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End Extensions of Models of Arithmetic

JAMES H. SCHMERL

Abstract A concise proof is presented of Wilkie's Theorem that for every
model of Peano Arithmetic there is a diophantine equation having no solu-
tion in that model but having a solution in some end extension of that model.

Kaufmann (in [2]) observed that the Completeness Theorem formalized in
Peano Arithmetic can be used to give an alternate proof of the MacDowell-
Specker Theorem on elementary end extensions of models of PA. (See Theo-
rem 3 for an outline of his proof.) Rabin [4] proved that every model cM of PA
has an elementarily equivalent extension which solves a Diophantine equation
having coefficients in M but having no solution in M. Gaifman [1] asked whether
Rabin's Theorem could be improved by requiring that the extension be an end
extension. By Matijasevic's solution to Hubert's Tenth Problem, which was un-
available to Rabin, Gaifman's question is equivalent to asking whether every
model of PA has an elementarily equivalent end extension which is not a Σ r

extension. After several partial results had been obtained (Manevitz [3], Wilkie
[6]), Wilkie [7] proved a comprehensive theorem which yielded an affirmative
answer to Gaifman's question. His proof relied heavily on his previously obtained
affirmative answer for countable models. In this note we will give a rather quick
and direct proof of Wilkie's theorem along the lines of Kaufmann's proof of the
MacDowell-Specker Theorem.

Notation and terminology will be that standardly used in the Peano Arith-
metic literature. The language L of PA is finite. For cM an L-structure, L(M)
is L augmented by constant symbols for elements of M. Note that Σn and Un are
sets of Lrformulas (or L(M)-formulas) which have a certain syntactic form. For
an L-structure cM, we let D(<M), the elementary diagram of cM, be the set of
L(M)-sentences true in cM. We write cM <n JVί to mean that <J\ί is a Σn-elementary
extension of cM or, equivalently, D(cM) Π Π n g £>(cN). We let SSy(cM) be the
standard system of cM; and for a complete theory ΓΞ2 PA, we let Rep(Γ) be the
standard system of its minimal model.

Given a model cM of PA and an L-structure cM, we say that cM is internal to
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cM if there is a subset D Q M which is definable in cM such that cM t= "D is a
complete and consistent Henkin theory," and the structure that D determines is
isomorphic to cM. If d\ί is internal to cM and is a model of a sufficiently strong
(but still very weak) finite fragment of PA, then without loss of generality we
can take JM to be an end extension of cΛ/l.

The following is a version of Wilkie's theorem.

Theorem 1 Let cM 1= PA be nonstandard and let T Ξ2 PA be a complete the-
ory. Then cM has an end extension <Λί such that M^T iff the following two con-
ditions hold:

(1) Rep(Γ) c SSy(cM);
(2) TΠUX c χ h ( c M ) .

Proof: Suppose cM c endJ\[ and J\ί \= T. Clearly, Rep(Γ) c SSy(J\ί) = SSy(cM),
so that (1) holds. Since Σγ sentences persist under end extensions, (2) also holds.

Now suppose (1) and (2) hold. It follows from the Reflection Principle and
(2) that cM (= Con( Γ σ π ) for each σ E T. Then using (2) and (1), overspill, and
the Completeness Theorem formalized in cM, we can obtain a model

cMoHΓΠΠ!

which is internal to cM such that cM c endcj\ίo. We proceed by constructing a se-
quence cl\ίo, cMi, cM 2,... of structures, each one of which is internal to cM. Each
<Λ[/+i should be such that

o M / + i i = r n π / + 2

and

The existence of each of the <Λί, + i is easily confirmed by a diagram argument
followed by an application of the Completeness Theorem, both taking place in-
side of cM. Clearly, <Λί = U/ cW, is an end extension of cM and <Λί t= T.

In the proof of the next theorem we will use Theorem 1.

Theorem 2 (Wilkie) For each nonstandard cM there is d\ί = cM such that
cM c endeJ\ί but eJ\ί is not a Σrextension o/cM.

Proof: It is enough to find such an JM, with Th(<Λί) Π Σ j C Th(cM) instead of
cN = cM, because then Theorem 1 can be applied to it to get the desired model.

Let φ(x) be a usual Σx formula defining a simple set as, for example, in
Theorem 8.II of Rogers [5]. Thus cM H Vx3y(-*φ(y) ΛX<y < 2x), and for any
Σi formula ψ(x) either cM t= 3x(φ(x) A ψ(x)) or else there is n < ω such that
cM N Vx(ψ(x) -+x < n). Let a E M be nonstandard such that cM N -*φ(a). We
will obtain d\ί such that M N φ(a).

Consider some σ G Th(cM) Π Π l 5 and let ψ(x) be the Σi formula

(30 G D(Λ) Π Π o ) [length(0) < length(σ) Λ ->Con(Γσ Λ Θ A <p(x)n)].

Clearly, it suffices to prove Λ (= -^ψ(a). By the Reflection Principle, cM |=
Vx(φ(x) -• -yψix)). Therefore cM 1= Vx(ψ(x) -+x< n) for some n < ω. Since a
is nonstandard, cM N -^φ(a).
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The previous theorems have hierarchal versions which we now only state, but
for which similar proofs exist. For the remainder of this note fix some k < ω.

Theorem l.k Let cM N PA be nonstandard and let Γ 2 PA be a complete
theory. Then cM has an end Σk-extension d\ί such that JM 1= T iff the following
two conditions hold:

(1) Rep(Γ) c SSy(cM);
(2) ΓΠΠH 1cTh(J).

Theorem 2.k For each nonstandard cM there is <N = <M such that c/\Λ <ψd <N
but cW is not a Σk+ι-extension o/cM.

For completeness, we end with a sketch of Kaufmann's proof of the
MacDowell-Specker Theorem.

Theorem 3 (MacDowell-Specker) Every model of PA has a proper elemen-
tary end extension.

Proof: Let cM (= PA. Much as we did in the proof of Theorem 1, we construct
a sequence el\ίo,cl\ίi ,cJ\ί2,... of structures, each of which is internal to cM such that

and

c/VKfϊicN;.

Then cW = U/ cN/ is an elementary end extension of cM. Note that MQ is internal
to cM, so by Tarski's theorem on the undefinability of truth, Th(cN0) Φ Th(cM),
and therefore eW0 (and thus also J\ί) is a proper extension of cM.
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