_{1} ; K_{1}\right) .
$$

Continue in the same vein down the SO quantifications. For example, if $\Theta_{i}(\mathbf{S} ; \mathbf{K}) \equiv \exists S_{i} \vartheta_{i}\left(\mathbf{S}, S_{i}\right)$, replace it with

$$
\exists S_{i} \bigvee_{K_{i} \leq[m]} \varphi_{i}\left(\mathbf{S}, S_{i} ; \mathbf{K}, K_{i}\right)
$$

where $\varphi_{i}\left(\mathbf{S}, S_{i} ; \mathbf{K}, K_{i}\right) \equiv \vartheta_{i}$, where K_{i} is noted for future reference.
Now for the sequence of FO quantifications. Given θ, let $\theta_{k \rightarrow j}$ be θ with each occurrence of x_{k} replaced by d_{j}, viz., $\operatorname{Arc}\left(x_{k}, x_{l}\right)$ is replaced by $\operatorname{Arc}_{j}^{+}\left(x_{l}\right)$, each occurrence of $\operatorname{Arc}\left(x_{l}, x_{k}\right)$ is replaced by $\operatorname{Arc}_{j}^{-}\left(x_{l}\right)$, each occurrence of $\operatorname{Arc}_{l}^{+}\left(x_{k}\right)$ is replaced by $\operatorname{Arc}_{l j}$, each occurrence of $\operatorname{Arc}_{l}^{-}\left(x_{k}\right)$ is replaced by $\operatorname{Arc}_{j l}$, and each occurrence of $S_{i}\left(x_{k}\right)$ is replaced by $S_{i j}$. If $\Theta_{j}(\mathbf{x}, \mathbf{S} ; \mathbf{K}) \equiv \forall x_{j} \vartheta\left(\mathbf{x}, x_{j}, \mathbf{S} ; \mathbf{K}\right)$, replace it with

$$
\forall x_{k} \vartheta\left(\mathbf{x}, x_{k}, \mathbf{S} ; \mathbf{K}\right) \wedge \bigwedge_{j=1}^{m} \vartheta_{k \rightarrow j}(\mathbf{x}, \mathbf{S} ; \mathbf{K})
$$

Similarly, if $\Theta_{i}(\mathbf{x}, \mathbf{S}) \equiv \exists x_{j} \vartheta\left(\mathbf{x}, x_{j}, \mathbf{S} ; \mathbf{K}\right)$, replace it with

$$
\exists x_{k} \vartheta\left(\mathbf{x}, x_{k}, \mathbf{S} ; \mathbf{K}\right) \vee \bigvee_{j=1}^{m} \vartheta_{k \rightarrow j}(\mathbf{x}, \mathbf{S} ; \mathbf{K})
$$

Continue until all quantifications are gone and you have a massive expression ϑ, which is actually an SO sentence over the class of finite chains except that it also contains $\operatorname{Arc}_{j}^{+}, \operatorname{Arc}_{j}^{-}, \operatorname{Arc}_{i j}$, and $S_{i j}$ for each i, j, as unary or 0 -ary predicates.

As d_{1} is the distinguished tail of C, we write

$$
\operatorname{Arc}_{1}^{-}(x) \equiv \forall y \neg \operatorname{Arc}(y, x) \quad \text { and } \quad \operatorname{Arc}_{1}^{+}(x) \equiv \operatorname{FALSE}
$$

Similarly, as d_{2} is the distinguished head of C, write

$$
\operatorname{Arc}_{2}^{-}(x) \equiv \operatorname{FALSE} \quad \text { and } \quad \operatorname{Arc}_{2}^{+}(x) \equiv \forall y \neg \operatorname{Arc}(x, y)
$$

And if $i>2$, then $\operatorname{Arc}_{i}^{+}(x) \leftrightarrow \operatorname{Arc}_{i}^{-}(x) \leftrightarrow$ FALSE. As $\operatorname{Arc}_{i j}$ is fixed throughout $\left\{\circlearrowleft_{n}: n \in \omega\right\}$ for each fixed i, j, let $\operatorname{Arc}_{i j} \equiv \operatorname{Arc}\left(d_{i}, d_{j}\right)$, which is TRUE or FALSE, depending on d_{i}, d_{j}. Finally, the symbol $S_{i j}$ is replaced with TRUE if it lies within an expression $\vartheta\left(-;-, K_{i}\right)$, where $j \in K_{i}$, and FALSE if it lies within an expression $\vartheta\left(-;-, K_{i}\right)$, where $j \notin K_{i}$. The result of all this replacing is an SO formula Ψ designed for chain structures.

It is straightforward, if tedious, to verify that Eloise wins the game for θ on $\mathfrak{\circlearrowleft}_{n}$ iff she wins for Ψ on \mathfrak{C}_{n}. It follows that $\mathfrak{\oiint}_{n} \vDash \Theta$ iff $\mathfrak{C}_{n} \vDash \Psi$ for each n, and the lemma follows.

We now strengthen the notion of weakly eventually periodic.
Definition Let $\mathcal{C}=\langle V, A, H, T\rangle$ and $S \subseteq[\mathcal{C}] . S$ is \mathcal{C}-eventually periodic (or just \mathcal{C}-ev.p.) if there exist N, τ such that for each $\mathbb{G} \in[\mathcal{C}]$ and each $a \in A$, for any $\mathscr{H}_{1}, \mathfrak{H}_{2}, \in[\mathcal{C}]$, if $f_{\mathfrak{G}_{1}}\left(a^{\prime}\right)=f_{\mathscr{G}_{2}}\left(a^{\prime}\right)=f_{\mathscr{H}}\left(a^{\prime}\right)$ for each $a^{\prime} \in A-\{a\}$, and if $N<f_{\mathfrak{\Theta}_{1}}(a)=f_{\mathfrak{刃}_{2}}(a)-\tau$, then $\mathfrak{\bigotimes}_{1} \in S$ iff $\mathfrak{B}_{2} \in S$. If $\mathcal{C}=\langle\{x, y\},\{a\},\{(x, a)\}$, $\{(y, a)\}\rangle$ or $\mathcal{C}=\langle\{x, y\},\{a, b\},\{(x, a),(y, b)\},\{(x, b),(y, a)\}\rangle$, and S is \mathcal{C}-ev.p., we say that S is eventually periodic.

Notice the distinction: if S is \mathcal{C}-ev.p., then there exists a single pair N, τ witnessing S being \mathcal{C}-ev.p., whereas if S is merely \mathcal{C}-w.ev.p., then for each \mathfrak{G}, there is a pair N, τ witnessing S being \mathcal{C}-w.ev.p. in that case.

Lemma 2.2 Fix a configuration C. Every monadic second-order query on [C] is \mathcal{C}-ev.p.
Proof: Towards contradiction, suppose that

$$
\theta \equiv Q_{1} S_{1} \cdots Q_{s} S_{s} Q_{s+1} x_{1} \cdots Q_{s+r} x_{r} \theta(\mathbf{x}, \mathbf{S})
$$

has θ being quantifier-free, and that there exist $\mathbb{H}_{1}, \mathfrak{H}_{2}, \ldots \in[\mathcal{C}]$ such that if N_{t}, τ_{t} are the outset and period of \mathscr{G}_{t} respectively (and each N_{t}, τ_{t} exist by Lemma 2.1), then $N_{t} \leq N_{t+1}$ and $\tau_{t} \leq \tau_{t+1}$ for each t, and either $\lim _{t \rightarrow \infty} N_{t}=\infty$ or $\lim _{t \rightarrow \infty} \tau_{t}=\infty$.

Let $(\mathbb{G}) \leq$ GI' $^{\prime}$ mean that for each $\operatorname{arc} a, f_{\mathscr{G}}(a) \leq f_{\mathscr{G}^{\prime}}(a)$, and using a thinning argument we can find a subsequence $\left\{\oiint_{t_{i}}\right\}_{i \in \omega}$ such that $f_{\bigotimes_{t_{i}}}(a) \leq f_{\bigotimes_{t_{i+1}}}(a)$ for all a, i. In fact, without loss of generality we can suppose that $\left\{\mathscr{G}_{t}\right\}_{t \in \omega}$ satisfies $f_{\circlearrowleft_{t}}(a) \leq f_{\circlearrowleft_{t+1}}(a)$ for all a, t. Let $l(a)=\lim _{t \rightarrow \infty} f_{\circlearrowleft_{t}}(a)$ for each arc a, and let $M>l(a)$ for each finite $l(a)$ and let T be such that if $t \geq T$, then for each arc a, $l(a)<\infty \Rightarrow f_{\bigotimes_{t}}(a)=l(a)$ and $l(a)=\infty \Rightarrow f_{\bigotimes_{\circlearrowleft_{t}}}(a)>M$.

Recall from the comment after Theorem 1.3 that each of the finitely many equivalence classes of $\equiv_{s, r}$ on finite chains is eventually periodic, and let N^{\prime} be the maximum outset of any of these classes, and τ^{\prime} the least common multiple of all the periods. Choose any $\mathfrak{G}=\mathfrak{G}_{t}, t \geq T$, and let

$$
\begin{aligned}
f_{(\circlearrowleft, a)}\left(a^{\prime}\right)= & \text { if } a=a^{\prime} \& f_{\mathscr{H}}(a)>N_{T}+N^{\prime}+\tau_{T} \tau^{\prime} \\
& \text { then } f_{\mathscr{G}}(a)-\tau_{T} \tau^{\prime} \\
& \text { else } f_{\mathscr{H}}\left(a^{\prime}\right),
\end{aligned}
$$

and let $[\mathscr{G} ; a]$ be the resulting digraph. Now, $\mathrm{a} \equiv_{s, r}$ game, with all moves restricted to any chain of (\oiint) and the corresponding chain of $[ङ ; ; a]$, gives the Duplicator a winning strategy. Hence, as all the SO moves are for unary relations, $(\mathbb{G}) \equiv_{s, r}[\mathscr{G} ; a]$, and repeating for each maximal chain of $\mathfrak{G b}$, it follows that \mathbb{G} and $[\mathfrak{G} ; a]$ have the same outset and period. Choose another configuration arc a^{\prime}, and the same is true of $[\mathscr{G} ; a]$ and $\left[[\mathscr{G} ; a] ; a^{\prime}\right]$, and so on. Repeating as often as possible, we find that the outset and period of \mathfrak{G}_{t} is the same as that of some (S) $\in[\mathcal{C}]$ all of whose chains are no longer than $N^{\prime}+N_{T}+\tau_{T} \tau^{\prime}$. Since this is true of all $\mathfrak{\circlearrowleft}_{t}, t \geq T,\left\{N_{t}: t \geq T\right\}$ and $\left\{\tau_{t}: t \geq T\right\}$ are both finite, giving us our contradiction.

We now need a characterization of the \mathcal{C}-ev.p. functions $f_{\mathscr{G}}$.
Definition Let $S \subseteq \omega$. Recall that S is an arithmetic progression if there exist $N, \tau \in \omega$ such that $S=\{N+k \tau: k \in \omega\}$. Call N the outset and τ the period of S. Say that $S \subseteq \omega$ is rational if it is a finite union of arithmetic progressions. If $\operatorname{Arith}(N, \tau)=\{N+k \tau: k \in \omega\}$, say that $S=\cup_{k \leq m} \operatorname{Arith}\left(N_{k}, \tau_{k}\right)$ is of pattern

$$
\left\{\left(s_{1}, \ldots, s_{m}\right) \in S:(\forall k \leq m)\left(s_{k} \leq N_{k}+\tau_{k}\right)\right\}
$$

and call $\max _{x} N_{k}$ the outset and the least common multiple $\mathrm{lcm}_{k} \tau_{k}$ the period of S.

We say that $S \subseteq \omega^{d}$ is rational if there exists M and rational sets $J(i, j) \subseteq \omega$, $i \leq d$ and $j \leq M$, such that S is the union of Cartesian products $S=\bigcup\left\{\Pi_{i \leq d}\right.$ $J(i, j): j \leq M\}$.

On the other hand, say that $S \subseteq \omega^{d}$ is eventually periodic if there exist N, τ such that for each $k \leq d$, if $n_{k} \geq N$, then

$$
\begin{aligned}
& \left(n_{1}, \ldots, n_{k-1}, n_{k}, n_{k+1}, \ldots, n_{d}\right) \in S \\
& \quad \text { iff }\left(n_{1}, \ldots, n_{k-1}, n_{k}+\tau, n_{k+1}, \ldots, n_{d}\right) \in S
\end{aligned}
$$

Lemma 2.3 A subset of ω^{d} is eventually periodic iff it is rational.
Proof: First, suppose that $S \subseteq \omega^{d}$ is rational:

$$
S=\bigcup\left\{\Pi_{i \leq d} J(i, j): j \leq M\right\}
$$

For each $i, j \leq M, J(i, j)$ has outset $N(i, j)$ and period $\tau(i, j)$, and if N is the maximum $N(i, j)$ and τ is the least common multiple of all the $\tau(i, j)$, then N and τ witness the eventual periodicity of S.

Conversely, suppose that S is eventually periodic, with outset N and period τ. For each tuple $\mathbf{k}=\left(k_{1}, \ldots, k_{d}\right) \in\{1,2, \ldots, N+\tau\}^{d}$, and each $i \leq d$, let $J(i, \mathbf{k})=$ if $k_{i} \leq N$ then $\left\{k_{i}\right\}$ else $\left\{k_{i}\right\} \cup\left\{k_{i}+t \tau: t \in \omega\right\}$, and $J(i, \mathbf{k})$ is rational. Easily,

$$
S=\bigcup\left\{\Pi_{i \leq d} J(i, \mathbf{k}): \mathbf{k} \in S \cap\{1, \ldots, N+\tau\}^{d}\right\}
$$

It follows that if \mathcal{C} is a configuration, all monadic SO queries are "rational" in the following sense.

Definition Fix a configuration \mathcal{C}. For any $\mathscr{G} \in[\mathcal{C}]$, let $f_{\mathscr{G}}$ be a function from the arcs of \mathcal{C} to ω such that for any $\operatorname{arc} a, f_{\mathscr{G}}(a)$ is the number of vertices in the chain in $\left(\mathscr{G}\right.$ corresponding to the $\operatorname{arc} a$. Let a_{1}, \ldots, a_{d} be the arcs of \mathcal{C}, and let $F(\mathscr{S})$ be the tuple $\left(f_{\mathscr{H}}\left(a_{1}\right), \ldots, f_{\mathscr{H}}\left(a_{d}\right)\right)$. For any set $S \subseteq[\mathcal{C}]$, let

$$
F(S)=\{F(\oiint): \circlearrowleft \in S\} .
$$

Call a set $S \subseteq[\mathcal{C}] \mathcal{C}$-rational if $F(S)$ is rational (in ω^{d}).
Lemma 2.4 Let \mathcal{C} be a configuration. Then every \mathcal{C}-rational query is ${ }^{1} \Delta_{1}^{1-}$ definable.
Proof: Let $\mathcal{C}=\langle C, A, H, T\rangle$. As the class of \mathcal{C}-rational queries is closed under negation, it suffices to prove that every \mathcal{C}-rational query is ${ }^{1} \Sigma_{1}^{1}$-definable.

The first step is to verify that every rational class of finite chains is ${ }^{1} \Sigma_{1}^{1}$ definable. An arithmetic progression of chains, with distinguished tail t_{0} and distinguished head h_{0}, and with outset N and period τ is ${ }^{1} \Sigma_{1}^{1}$-definable using

$$
\begin{aligned}
& \exists S\left\{(\forall s \in S)\left(\operatorname{dist}\left(t_{0}, s\right) \geq N\right) \&\right. \\
& \quad(\exists s \in S)\left(\operatorname{dist}\left(t_{0}, s\right)=N\right) \& \\
& \left.\quad\left(\forall s \in S-\left\{h_{0}\right\}\right)\left(" \text { next } s^{\prime} \in S \text { up from } s \text { is distance } \tau "\right) \& S\left(h_{0}\right)\right\} .
\end{aligned}
$$

As an eventually periodic set is a finite union of arithmetic sets, eventually periodic sets are ${ }^{1} \Sigma_{1}^{1}$-definable.

Now, if S is \mathcal{C}-rational, it corresponds with some $\omega^{|A|}$-rational S. In ${ }^{1} \Sigma_{1}^{1}$,
given distinguished x, y, we can assert the existence of chains from x to y of lengths decreed by S. Hence we write, if the i-th arc is the one from $x_{t(i)}$ to $x_{h(i)}$,

$$
\begin{aligned}
& \exists x_{1} \cdots x_{|C|} \exists S_{1} \cdots S_{|A|}\{\text { "There is a pattern for a } \mathcal{C} \text { rational set } \\
& \text { s.t. } S_{1}, \ldots, S_{|A|} \text { is of that pattern"\}. }
\end{aligned}
$$

This is ${ }^{1} \Sigma_{1}^{1}$-definable, and we are done.
Theorem 2.5 On [C], a query is \mathcal{C}-rational iff it is \mathcal{C}-ev.p. iff it is monadic SO iff it is ${ }^{1} \Delta_{1}^{1}$-definable.

Hence on [C], all monadic second order queries are ${ }^{1} \Delta_{1}^{1}$-definable. One cyclic comment: When Fagin [11] proved that Connectivity is not ${ }^{1} \Sigma_{1}^{1}$-definable, his proof actually achieved the following. Let $(\mathscr{S}$ be a digraph and let $[(\mathbb{\xi}, n]$ consist of all digraphs consisting of $(\mathbb{5})$ with n additional cyclic components.

Theorem 2.6 (Essentially, [11]) Let \mathcal{C} be a configuration, and fix $n \geq 1$. If R is a ${ }^{1} \Sigma_{1}^{1}$-definable class of structures, and if $R \cap[\mathrm{C}]$ is infinite, then for some (I) $\in[\mathcal{C}], R \cap[\mathfrak{G}, n]$ is also infinite.

Given a configuration \mathcal{C}, let

$$
(\mathcal{C})=\bigcup_{\mathscr{B} \in[\mathcal{C}]}\left(\bigcup_{n \in \omega}[\mathfrak{G}, n]\right)
$$

As far as ${ }^{1} \Delta_{1}^{1}$ is concerned, cyclic components are invisible within any (\mathcal{C}), so we could ignore them and restrict our attention to [C]. Nevertheless, in ${ }^{1} \Sigma_{1}^{1}$ the existence of cyclic components can be asserted, whereas in ${ }^{1} \Pi_{1}^{1}$ the existence of cyclic components can be denied. It follows that on any (C), all monadic second order relations are ${ }^{1} \Delta_{2}^{1}$-definable.

Clearly, all of the above can be applied to (nondirected) graphs.

3 On positive elementary induction For logistical reasons, we will be using the formulation of LFP that appears in [20].

We start with the positive SO formulas. Intuitively speaking, an SO formula φ is positive if, for each relation variable in φ, there is no \neg sign anywhere in front of it. The positive SO formulas are constructed as follows. First, if there are no relation variables in φ, then φ is positive SO. If S is a relation variable, then for any list \mathbf{x} of (FO) variables and constants, $S(\mathbf{x})$ is positive SO. If φ and ψ are positive SO, then so are $\varphi \& \psi, \varphi \vee \psi, \exists x \varphi$, and $\forall x \psi$. (As a technicality, we will presume that a positive SO formula has no SO quantifications.) It is easy to show that if φ is positive SO, then ν is monotonic in the following sense: for each $\mathbf{x}, X, Y, \varphi(\mathbf{x}, X) \& X \subseteq Y \Rightarrow \varphi(\mathbf{x}, Y)$.

A system of SO formulas

$$
\varphi=\varphi_{0}\left(\mathbf{u}_{0}, S_{0}, \ldots, S_{\nu}\right), \ldots, \varphi_{\nu}\left(\mathbf{u}_{\nu}, S_{0}, \ldots, S_{\nu}\right)
$$

is operative if, for each i, \mathbf{u}_{i} and S_{i} have the same number of arguments (we allow 0 -ary \mathbf{u}_{i}, S_{i}). We will be dealing with positive $S O$ operative systems of formulas, i.e., operative systems as above where each φ_{i} is positive SO with relation variables S_{0}, \ldots, S_{ν}.

Now suppose we have our positive elementary operative system $\varphi=\varphi_{0}$, \ldots, φ_{ν}. Since we will not be dealing with transfinite inductions, we restrict ourselves to the following: for each i and each number n, we get a system of iterates

$$
\varphi_{i}^{n+1}\left(\mathbf{x}_{i}\right) \equiv \varphi_{i}\left(\mathbf{x}_{i}, \varphi_{0}^{n}, \ldots, \varphi_{\nu}^{n}\right)
$$

and it is easily verified that for each $i, n, \varphi_{i}^{n} \subseteq \varphi_{i}^{n+1}$, and hence, on a finite structure, there exists an n such that $\varphi_{i}^{n+1}=\varphi_{i}^{n}$; we denote these iterates by $\varphi^{\infty}=$ $\varphi_{0}^{\infty}, \ldots, \varphi_{\nu}^{\infty}$. A query is a positive elementary inductive least fixed point (LFP) if it is one of the relations listed in some least (simultaneous) fixed point of some operative system of positive elementary SO formulas.

As an example, consider connectivity on digraphs. This uses the system

$$
\begin{aligned}
\varphi_{0}\left(S_{1}\right) & \equiv \forall x \forall y S_{1}(x, y), \\
\varphi_{1}\left(x, y, S_{1}\right) & \equiv x=y \vee \exists z\left[\operatorname{Arc}(x, z) \& S_{1}(z, y)\right]
\end{aligned}
$$

Easily, for any digraph $\mathfrak{A}, \mathfrak{A} \vDash \forall x \forall y\left[\mathrm{TC}(x, y) \rightarrow \varphi_{1}^{\infty}(x, y)\right]$, and hence $\mathfrak{A} \vDash \varphi_{0}^{\infty}$ iff \mathfrak{A} is connected.

One bit of lore: $\left(\varphi_{0}^{\infty}, \ldots, \varphi_{\nu}^{\infty}\right)$ is the least (simultaneous) fixed point of the system $\varphi_{0}, \ldots, \varphi_{\nu}$ in the following sense: if X_{0}, \ldots, X_{ν} was a fixed point of $\varphi_{0}, \ldots, \varphi_{\nu}$, then $\varphi_{i}^{\infty} \subseteq X_{i}$ for each i. To see this, note that for each $i, \varnothing \subseteq X_{i}$, and by the monotonicity of $\varphi_{i}, \varphi_{i}^{<\xi} \subseteq X_{i} \Rightarrow \varphi_{i}^{\xi} \subseteq X_{i}$ for all ξ. And so every LFP query is Π_{1}^{1}-definable.

We will need two definitions. First, the notion of dimension. Let φ be a positive SO operative system of formulas $\varphi_{i}\left(\mathbf{u}_{i}, S_{0}, \ldots, S_{\nu}\right)$, and let d_{i} be the arity of the relation variable S_{i} and thus the length of the tuple of "recursion variables" \mathbf{u}_{i}. Let $d_{\varphi}=\max \left(d_{0}, \ldots, d_{\nu}\right)$ be the dimension of the system φ. If R is a positive elementary inductive relation, let

$$
d_{R}=\min \left\{d_{\varphi}: \text { all } \varphi \text { such that } R=\varphi_{0}^{\infty}\right\}
$$

be the dimension of R. Let ${ }^{d}$ LFP be the class of all d-dimensional LFP queries. Note that ${ }^{d} \mathrm{LFP} \subseteq{ }^{d} \Pi_{1}^{1}$.

Second, we can construct a hierarchy from ${ }^{d}$ LFP as follows. Let ${ }^{d}$ LFP $_{1}=$ ${ }^{d}$ LFP. If \mathbb{C} is a class of structures of a given schema and R is ${ }^{d} \mathrm{LFP}_{n}$-definable, let $(\mathfrak{C}, R)=\left\{\left(\mathfrak{H}, R^{\mathfrak{Y}}\right): \mathfrak{A} \in \mathfrak{C}\right\}$, where $\left(\mathfrak{A}, R^{\mathfrak{A}}\right)$ is the expansion of the structure \mathfrak{A} by adding the relation $R^{\mathfrak{2}}$. Then a query S is ${ }^{d} \mathrm{LFP}_{n+1}$-definable on \mathcal{C} if there exists a ${ }^{d}$ LFP $_{n}$-definable R such that S is ${ }^{d}$ LFP-definable over (C, R). Let ${ }^{d} \mathrm{LFP}_{\omega}=\bigcup_{n \in \omega}{ }^{d} \mathrm{LFP}_{n}$, and ${ }^{d} \mathrm{LFP}_{\omega}$ is the least class of queries containing all the FO queries and closed under Boolean operations and d-dimensional inductions. Easily ${ }^{d} \mathrm{LFP}_{n} \subseteq{ }^{d} \Pi_{n}^{1}$, but that is all that is immediate. It is known (see Addison \& Kleene [2]) that on $\mathfrak{N}, \cup_{d}{ }^{d} \mathrm{LFP}_{\omega} \nsubseteq \Delta_{2}^{1}$, but perhaps things are different elsewhere.

4 One-dimensional inductions During the last decade, LFP has been separated from Σ_{1}^{1} and Π_{1}^{1} on classes of finite structures. The standard technique has been to choose some query that looks like it is not in LFP either because it is NP-complete (like ヨlarge clique, as in [14]) or because it is obviously not in $L_{\infty \omega \omega}^{<\omega}=\bigcup_{k \in \omega} L_{\infty \omega}^{k}$, where $L_{\infty \omega}^{k}$ is FO logic with only k variables allowed, expanded by arbitrary disjunctions (like the oft-cited example, "there are evenly
many vertices", which is implicitly dealt with in [11]). Of course, a wide number of techniques have been used, but these are the two kinds of queries that have been exhibited.

A toy version of this problem is the separation of ${ }^{1} \Pi_{1}^{1}$ from ${ }^{1}$ LFP. This is not always possible. For example, it is easily seen that for any monadic SO Θ, if C_{n} is the chain of n vertices, then $\left\{n: C_{n} \vDash \Theta\right\}$ is eventually periodic, and thus all monadic SO sentences are ${ }^{1}$ LFP-definable on $\left\{C_{n}: n \in \omega\right\}$. The purpose of this section is to prove that this separation holds over the class of all graphs, and in fact it holds for certain highly behaved classes of graphs. We will actually prove something stronger. Recall that ${ }^{1} \mathrm{LFP}_{\omega}$ is the least class of queries containing ${ }^{1}$ LFP and closed under Boolean operations, first order quantifications, and one-dimensional inductions. We will prove that for some $\mathcal{C}_{1}, \mathcal{C}_{2},{ }^{1} \mathrm{LFP}_{\omega} \subsetneq{ }^{1} \Delta_{1}^{1}$ on $\left[\mathcal{C}_{1}\right] \cup\left[\mathcal{C}_{2}\right]$, from which it will follow that on some $[\mathcal{C}],{ }^{1} \mathrm{LFP}_{\omega} \subsetneq{ }^{1} \Delta_{1}^{1}$. (Note that ${ }^{1} \mathrm{LFP}_{\omega} \subseteq \cup_{k}{ }^{1} \Pi_{k}^{1}$, so that on any [\mathcal{C}], all the ${ }^{1} \mathrm{LFP}_{\omega}$-queries are \mathcal{C} rational, and thus ${ }^{1} \mathrm{LFP}_{\omega} \subseteq{ }^{1} \Delta_{1}^{1}$.) First, we exhibit a query that ${ }^{1} \Delta_{1}^{1}$ can represent.

Proposition 4.1 Let \mathcal{C}_{1} and \mathcal{C}_{2} be distinct configurations, and let $\mathfrak{C}=\left[\mathcal{C}_{1}\right] \cup$ $\left[\mathcal{C}_{2}\right] . " \Re \in\left[\mathcal{C}_{1}\right] "$ is ${ }^{1} \Delta_{1}^{1}$-definable on \mathcal{C}.
Outline of proof: The proof is similar to the proof of Theorem 2.5. Let \mathcal{C}_{1} have nodes c_{1}, \ldots, c_{n}, and $\operatorname{arcs} a_{1}, \ldots, a_{m}$, and again, let $H(c, a) \equiv " c$ is the head of $a "$, and $T(c, a) \equiv " c$ is the tail of $a "$. Again, we write a ${ }^{1} \Sigma_{1}^{1}$ sentence Θ_{1} saying that

$$
\exists x_{1} \cdots x_{n} \exists S_{1} \cdots S_{m}\left\{\begin{aligned}
\bigwedge_{i, j, k} & {[}
\end{aligned}\left(H\left(c_{i}, a_{j}\right) \& T\left(c_{k}, a_{j}\right)\right) \rightarrow\right] \text { " } S_{j} \text { is the chain from distinguished } 0 \text { node } x_{k} \text { to distinguished node } x_{i} \text { "] }
$$

$$
\left.\& \forall x \bigvee_{j} x \in S_{j}\right\}
$$

and for all $\mathfrak{A} \in \mathbb{C}, \mathfrak{A} \vDash \Theta_{1}$ iff $\mathfrak{A} \in\left[\mathcal{C}_{1}\right]$. Similarly, we construct a ${ }^{1} \Sigma_{1}^{1}$-sentence θ_{2} such that for all $\mathfrak{A} \in \mathcal{C}, \mathfrak{A} \vDash \theta_{2}$ iff $\mathfrak{A} \in\left[\mathcal{C}_{2}\right]$. Since θ_{1} is equivalent to $\neg \theta_{2}$ on $\mathfrak{C}, " \mathfrak{A} \in\left[\mathcal{C}_{1}\right] "$ is ${ }^{1} \Delta_{1}^{1}$-definable on \mathfrak{C}.

We might as well mention 2-dimensional inductions somewhere in this article.
Proposition 4.2 If \mathcal{C}_{1} and \mathcal{C}_{2} are distinct configurations, then " ()$\in\left[\mathcal{C}_{1}\right]$ " is ${ }^{2}$ LFP expressible in $\left[\mathcal{C}_{1}\right] \cup\left[\mathcal{C}_{2}\right]$.

Proof: Without loss of generality, suppose that neither \mathcal{C}_{1} nor \mathcal{C}_{2} have constant symbols; we also assume that the arc relation on each configuration is symmetric so we can deal with graphs. If \mathcal{C}_{1} and \mathcal{C}_{2} have a different number of distinguished vertices, or if, for some number $d \neq 2$, one has more distinguished vertices of degree d than the other, then certainly "(s) $\in\left[\mathcal{C}_{1}\right]$ " is FO-expressible. So imagine that they both have the same number of distinguished vertices, of degrees $d_{1} \geq \cdots \geq d_{k}$. Ordering the distinguished vertices by degree, let $R_{l}(i, j) \equiv$ "in C_{l}, there is an arc from vertex i to vertex j ".

The following is an operative system generating an LFP query:

$$
\left.\begin{array}{rl}
\varphi_{0}\left(S_{0}, S_{1}, S_{2}\right) \equiv \exists x_{1} \cdots x_{k}\left\{\bigwedge_{i} \operatorname{deg}\left(x_{i}\right)=d_{i} \&\right. \\
\wedge & \left\{S_{2}\left(x_{i}, x_{j}\right): R_{1}\left(x_{i}, x_{j}\right)\right\} \& \\
\left.\forall x\left[\operatorname{deg}(x) \neq 2 \rightarrow \bigvee_{i} x=x_{i}\right]\right\}
\end{array}\right\} \begin{aligned}
\varphi_{1}\left(x, y, S_{0}, S_{1}, S_{2}\right) \equiv & \operatorname{deg}(y)=2=\operatorname{deg}(x) \& \\
& \left\{\operatorname{Edge}(x, y) \vee \exists z\left[\operatorname{Edge}(x, z) \& S_{1}(z, y)\right\}\right. \\
\varphi_{2}\left(x, y, S_{0}, S_{1}, S_{2}\right) \equiv & \operatorname{deg}(x) \neq 2 \neq \operatorname{deg}(y) \& \\
& \exists x^{\prime}, y^{\prime}\left\{\operatorname{Edge}\left(x, x^{\prime}\right) \& S_{1}\left(x^{\prime}, y^{\prime}\right) \& \operatorname{Edge}\left(y^{\prime}, y\right)\right\} .
\end{aligned}
$$

As φ_{0} fixes the degrees of all the distinguished vertices, for all $\mathfrak{G} \in\left[\mathcal{C}_{1}\right] \cup\left[\mathcal{C}_{2}\right]$, $\leftrightarrow \in\left[C_{1}\right]$ iff $\mathbb{B} \vDash \varphi_{C}^{\infty}$.

In fact, if \neg^{2} LFP $=\left\{\neg R: R \in{ }^{2}\right.$ LFP $\}$, then "§̧ $\in\left[\mathbb{C}_{1}\right]$ " is $\left(^{2}\right.$ LFP \cap $\neg^{2} \mathrm{LFP}$)-expressible in $\left[\mathcal{C}_{1}\right] \cup\left[\mathcal{C}_{2}\right]$. Thus if \mathcal{C} is the disjoint union of \mathcal{C}_{1} and \mathcal{C}_{2}, "(S) $\vDash^{\prime} x$ is in configuration \#1'" is (${ }^{2}$ LFP $\cap \neg^{2}$ LFP)-expressible in [C]. Nevertheless, this query cannot be represented by ${ }^{1} \mathrm{LFP}_{\omega}$; hence ${ }^{2} \mathrm{LFP}-{ }^{1} \mathrm{LFP}_{\omega} \neq \varnothing$:
Theorem 4.3 There exists $a\left({ }^{2} \mathrm{LFP} \cap \neg^{2} \mathrm{LFP} \cap{ }^{1}, \Delta_{1}^{1}\right)$-definable query that is not ${ }^{1} \mathrm{LFP}_{\omega}$-definable.

Proof: Let $\mathcal{C}_{1}=\left\langle\{0,1,2,3\},\{01,10,12,21,23,32,30,03\}, H_{1}, T_{1}\right\rangle$ and $\mathcal{C}_{2}=\langle\{0,1,2,3\}$, $\left.\{00,01,11,12,22,23,33,30\}, H_{2}, T_{2}\right\rangle$, where $H_{i}(h, j k) \equiv h=j$ and $T_{i}(h, j k) \equiv$ $h=k$, for all h, i, j, k. By Propositions 4.1 and 4.2, on $\left[\mathcal{C}_{1}\right] \cup\left[\mathcal{C}_{2}\right]$, " $\mathfrak{A} \in\left[\mathcal{C}_{1}\right]$ " is (${ }^{2}$ LFP $\cap \neg^{2}$ LFP $\cap{ }^{1} \Delta_{1}^{1}$)-definable. We claim that " $\mathfrak{H} \in\left[\mathcal{C}_{1}\right]$ " is not ${ }^{1} \mathrm{LFP}_{\omega^{-}}$ definable on $\left[\mathcal{C}_{1}\right] \cup\left[\mathcal{C}_{2}\right]$. Let R be any relation on $\left[\mathcal{C}_{1}\right] \cup\left[\mathcal{C}_{2}\right]$ structures that is preserved under automorphism.

Let \mathfrak{N}_{n} be the structure in [\mathcal{C}_{1}] whose maximal chains are all of length n, and let \mathfrak{B}_{n} be the structure in [\mathcal{C}_{2}] whose maximal chains are all of length n. For each $i, j, t, 0<t \leq n+1$, let $x_{i j}(t)$ be the t-th node on the maximal chain of arc $i j$, such that the distance from the distinguished node i to $x_{i j}(t)$ is t. By automorphism, for any \mathfrak{A}_{n}, and any $i, j, i^{\prime}, j^{\prime}, t, \mathfrak{A}_{n} \vDash R\left(x_{i j}(t)\right) \leftrightarrow R\left(x_{i^{\prime} j^{\prime}}(t)\right)$ for any ${ }^{1} \mathrm{LFP}_{\omega}$-definable R. Similarly, by automorphism, for any \mathfrak{B}_{n}, and any $i, j, t, \mathfrak{B}_{n} \vDash$ $R\left(x_{i i}(t)\right) \leftrightarrow R\left(x_{j j}(t)\right)$, and, if $j \cong i+1 \bmod 4, k \cong j+1 \bmod 4, \mathfrak{B}_{n} \vDash R\left(x_{i j}(t)\right) \leftrightarrow$ $R\left(x_{j k}(t)\right)$.

We claim that if R is ${ }^{1} \mathrm{LFP}_{\omega}$-definable, then for each h, i, j, k, t, and sufficiently large $n, \mathfrak{A}_{n} \vDash R\left(x_{n i}(t)\right) \Leftrightarrow \mathfrak{B}_{n} \vDash R\left(x_{j k}(t)\right)$. This will do the trick, for then, if $\varphi_{0}, \ldots, \varphi_{\nu}$ is a system of positive formulas whose atomic subformulas list only ${ }^{1} \mathrm{LFP}_{k}$-definable relations, $\varphi_{0}^{\infty}, \ldots, \varphi_{\nu}^{\infty}$ will all be in ${ }^{1} \mathrm{LFP}_{k+1}$, and it follows that for sufficiently large $n, \mathfrak{A}_{n} \vDash \varphi_{0}^{\infty}$ iff $\mathfrak{B}_{n} \vDash \varphi_{0}^{\infty}$. Hence it suffices to prove that if n is sufficiently large and R is one-dimensional inductive over some system of queries $\mathbf{P}=P_{0}, \ldots, P_{\eta}$, where, for each p, and each appropriate h, i, j, k, and each $t \leq n, \mathfrak{U}_{n} \vDash P_{p}\left(x_{h i}(t)\right) \Leftrightarrow \mathfrak{B}_{n} \vDash P_{p}\left(x_{j k}(t)\right)$, then for each appropriate h, i, j, k, and $t \leq n, \mathfrak{N}_{n} \vDash R\left(x_{h i}(t)\right) \Leftrightarrow \mathfrak{B}_{n} \vDash R\left(x_{j k}(t)\right)$.

To prove this, let $\varphi=\varphi_{0}, \ldots, \varphi_{\nu}$ be a one-dimensional operative system of positive elementary formulas (each of quantifier depth $<r$) in the schema (Arc,2), $\left(P_{0}, 1\right), \ldots,\left(P_{\eta}, 1\right)$ such that $R \equiv \varphi_{0}^{\infty}$. Fix $n>2^{r+1}$, and $\mathfrak{A}=\mathfrak{A}_{n}$ and
$\mathfrak{B}=\mathfrak{B}_{n}$. For each μ, let $f_{1 \mu}(t)=$ if $\mathfrak{A} \vDash \varphi_{\mu}^{\infty}\left(x_{01}(t)\right)$ then 1 else 0 , and let $f_{20 \mu}(t)=$ if $\mathfrak{B} \vDash \varphi_{\mu}^{\infty}\left(x_{00}(t)\right)$ then 1 else 0 and let $f_{21 \mu}(t)=$ if $\mathfrak{B} \vDash \varphi_{\mu}^{\infty}\left(x_{01}(t)\right)$ then 1 else 0 . Now suppose that we get a system $\mathbf{S}=S_{0}, \ldots, S_{\nu}$ such that

$$
\mathfrak{B} \vDash S_{\mu}\left(x_{i j}(t)\right) \equiv \mathfrak{A} \vDash f_{1 \mu}(t)=1
$$

for all arcs $i j$ in \mathfrak{B} and all μ. We claim that $\left(\mathfrak{A}, \mathbf{P}, \varphi^{\infty}\right) \equiv_{r}(\mathfrak{B}, \mathbf{P}, \mathbf{S})$, and hence \mathbf{S} is a (simultaneous) fixed point of φ : here is the Duplicator's winning strategy in the r-Fraisse game.

Suppose that it is the k-th move, and the Spoiler plays a_{k} on $\left(\mathfrak{A}, \mathbf{P}, \varphi^{\infty}\right)$. If a_{k} is on chain $i j$, where $i+1 \cong j \bmod 4$, then the Duplicator responds with b_{k} on chain $i j$ of ($\mathfrak{B}, \mathbf{P}, \mathbf{S}$) in the corresponding position. If a_{k} is on chain $j i, i+$ $1 \cong j \bmod 4$, the Duplicator responds as follows. If a_{k} is within distance 2^{n-k} of any pebbled or distinguished points, the Duplicator responds with b_{k} the corresponding distance to that pebbled or distinguished point: b_{k} is on chain $j j$ if $t \leq$ 2^{n-k}, chain ii if $n+1-t \leq 2^{n-k}$, and within distance 2^{n-k} of the previously pebbled b_{l} if a_{k} was within distance 2^{n-k} of the previously pebbled a_{l}. On the other hand, if $a_{k}=x_{j i}(t)$ is not within distance 2^{n-k} of any pebbled or distinguished vertices, then by induction, at least one of $x_{11}(t)^{\mathfrak{B}}, l=1,2,3,4$, is not within 2^{n-k} of any pebbled vertices and thus may be pebbled.

On the other hand, if the Spoiler plays b_{k} on $(\mathfrak{B}, \mathbf{P}, \mathbf{S})$, the Duplicator responds essentially with the above strategy in reverse. Again, if b_{k} is on chain $i j, i+1 \cong j \bmod 2$, then the Duplicator responds with the corresponding a_{k} on chain $i j$ in $\left(\mathfrak{A}, \mathbf{P}, \varphi^{\infty}\right)$. If $b_{k}=x_{i i}(t)$, then the Duplicator responds with $a_{k}=$ $x_{i j}(t)$ if t is small, $a_{k}=x_{j l}(t), j+1 \cong l \bmod 2$, if t is large, appropriately near or not near previously pebbled vertices if t is in between.

By playing the above strategy, the Duplicator wins; and thus $\left(\mathfrak{A}, \mathbf{P}, \varphi^{\infty}\right) \equiv_{r}$ $(\mathfrak{B}, \mathbf{P}, \mathbf{S})$, and \mathbf{S} is a (simultaneous) fixed point of φ. As φ^{∞} is that least simultaneous fixed point of $\varphi, f_{20 \mu}(t), f_{21 \mu}(t) \leq f_{1 \mu}(t)$ for all μ, t.

On the other hand, consider the system $\mathbf{T}=T_{0}, \ldots, T_{\nu}$, where

$$
\mathfrak{A} \vDash T_{\mu}\left(x_{i j}(t)\right) \equiv \mathfrak{B} \vDash f_{20 \mu}(t)=1
$$

for all arcs $i j \in\{01,10,23,32\}$, and all μ, in \mathfrak{A}, and for all other arcs, and all μ, let

$$
\mathfrak{A} \vDash T_{\mu}\left(x_{i j}(t)\right) \equiv \mathfrak{B} \vDash f_{21 \mu}(t)=1
$$

Again, if n is sufficiently large, $\left(\mathfrak{A}_{n}, \mathbf{P}, \mathbf{T}\right) \equiv_{r}\left(\mathfrak{B}_{n}, \mathbf{P}, \varphi^{\infty}\right)$ by a strategy quite similar to that of the previous game, and \mathbf{T} is a fixed point of φ. Again, as φ^{∞} is the least fixed point of φ, by using automorphisms we see that $f_{1 \mu}(t) \leq$ $f_{20 \mu}(t), f_{21 \mu}(t)$.

Hence, for all $\mu, t, f_{1 \mu}(t)=f_{20 \mu}(t)=f_{21 \mu}(t)$. Hence, for each appropriate h, i, j, k, and $t \leq n, \mathfrak{A} \vDash R\left(x_{h, i}(t)\right) \Leftrightarrow \mathfrak{B} \vDash R\left(x_{j, k}(t)\right)$. Using any ${ }^{1} \mathrm{LFP}_{n}-$ expressible queries \mathbf{P}, we find that ${ }^{1} \mathrm{LFP}_{n+1}$ cannot distinguish between \mathcal{C}_{1} and \mathcal{C}_{2}, and the theorem is proven.

Let \mathcal{C}_{1} and \mathcal{C}_{2} be the configurations of the above proof, and let $\mathcal{C}=\mathcal{C}_{1} \cup \mathcal{C}_{2}$. Using the same construction as above, we can see that on [\mathcal{C}], the query " x is in the component of \mathcal{C}_{1} " is (${ }^{2} \mathrm{LFP} \cap \neg^{2} \mathrm{LFP} \cap{ }^{1} \Delta_{1}^{1}$) -expressible but not ${ }^{1} \mathrm{LFP}_{\omega}$ expressible.

5 Some future directions Although there is more to be done with monadic logics, perhaps we should start thinking more about, say, d-dimensional logic, And although some techniques (like the surgery on monotonic relations described above) already developed are likely to be helpful, others (like eventual periodicity) seem more dubious. Even 2 -dimensional induction is different. The \mathcal{C} rational queries are a proper subset of the ${ }^{2}$ LFP-definable queries: the reader is invited to confirm that the set of all finite chains of lengths $\{1,2,4,8,16, \ldots\}$ is ${ }^{2}$ LFP-definable. Investigating ${ }^{2}$ LFP and ${ }^{2} \Sigma_{1}^{1}$ will involve an entirely different kettle of fish.

Some general results would be desirable. For example, by Lemma 4.6 of [15], for any $d,{ }^{d} \mathrm{LFP}_{1}, \neg{ }^{d} \mathrm{LFP}_{1} \subseteq{ }^{2 d}$ LFP. The version we use is this: let $\varphi_{0}, \ldots, \varphi_{\nu}$ be any d-dimensional system, with second order variables S_{0}, \ldots, S_{ν}. Let $\psi_{i}(\mathbf{x}) \equiv S_{i}(\mathbf{x})$ for all \mathbf{x}, so that $|\mathbf{x}|_{\varphi_{i}}+1=|\mathbf{x}|_{\psi_{i}}$ for all \mathbf{x}, i. One can construct the Stage Comparison relations $<_{\theta, \pi}$ as usual. Then an element of maximal stage (for the i-th induction) satisfies the Immermanesque formula

$$
\max (\mathbf{x}) \equiv \forall \mathbf{y}\left[\mathbf{y}<_{\varphi_{i}, \psi_{i}} \mathbf{x} \vee \mathbf{x}<_{\psi_{i}, \varphi_{i}} \mathbf{y}\right]
$$

so that $\neg \varphi_{i}(\mathbf{x}) \leftrightarrow \exists \mathbf{y}\left[\max (\mathbf{y}) \& \mathbf{y}<_{\varphi_{i}, \varphi_{i}} \mathbf{x}\right]$. By repeatedly iterating this construction, we get ${ }^{d} \mathrm{LFP}_{n}, \neg^{d} \mathrm{LFP}_{n} \subseteq{ }^{2 d}$ LFP for all n. Thus, ${ }^{d} \mathrm{LFP}_{\omega} \subseteq{ }^{2 d}$ LFP. Is this inclusion proper? Even the inclusion ${ }^{d}$ LFP $\subseteq{ }^{2 d}$ LFP is not known to be proper, viz., for a fixed arity k, it is not known if ${ }^{d}$ LFP, $d=1,2,3, \ldots$, generates an infinite hierarchy of k-ary queries (but see [6], [15], and especially [8] for varying k). Also, is there a d such that $d_{\mathrm{LFP}}={ }^{d} \mathrm{LFP}_{\omega}$? There must be a million of these questions.

Acknowledgment This paper is a revision of a paper describing "eventual periodicity" on LFP queries alone; the material on SO queries was developed in 1991. I would like to thank the referee for the helpful comments.

REFERENCES

[1] Aczel, P., "Quantifiers, games, and inductive definitions," pp. 1-14 in Third Scandinavian Logic Symposium, edited by S. Kanger, North-Holland, Amsterdam, 1975.
[2] Addison, J. W. and S. C. Kleene, "A note on function quantification," Proceedings of the American Mathematics Society, vol. 8 (1957), pp. 1002-1006.
[3] Aho, A. V. and J. D. Ullman, "Universality of data retrieval languages," pp. 110117 in Sixth Symposium on Principles of Programming Languages, Proceedings of the Association for Computing Machinery, Association for Computing Machinery, New York, 1979.
[4] Ajtai, M. and R. Fagin, "Reachability is harder for directed than for undirected graphs," The Journal of Symbolic Logic, vol. 55 (1990), pp. 113-150.
[5] Buchi, J. R., "The monadic second order theory of ω_{1}," pp. 1-127 in Decidable Theories II: The Monadic Second Order Theory of All Countable Ordinals, edited by G. H. Muller and D. Siefkes, Springer-Verlag, Berlin, 1973.
[6] Chandra, A. and D. Harel, "Structure and complexity of relational queries," Journal of Computer and System Sciences, vol. 25 (1982), pp. 99-128.
[7] Chandra, A., D. C. Kozen, and L. J. Stockmeyer, "Alternation," Journal of the Association for Computing Machinery, vol. 28 (1981), pp. 114-133.
[8] Dublish, P. and S. N. Maheshwari, "Expressibility of bounded-arity fixed-point query hierarchies," pp. 324-335 in Eighth Symposium on Principles of Database Systems, Association for Computing Machinery, New York, 1989.
[9] Ehrenfeucht, A., "An application of games to the completeness problem for formalized theories," Fundamental Mathematics, vol. 49 (1961), pp. 129-141.
[10] Fagin, R., "Generalized first-order spectra and polynomial-time recognizable sets," pp. 43-73 in Complexity of Computation, edited by R. Karp, American Mathematical Society, Providence, 1974.
[11] Fagin, R., "Monadic generalized spectra," Zeitschrift für mathematische Logik und Grundlagen der Mathematik, vol. 21 (1975), pp. 89-96.
[12] Fraisse, R., "Sur les classifications des systèmes de relations," Publications Scientifique de L'Université D'Alger, vol. 1 (1951), pp. 35-185.
[13] Hopcroft, J. E. and J. D. Ullman, Introduction to Automata Theory, Languages, and Computation, Addison-Wesley, Redding, 1979.
[14] Immerman, N., "Upper and lower bounds for first order expressibility," Journal of Computer and System Sciences, vol. 25 (1982), pp. 76-98.
[15] Immerman, N., "Relational queries computable in polynomial time," Information and Control, vol. 68 (1986), pp. 86-104.
[16] Kleene, S. C., "On the forms of the predicates in the theory of constructive ordinals (2nd paper)," American Journal of Mathematics, vol. 77 (1955), pp. 405-428.
[17] Ladner, R. E., "Application of model theoretic games to discrete linear orders and finite automata," Information and Control, vol. 33 (1977), pp. 281-303.
[18] McColm, G. L., "Some restrictions on simple fixed points of the integers," The Journal of Symbolic Logic, vol. 54 (1989), pp. 1324-1345.
[19] Moschovakis, Y., "The game quantifier," Proceedings of the American Mathematical Society, vol. 31 (1971), pp. 245-250.
[20] Moschovakis, Y., Elementary Induction on Abstract Structures, North-Holland, Amsterdam, 1974.
[21] de Rougemont, M., "Second-order and inductive definability on finite structures," Zeitschrift für mathematische Logik und Grundlagen der Mathematik, vol. 33 (1987), pp. 47-63.
[22] Vardi, M., "Complexity of relational database systems," pp. 137-146 in Fourteenth Symposium on the Theory of Computing, Proceedings of the Association for Computing Machinery, Association for Computing Machinery, New York, 1982.

