The Admissibility of γ in R4

EDWIN D. MARES and ROBERT K. MEYER

Abstract

The logic NR of Meyer's "Entailment and relevant implication" is extended to include the axiom scheme $\square(A \vee B) \rightarrow(\diamond A \vee \square B)$ to create the logic R4, so named because it is a conservative extension of S4. It has been an open problem since the writing of "Entailment and relevant implication" whether Ackermann's rule γ is admissible in R4. In this paper, we close this problem by proving that γ is admissible in this system.

In [4], Meyer formulates the system NR, which combines the axioms governing implication from Anderson and Belnap's system \mathbf{R} with the axioms governing the behavior of necessity from S4. NR, however, does not contain $\mathbf{S 4}$ on a direct translation. For example, NR does not contain the scheme $\sim \square(A \vee B) \vee(\diamond A \vee \square B)$. To overcome this deficiency, Belnap and Meyer have suggested adding the postulate
$\square(A \vee B) \rightarrow(\diamond A \vee \square B)$
to the axioms of NR (see Routley and Meyer [6], p. 70). We call the system that results from the addition of this new axiom scheme $\mathbf{R 4}$ (to signify the fact that it contains all of S4). R4 has not yet been adopted as the system of modality and relevance, at least to a large extent, because it has not been shown to be complete over the semantics suggested in [6], and Ackermann's rule γ (from $\vdash \sim A \vee B$ and $\vdash A$ infer $\vdash B$) had not been shown to be admissible in it. The purpose of this paper is to remove the latter difficulty. That is, we show that γ is admissible in $\mathbf{R 4}$.

Our argument uses a modified version of Meyer's method of metavaluations (following, e.g., Meyer [5]). We build a structure of regular, prime R4 theories that mimics, for the most part, a Kripke model for S4. We impose a binary accessibility relation on this structure. We then show, using a version of the method of metavaluations, that each of the theories in our structure can be reduced to a theory that is prime, regular, and consistent, while retaining the same accessibility relation between these reduced theories. As a corollary of this construc-
tion we show that γ is admissible in R4. We also present a brief argument that $\mathbf{R 4}$ is a conservative extension of $\mathbf{S 4}$.

1 We begin with a standard modal sentential language \mathcal{L} that contains propositional constants $p_{1}, p_{2}, p_{3}, \ldots$, connectives $\wedge, \sim, \rightarrow$, and the modal operator \square. The language has the usual formation rules. We call the set of formulas of $£ \operatorname{wff}(£)$ or merely wff. In our metalanguage, we use lower case letters from the latter half of the Roman alphabet to range over propositional constants and capital letters from the early part of the Roman alphabet to range over formulas in general. We also make use of two defined connectives, viz.,

D $\vee A \vee B={ }_{d f} \sim(\sim A \wedge \sim B)$
D $\diamond \diamond A={ }_{d f} \sim \square \sim A$.
R4 has the following axioms schemes:
A0 $\quad A \rightarrow A$
A1 $\quad(A \rightarrow B) \rightarrow((B \rightarrow C) \rightarrow(A \rightarrow C))$
A2 $\quad A \rightarrow((A \rightarrow B) \rightarrow B)$
A3 $\quad(A \rightarrow(A \rightarrow B)) \rightarrow(A \rightarrow B)$
A4 $\quad(A \wedge B) \rightarrow A$
A5 $\quad(A \wedge B) \rightarrow B$
A6 $\quad((A \rightarrow B) \wedge(A \rightarrow C)) \rightarrow(A \rightarrow(B \wedge C))$
A7 $\quad(A \wedge(B \vee C)) \rightarrow((A \wedge B) \vee(A \wedge C))$
A8 $\sim \sim A \rightarrow A$
A9 $\quad(A \rightarrow \sim B) \rightarrow(B \rightarrow \sim A)$
$\mathrm{A} 10 \square A \rightarrow A$
A11 $\square A \rightarrow \square \square A$
A12 $\square(A \rightarrow B) \rightarrow(\square A \rightarrow \square B)$
A13 $(\square A \wedge \square B) \rightarrow \square(A \wedge B)$
A14 $\square(A \vee B) \rightarrow(\diamond A \vee \square B)$
A15 If A is an axiom, $\square A$ is an axiom.
And it has the rules:
\wedge From A and B, infer $A \wedge B$
$\rightarrow \mathbf{E}$ From $A \rightarrow B$ and A, infer B.
Anderson and Belnap's \mathbf{R} contains A0-A9 and the rules $\wedge \mathrm{I}$ and $\rightarrow \mathrm{E}$ (for the motivation of \mathbf{R}, see Anderson and Belnap [1]). The system NR is made up of A0$\mathrm{A} 13+\mathrm{A} 15$ with $\wedge \mathrm{I}$ and $\rightarrow \mathrm{E}$. Moreover, the following rule can be easily derived:
$\square \mathbf{I}$ From A, infer $\square A$.
We leave the derivation of this rule to the interested reader.
It is also easy to prove the following lemma:
Lemma 1 The following are theorems of R4:
$\square(A \rightarrow B) \rightarrow(\diamond A \rightarrow \diamond B)$
$(\square A \wedge \diamond B) \rightarrow \diamond(A \wedge B)$
$A \rightarrow \diamond A$.

2 Now that we have set out $\mathbf{R 4}$, we go on to show that γ is admissible in it. Our proof relies heavily on a priming lemma due originally to Belnap (and, independently, to Gabbay - see [3]). Before we can state the lemma, we need to state a few definitions. For formulas A and $B, A \vdash_{\mathbf{R} 4} B$ iff $\vdash A \rightarrow B$. Where Δ and Γ are sets of formulas, $\Delta \vdash_{\mathbf{R} 4} \Gamma$ iff for some $A_{1}, \ldots A_{n} \in \Delta(n>0)$ and some $B_{1}, \ldots B_{m} \in \Gamma(m>0), A_{1} \wedge \ldots \wedge A_{n} \vdash_{\mathbf{R} 4} B_{1} \vee \ldots \vee B_{m}$. If it is not the case that $\Delta \vdash_{\mathbf{R} 4} \Gamma$, we write $\Delta \dashv_{\mathbf{R} 4} \Gamma$. Where Γ has only one member B, we can write $\Delta \vdash_{\mathbf{R 4}} B$ instead of $\Delta \vdash_{\mathbf{R 4}} \Gamma$ or $\Delta \vdash_{\mathbf{R 4}}\{B\}$. A set of sentences Δ is said to be an $R 4$ theory (or in the context of this paper just theory) iff for any formula B of \mathscr{L}, if $\Delta \vdash_{\mathbf{R 4}} B$, then $B \in \Delta$. Note that every theory is closed under $\wedge I$ and \rightarrow E. A theory Δ is prime iff for all formulas A and B, if $A \vee B \in \Delta, A \in \Delta$ or $B \in \Delta$. A theory is regular if it is a theory and contains all theorems of $\mathbf{R 4}$ and it is consistent if it does not contain both A and $\sim A$ for any wff A. A theory is normal if it is regular, prime, and consistent.

For sets of formulas Δ and $\Gamma,(\Delta, \Gamma)$ is said to be a consistent $R 4$ pair iff $\Delta \dashv_{R 4} \Gamma .(\Delta, \Gamma)$ is an inconsistent $R 4$ pair otherwise. We can now state the priming lemma.
Lemma 2 (Priming) Let (Δ, Γ) be a consistent $\mathbf{R} 4$ pair. Then Δ can be extended to a prime theory Δ^{\prime} such that $\left(\Delta^{\prime}, \Gamma\right)$ is a consistent $\mathbf{R 4}$ pair.

For a nice presentation of the proof of this lemma, see Dunn [2].
Now we take an arbitrary prime regular theory and show that it contains a normal theory. Given the above priming lemma, this will imply that for any nontheorem A there is a prime regular theory that does not contain A. To see that this is so, just replace Δ in the statement of the above lemma with the set of theorems of $\mathbf{R 4}$ expressible in \mathcal{L} and Γ with $\{A\}$.

Before we can perform our reduction, we need to state a few more definitions. Let T be an arbitrary prime theory, then
$\mathbf{D} \diamond^{-1} \quad \diamond^{-1} T=_{d f}\{A: \diamond A \in T\}$
$\mathbf{D} \square^{-1} \quad \square^{-1} T={ }_{d f}\{A: \square A \in T\}$
$\mathbf{D K}_{\mathbf{T}} \quad K_{T}=_{d f}\left\{T_{i}: T_{i}\right.$ is a prime theory and $\left.\square^{-1} T \subseteq T_{i} \subseteq \diamond^{-1} T\right\}$.
DS For $T_{i}, T_{j} \in K_{T}, S T_{i} T_{j}$ iff $\square^{-1} T \subseteq T_{j} \subseteq \diamond^{-1} T_{i}$.
We call $\diamond^{-1} T$ the depossibilitation of T and $\square^{-1} T$ the denecessitation of T.
Let us take an arbitrary prime regular theory T. Let T_{i} be some member of K_{T}. It can be readily seen that T_{i} is also prime and regular. Moreover, if $\square A \in$ T, then, by A11 and $\rightarrow \mathrm{E}, \square \square A \in T$, so, by $\mathrm{DK}_{\mathrm{T}}, \square A \in T_{i}$. And, if $\nabla A \in T_{i}$, then, by A10, A9, and $\rightarrow \mathrm{E}, \nabla \diamond A \in T_{i}$. So, by $\mathrm{DK}_{\mathrm{T}}, \nabla A \in T$. This implies that $K_{T_{t}} \subseteq K_{T}$.

We now need to show that the relation S is adequate for our purposes. We do so by proving the following two lemmas.
Lemma 3 Let T_{i} be an arbitrary prime theory and let $A \in \diamond^{-1} T_{i}$. Then there is a prime theory T_{j} such that $A \in T_{j}$ and $\square^{-1} T_{i} \subseteq T_{j} \subseteq \diamond^{-1} T_{i}$.

Proof: Suppose that $A \in \diamond^{-1} T_{i}$. Suppose also, for the sake of a reductio, that for some $B \in \square^{-1} T_{i} . \vdash B \wedge A \rightarrow C$, for some C not in $\diamond^{-1} T_{i} .{ }^{1}$ By Lemma 1, $\vdash \diamond(B \wedge A) \rightarrow \diamond C$. Since $A \in \diamond^{-1} T_{i}, \diamond A \in T_{i}$, and since $B \in \square^{-1} T_{i}, \square B \in T_{i}$. Since T_{i} is closed under $\wedge \mathrm{I}, \square B \wedge \diamond A \in T_{i}$, whence, by Lemma $1, \diamond(B \wedge A) \in$
T_{i}, and so $\diamond C \in T_{i}$. Thus by the definition of $\diamond^{-1} T_{i}, C \in \diamond^{-1} T_{i}$, contra hypothesis. This shows that $\left(\left(\square^{-1} T_{i} \cup\{A\}\right)\right.$, wff $\left.-\left(\diamond^{-1} T_{i}\right)\right)$ is a consistent $\mathbf{R 4}$ pair. So by the priming lemma, there is a prime theory T_{j} such that $A \in T_{j}$ and $\square^{-1} T_{i} \subseteq T_{j} \subseteq \diamond^{-1} T_{i}$, concluding the proof of the lemma.

We use the preceding lemma to prove the following important lemma:

Lemma 4 For an arbitrary prime theory T_{i},

$\square A \in T_{i}$ iff $\forall T_{j}\left(T_{j} \in K_{T_{i}} \Rightarrow A \in T_{j}\right)$
(ii) $\diamond A \in T_{i}$ iff $\exists T_{j}\left(T_{j} \in K_{T_{i}} \& A \in T_{j}\right)$.

Proof: (i) First, suppose that $\square A \in T_{i}$. Then $A \in \square^{-1} T_{i}$. Thus by the construction of $K_{T_{i}}$, for all $T_{j} \in K_{T_{i}}, A \in T_{j}$. For the converse, suppose that for all $T_{j} \in K_{T_{i}}, A \in T_{j}$ and, for the sake of a reductio, suppose that $\square A \notin T_{i}$. We show that $\square^{-1} T_{i} \vdash_{\mathbf{R} 4}\left(\left(\mathrm{wff}-\diamond^{-1} T_{i}\right) \cup\{A\}\right)$. Suppose otherwise. Then there is some $B \in \square^{-1} T_{i}$ and some $C \in\left(\mathrm{wff}-\diamond^{-1} T_{i}\right)$ such that $B \vdash_{\mathbf{R} 4} C \vee A$. So $\square B \vdash_{\mathbf{R 4}} \square(C \vee A)$, by $\square \mathrm{I}, \mathrm{A} 12$, and $\rightarrow \mathrm{E}$. By A1, A14, and $\rightarrow \mathrm{E}, \square B \vdash_{\mathbf{R 4}} \diamond C \vee$ $\square A$. But T_{i} is a theory and $\square B \in T_{i}$, so $\diamond C \vee \square A \in T_{i}$. Since T_{i} is prime, either $\diamond C \in T_{i}$ or $\square A \in T_{i}$. By assumption, $\diamond C \notin T_{i}$, whence $\square A \in T_{i}$, contradicting the hypothesis. So by the priming lemma, there is a prime theory T_{k} such that $\square^{-1} T_{i} \subseteq T_{k} \subseteq \diamond^{-1} T_{i}$ and $A \notin T_{k}$. By DK_{T} there is a theory T_{k} in $K_{T_{i}}$ such that $A \notin T_{k}$, contrary to the hypothesis of the reductio.
(ii) Suppose that $\diamond A \in T_{i}$. Then, by Lemma 3, there is some T_{j} in $K_{T_{i}}$ such that $A \in T_{j}$. For the converse, suppose that $A \in T_{j}$ for some $T_{j} \in K_{T_{i}}$. It follows from the construction of $K_{T_{J}}$ that $\diamond A \in T_{i}$, thus concluding the proof of the lemma.

Note that by DS and $\mathrm{DK}_{\mathrm{T}}, S T_{i} T_{j}$ iff $T_{j} \in K_{T_{i}}$. So, by the proof of the preceding lemma, it is clear that $\square A \in T_{i}$ iff $\forall T_{j}\left(S T_{i} T_{j} \Rightarrow A \in T_{j}\right)$ and $\diamond A \in T_{i}$ iff $\exists T_{j}\left(S T_{i} T_{j} \& A \in T_{j}\right)$. We can also show that S is reflexive and transitive, just like the accessibility relation in Kripke's model for $\mathbf{S 4}$. That it is reflexive follows immediately from the fact that if $A \in T_{i}$, then $\diamond A \in T_{i}$ and if $\square A \in T_{i}$, then $A \in T_{i}$. To show that it is transitive, suppose that $S T_{i} T_{j}$ and $S T_{j} T_{k}$. Thus if $A \in T_{k}$, then $\diamond A \in T_{j}$, and so $\diamond \diamond A \in T_{i}$. But, since it is a theorem of $\mathbf{R 4}$ that $\diamond \diamond A \rightarrow \diamond A, \diamond A \in T_{i}$. Furthermore, if $\square A \in T_{i}$, then, because $\square A \rightarrow \square \square A$ is a theorem of $\mathbf{R 4}, \square \square A \in T_{i}$. So $\square A \in T_{j}$. But this implies that $A \in T_{k}$. In other words, $\square^{-1} T_{i} \subseteq T_{k} \subseteq \diamond^{-1} T_{i}$; i.e. $S T_{i} T_{k}$, whence we have shown that S is transitive.

We define * (the Routley star operator) in the customary way. That is, for a prime theory $T, T^{*}=\{A: \sim A \notin T\}$. It can be easily shown that T^{*} is also a prime theory and that $T^{* *}=T$. We also define the set $K_{T^{*}}=\left\{T_{i}^{*}: T_{i} \in K_{T}\right\}$. Furthermore, following our treatment of K_{T}, we define a binary relation S_{*} on $K_{T^{*}}$ such that $S_{*} T_{i}^{*} T_{j}^{*}$ iff $\square^{-1} T_{i}^{*} \subseteq T_{j}^{*} \subseteq \diamond^{-1} T_{i}^{*}$.

As the following lemma shows, there is a tidy correlation between S and S_{*}.
Lemma $5 \quad$ For all $T_{i}, T_{j} \in K_{T}, S T_{i} T_{j}$ iff $S_{*} T_{i}^{*} T_{j}^{*}$.
Proof: \Rightarrow Suppose that $S T_{i} T_{j}$. Also suppose that $\square A \in T_{i}^{*}$. Assume, for the sake of a reductio, that $A \notin T_{j}^{*}$. By the definition of ${ }^{*}, \sim A \in T_{j}$. By the definition of $S, \diamond \sim A \in T_{i}$; i.e. $\sim \square A \in T_{i}$. By the definition of ${ }^{*}$, this implies that
$\square A \notin T_{i}^{*}$, contradicting our hypothesis. Now we must show that if $A \in T_{j}^{*}$, then $\diamond A \in T_{i}^{*}$. Suppose that $A \in T_{j}^{*}$. Also assume that $\diamond A \notin T_{i}^{*}$. By the definition of ${ }^{*}, \sim \diamond A \in T_{i}$; i.e. $\square \sim A \in T_{i}$. By $S T_{i} T_{j}$ and the definition of $S, \sim A \in$ T_{j}; whence, by the definition of ${ }^{*}, A \notin T_{j}$, contradicting our hypothesis. Thus we have shown that, if $S T_{i} T_{j}$, then $\square^{-1} T_{i}^{*} \subseteq T_{j}^{*} \subseteq \diamond^{-1} T_{i}^{*}$; i.e. $S_{*} T_{i}^{*} T_{j}^{*}$.
\Leftarrow Suppose now that $S_{*} T_{i}^{*} T_{j}^{*}$. First, suppose that $\square A \in T_{i}$. We must show that $A \in T_{j}$. For the sake of a reductio, assume that it does not. Then, by the definition of ${ }^{*}$ and the fact that $T_{j}^{* *}=T_{j}, \sim A \in T_{j}^{*}$. By the definition of S_{*}, $\diamond \sim A \in T_{i}^{*}$, whence $\sim \square A \in T_{i}^{*}$, since T_{i}^{*} is a theory. By virtue of the fact that $T_{i}^{* *}=T_{i}$ and the definition of ${ }^{*}, \square A \notin T_{i}$, contradicting our hypothesis. Now let us show that if $A \in T_{j}, \nabla A \in T_{i}$. For the sake of a reductio, assume that $A \in T_{j}$ and $\diamond A \notin T_{i}$. By $T_{i}^{* *}=T_{i}$ and the definition of ${ }^{*}, \sim \Delta A \in T_{i}^{*}$, so, by the fact that T_{i}^{*} is a theory, $\square \sim A \in T_{i}^{*}$. By the definition of $S_{*}, \sim A \in T_{j}^{*}$. By the definition of ${ }^{*}$ and $T_{j}^{* *}=T_{j}, A \notin T_{j}$, contradicting our hypothesis. Thus we have shown that $\square^{-1} T_{i} \subseteq T_{j} \subseteq \diamond^{-1} T_{i}$ (i.e. $S T_{i} T_{j}$) concluding the proof of the lemma.

For each $T_{i} \in K_{T}$, we define a metavaluation $v_{i} . v_{i}$ is a total function from formulas into the set $\{\mathrm{T}, \mathrm{F}\}$. In addition, for each v_{i} the following conditions hold:
$\operatorname{Tr} p \quad v_{i}(p)=\mathrm{T}$ iff $p \in T_{i}$
$\operatorname{Tr} \wedge \quad v_{i}(A \wedge B)=\mathrm{T}$ iff $v_{i}(A)=\mathrm{T}$ and $v_{i}(B)=\mathrm{T}$
$\operatorname{Tr} \sim v_{i}(\sim A)=\mathrm{T}$ iff $\sim A \in T_{i}$ and $v_{i}(A)=\mathrm{F}$
$\mathrm{Tr} \rightarrow v_{i}(A \rightarrow B)=\mathrm{T}$ iff $A \rightarrow B \in T_{i}$ and either $v_{i}(A)=\mathrm{F}$ or $v_{i}(B)=\mathrm{T}$
$\operatorname{Tr} \square \quad v_{i}(\square A)=\mathrm{T}$ iff $\forall j\left(S T_{i} T_{j} \Rightarrow v_{j}(A)=\mathrm{T}\right)$
DTr $\quad \operatorname{Tr}_{i}=\left\{A: v_{i}(A)=\mathrm{T}\right\}$.
$\operatorname{Tr} \mathrm{p}, \operatorname{Tr} \wedge, \operatorname{Tr} \rightarrow$, and $\operatorname{Tr} \sim$ are equivalent to the conditions that Meyer uses to prove that γ is admissible in R. The novelty of the approach of the present paper is in its use of $\operatorname{Tr} \square$.

We also define a binary relation $S_{T r}$ on $K_{T r}$, such that for $T r_{i}, T r_{j} \in K_{T r}$, $S_{T r} T r_{i} T r_{j}$ iff $S T_{i} T_{j}$. By the definition of $S_{T r}$ and Lemma 5, $S T_{i} T_{j}$ iff $S_{T r} T r_{i} T r_{j}$ iff $S_{*} T_{i}^{*} T_{j}^{*}$, for all $T_{i}, T_{j} \in K_{T}$. Since the three accessibility relations coincide, we say that $S i j$ iff $S T_{i} T_{j}$ (iff $S_{T r} T r_{i} T r_{j}$ iff $S_{*} T_{i}^{*} T_{j}^{*}$).

Note that $\operatorname{Tr} \rightarrow$ forces each $T r_{i}$ to be closed under $\rightarrow E$. For suppose $A \rightarrow$ $B \in \operatorname{Tr}_{i}$ and $A \in \operatorname{Tr}_{i}$. $\mathrm{By} \mathrm{DTr}, v_{i}(A) \neq F$. $\mathrm{By} \operatorname{Tr} \rightarrow, v_{i}(B)=T$, and so, by DTr , $B \in T r_{i}$. In other words, Tr_{i} is closed under $\rightarrow E$. Moreover, each $T r_{i}$ is closed under $\wedge \mathrm{I}$. For suppose $A \in \operatorname{Tr}_{i}$ and $B \in \operatorname{Tr}_{i}$. By DTr, $v_{i}(A)=T$ and $v_{i}(B)=$ T. So, by $\operatorname{Tr} \wedge, v_{i}(A \wedge B)=T$, whence, by $\mathrm{DTr}, A \wedge B \in \operatorname{Tr}_{i}$ (i.e. Tr_{i} is closed under \wedge I).

Following the now standard argument, we show that, given a prime regular theory T, for each $T_{i} \in K_{T}, T r_{i}$ is normal. That is, $T r_{i}$ is prime, regular, and consistent. The following lemma proves this latter point and is a key step in proving that $T r_{i}$ is regular. (Throughout the remainder of the paper we assume that T, hence every member of K_{T}, is prime and regular.)

Lemma $6 \quad$ For all $T_{i} \in K_{T}, T_{i}^{*} \subseteq \operatorname{Tr}_{i} \subseteq T_{i}$.
Proof: For the most part, showing that $T r_{i} \subseteq T_{i}$ is trivial. The induction case for \square, however, is somewhat tricky so we do it here. Suppose that $\square A \in T r_{i}$.

By $\operatorname{Tr} \square$, for all Tr_{j} such that $\operatorname{Sij}, A \in \operatorname{Tr}_{j}$. By the inductive hypothesis, $A \in T_{j}$. So, for all T_{j} such that $\mathrm{Sij}, A \in T_{j}$. By the definition of S, then, for all T_{j} such that $\square^{-1} T_{i} \subseteq T_{j} \subseteq \nabla^{-1} T_{i}, A \in T_{j}$. So, by Lemma $4, \square A \in T_{i}$. We must now show that $T_{i}^{*} \subseteq \operatorname{Tr}_{i}$. Suppose $A \in T_{i}^{*}$. We show by an induction on the complexity of A that $A \in T r_{i}$. We may use the fact that $T_{i}^{*} \subseteq T_{i}$, which is straightforward to show.

Case 1. $A=p$. The atomic case follows directly from $\operatorname{Tr} \mathrm{p}$.
Case 2. $A=B \wedge C$. Follows from $\operatorname{Tr} \wedge$ and the inductive hypothesis.
Case 3. $A=\sim B$. Suppose $\sim B \in T_{i}^{*}$. So $\sim B \in T_{i}$. Assume for the sake of a reductio that $\sim B \notin \operatorname{Tr}_{i}$. By $\operatorname{Tr} \sim, B \in \operatorname{Tr}_{i}$. By the inductive hypothesis, $B \in T_{i}$. But, by the definition of ${ }^{*}$, this in turn implies that $\sim B \notin T_{i}^{*}$, contradicting the hypothesis of Case 3.

Case 4. $A=B \rightarrow C$. Suppose that $B \rightarrow C \in T_{i}^{*}$. Thus $B \rightarrow C \in T_{i}$. Moreover, suppose that $B \in T r_{i}$. Then, by the inductive hypothesis, $B \in T_{i}$. Since T_{i} is a theory, it is closed under $\rightarrow \mathrm{E}$, so $C \in T_{i}$. Assume for the sake of a reductio that $C \notin T r_{i}$. Thus by the inductive hypothesis, $C \notin T_{i}^{*}$, hence, by the definition of ${ }^{*}, \sim C \in T_{i}$. Since T_{i} is closed under $\& \mathrm{I}, B \wedge \sim C \in T_{i}$, and so since T_{i} is an $\mathbf{R 4}$ theory and $\vdash_{\mathbf{R} 4}(B \wedge \sim C) \rightarrow \sim(B \rightarrow C), \sim(B \rightarrow C) \in T_{i}$. By the definition of ${ }^{*}$, this in turn implies that $B \rightarrow C \notin T_{i}^{*}$, contradicting our assumption and concluding the proof of Case 4.

Case 5. $A=\square B$. Suppose that $\square B \in T_{i}^{*}$. Also suppose that $S_{*} T_{i}^{*} T_{j}^{*}$ (hence, $\left.S_{i j}\right)$. Then, by the definition of $S_{*}, B \in T_{j}^{*}$. And so by the inductive hypothesis $B \in T r_{j}$, for all $T r_{j}$ such that $S i j$. Thus by $\operatorname{Tr} \square, \square B \in T r_{i}$, concluding the proof of the case and the lemma.

Lemma 7 For all $\operatorname{Tr}_{i} \in K_{T r}, A \in \operatorname{Tr}_{i}$ or $\sim A \in \operatorname{Tr}_{i}$.
Proof: Suppose that $A \notin T r_{i}$. Then, by Lemma 6, $A \notin T_{i}^{*}$. By the definition of ${ }^{*}, \sim A \in T_{i}$. By $\operatorname{Tr} \sim, \sim A \in \operatorname{Tr}_{i}$.

From Lemma 7 it follows that $\sim A \in \operatorname{Tr}_{i}$ iff $v_{i}(A)=F$. It is also a consequence of Lemma 7 that each $T r_{i}$ is prime. For suppose that $A \vee B \in T r_{i}$. By $\mathrm{D} \vee, \sim(\sim A \wedge \sim B) \in T r_{i}$. So $\sim A \wedge \sim B \notin T r_{i}$. By $\operatorname{Tr} \wedge$, either $\sim A \notin T r_{i}$, in which case $A \in T r_{i}$, or $\sim B \notin T r_{i}$, in which case $B \in T r_{i}$. It is equally straightforward to show that if $A \in \operatorname{Tr}_{i}$ or $B \in \operatorname{Tr}_{i}$, then $A \vee B \in \operatorname{Tr}_{i}$. Thus we can state the following derived condition on v_{i} :
$\operatorname{Tr} \vee v_{i}(A \vee B)=\mathrm{T}$ iff $v_{i}(A)=\mathrm{T}$ or $v_{i}(B)=T$.
Moreover, each $T r_{i}$ is consistent. For suppose that $A \in \operatorname{Tr}_{i}$. Then, by DTr , $v_{i}(A)=T$. Therefore, by $\operatorname{Tr} \sim, v_{i}(\sim A)=F$, whence, by $\mathrm{DTr}, \sim A \notin \operatorname{Tr}_{i}$. So, if we show that every $T r_{i}$ is a regular theory, we will have shown that they are normal. First we show that every instance of the axiom schemes are in each of the $T r_{i}$.

We use Lemma 7 to show that all instances of Axioms A8-A9 are members of each Tr_{i}.

Lemma 8 If A is an instance of A8-A9, then $A \in \operatorname{Tr}_{i}$ for all $T r_{i} \in K_{T r}$.

Proof: These proofs are very straightforward and well-known. So we prove only the case for A8, leaving A9 as an exercise for the reader. Suppose A is an instance of A8; i.e. A is of the form $\sim \sim B \rightarrow B$. By $\mathrm{Tr} \rightarrow$, we must show $(\alpha) \sim \sim B \rightarrow$ $B \in T_{i}$ and (β) if $\sim \sim B \in T r_{i}$, then $B \in \operatorname{Tr}_{i} .(\alpha)$ follows immediately from the fact that T_{i} is regular. To show (β), suppose that $\sim \sim B \in \operatorname{Tr}_{i}$. Suppose, for the sake of a reductio, that $B \notin \operatorname{Tr}_{i}$. By Lemma $7, \sim B \in \operatorname{Tr}_{i}$. But then, by $\operatorname{Tr} \sim$, $v_{i}(\sim \sim B)=F$; i.e. $\sim \sim B \notin T r_{i}$, contra hypothesis.

To show that the relation $S_{T r}$ is an adequate accessibility relation, we prove the following:

Lemma $9 \forall A \in \operatorname{Tr}_{i}$ iff $\exists \operatorname{Tr}_{j}\left(\operatorname{Sij} \& A \in \operatorname{Tr}_{j}\right)$.

Proof: \Rightarrow Suppose that $\diamond A \in T r_{i}$. By D $\diamond, \sim \square \sim A \in T r_{i}$. $\mathrm{By} \operatorname{Tr} \sim, \square \sim A \notin T r_{i}$. By $\operatorname{Tr} \square$, there exists a Tr_{j} such that Sij and $\sim A \notin \operatorname{Tr}_{j}$. By Lemma 7, $A \in \operatorname{Tr}_{j}$.
\Leftrightarrow Let T_{j} be such that $S i j$ and $A \in \operatorname{Tr}_{j}$. By Lemma 6, $A \in T_{j}$. By Lemma 4, $\diamond A \in T_{i}$; i.e. $\sim \square \sim A \in T_{i}$. By $\operatorname{Tr} \sim$, we must show that $\square A \notin T_{i}$. Assume the opposite. By $\operatorname{Tr} \square, A \in T r_{j}$. But, $T r_{j}$ is consistent, so $\sim A \notin T r_{j}$, contradicting our assumption and concluding the proof of the lemma.

We continue the proof that each $T r_{i}$ is regular by proving the following lemma:

Lemma 10 Let A be an instance of A10, A11, A12, A13, or A14, and let Tr_{i} be an arbitrary member of $K_{T r}$. Then A is in $T r_{i}$.

Proof:
Case 1. A is an instance of A10; i.e. $A=\square B \rightarrow B$. Trivial.
Case 2. A is an instance of A11; i.e. $A=\square B \rightarrow \square \square B$. (i) That $A \in T_{i}$ follows from the fact that T_{i} is regular. (ii) Suppose $\square B \in \operatorname{Tr}_{i}$. It suffices to show that for all x such that $\operatorname{Six}, B \in T r_{x}$. Also assume that Sij and $S j k$. We need to show that $B \in \operatorname{Tr}_{k}$, as required. Since S is transitive, Sik. So $B \in \operatorname{Tr}_{k}$, as required.

Case 3. A is an instance of A12; i.e. $A=\square(B \rightarrow C) \rightarrow(\square B \rightarrow \square C)$. (i) Since T_{i} is regular, $A \in T_{i}$. (ii) Assume that $\square(B \rightarrow C) \in \operatorname{Tr}_{i}$. We show that ($\square B \rightarrow$ $\square C) \in \operatorname{Tr}_{i}$. To show this we first prove that $(\square B \rightarrow \square C) \in T_{i}$. By $\operatorname{Tr} \rightarrow$ and the assumption, $\square(B \rightarrow C) \in T_{i}$. Since T_{i} (like all regular theories) is closed under $\rightarrow \mathrm{E}$, and $A \in T_{i},(\square B \rightarrow \square C) \in T_{i}$, as required. Now we show that either $\square B \notin \operatorname{Tr}_{i}$ or $\square C \in \operatorname{Tr}_{i}$. Suppose that $\square B \in \operatorname{Tr}_{i}$. We show that $\square C \in \operatorname{Tr}_{i}$. Suppose that $T r_{j}$ is such that Sij . By the assumption of (ii) and $\operatorname{Tr} \square, B \rightarrow C \in T r_{j}$. Moreover, by assumption and $\operatorname{Tr} \square, B \in T r_{j}$. Thus, by $\operatorname{Tr} \rightarrow, C \in T r_{j}$, as required. Thus, by $\mathrm{Tr} \rightarrow, \square B \rightarrow \square C \in \operatorname{Tr}_{i}$, concluding the proof of Case 3.

Case 4. A is an instance of A13; i.e. $A=(\square B \wedge \square C) \rightarrow \square(B \wedge C)$. Trivial.
Case 5. A is an instance of A14; i.e. $A=\square(B \vee C) \rightarrow(\diamond B \vee \square C)$. (i) $A \in T_{i}$, since T_{i} is regular. (ii) Suppose $\square(B \vee C) \in \operatorname{Tr}_{i}$. By DS, for all T_{j} such that Sij, $B \vee C \in T r_{j}$. By $\operatorname{Tr} \vee$, either $B \in T r_{j}$ or $C \in T r_{j}$, for every such $T r_{j}$. Suppose $B \in \operatorname{Tr}_{j}$. Then, by Lemma $9, \diamond B \in \operatorname{Tr}_{i}$, whence, by $\operatorname{Tr} \vee, \diamond B \vee \square C \in \operatorname{Tr}_{i}$. On
the other hand, suppose that for no such Tr_{j} does $B \in \operatorname{Tr}_{j}$. Then, $C \in \operatorname{Tr}_{j}$ for every Tr_{j} such that $S i j$. by $\operatorname{Tr} \square, \square C \in \operatorname{Tr}_{i}$. $\operatorname{By} \operatorname{Tr} \vee, \diamond B \vee \square C \in \operatorname{Tr}_{i}$. By (i), (ii), and $\operatorname{Tr} \rightarrow, A \in \operatorname{Tr}_{i}$, concluding the proof of the lemma.

To conclude our argument that each of the members of $K_{T r}$ are regular, we must show that all instances of Axioms A0-A7 and A15 are in each $T r_{i} \in K_{T r}$. The following two lemmas do exactly this.

Lemma 11 For all $\operatorname{Tr}_{i} \in K_{T r}$, if A is an instance of any of axioms A0-A7, then $A \in T r_{i}$.

Proof: As usual.
Lemma 12 If A is an axiom of $\mathbf{R 4}$, then $\square A \in \operatorname{Tr}_{i}$ for all $T r_{i} \in K_{T r}$.
Proof: Suppose A is an instance of one of the axiom schemes A1-A14. Then, by the preceding lemmas, $A \in \operatorname{Tr}_{j}$ for each $T r_{j}$ in $K_{T r}$. Thus, by $\operatorname{Tr} \square, \square A \in \operatorname{Tr}_{i}$ for arbitrary $T r_{i}$ in $K_{T r}$. By the same reasoning, for any axiom A, $\square \square A \in T r_{i}$, $\square \square \square A \in \operatorname{Tr}_{i}$, and so on. Generalizing, we can say that if A is an axiom of $\mathbf{R 4}$, $\square A \in T r_{i}$, concluding the proof of Lemma 12.

Lemmas 1-12 enable us to prove the following corollary:
Corollary 13 Every Tr_{i} in $K_{T r}$ is normal.
Proof: Let $T r_{i}$ be an arbitrary member of $K_{T r}$. We have already observed that $T r_{i}$ is prime and consistent. By Lemmas $8,10,11$, and 12 , every instance of the axiom schemes is in $T r_{i}$. We have also observed that $T r_{i}$ is closed under $\rightarrow \mathrm{E}$ and \wedge I. Thus Tr_{i} is a normal theory.

In other words, every prime, regular $\mathbf{R 4}$ theory contains a normal $\mathbf{R 4}$ theory as a subtheory. It is now very easy to prove the main theorem of the paper, namely:
Theorem $14 \quad \gamma$ is admissible in R4.
Proof: Suppose $\vdash \sim A \vee B$ and $\vdash A$. Choose an arbitrary prime regular theory T. Following the construction we have outlined, build a set of theories K_{T}. Using our metavaluation technique, we have shown that we can reduce K_{T} to a set of normal theories $K_{T r}$ such that for each T_{i} in K_{T} there is a $T r_{i}$ in $K_{T r}$ such that $T r_{i} \subseteq T_{i}$. Let Tr be such that $\operatorname{Tr} \in K_{T r}$ and $\operatorname{Tr} \subseteq T$. Since Tr is regular, $\sim A \vee$ $B \in \operatorname{Tr}$ and $A \in \operatorname{Tr}$. Since Tr is normal, it is consistent, whence $\sim A \notin \operatorname{Tr}$. But $T r$ is also prime, so $B \in \operatorname{Tr}$. And so, $B \in T$, that is to say, B belongs to every prime regular theory. By the priming lemma, if a formula is in every prime regular theory, then it is a theorem, whence $\vdash B$.

3 We now go on to give a simple proof that $\mathbf{R 4}$ conservatively extends $\mathbf{S 4}$. Before we can do so, we need to state a few definitions. First we give a standard definition of the material conditional, viz.,

D $\supset A \supset B={ }_{d f} \sim A \vee B$.
Moreover, we say that a formula A is in the modal vocabulary iff the only primitive connectives that occur in A are \wedge, \sim, and \square.

Before we can show that $\mathbf{S 4}$ is a subsystem of $\mathbf{R 4}$, we need to state the following fact:

Fact 15 The following is a theorem of R4:

$$
(A \rightarrow B) \rightarrow(A \supset B)
$$

Corollary $16 \quad$ Let A be a theorem of $\mathbf{S 4}$ in the modal vocabulary. Then A is a theorem of R4.
Proof: First, we note that it is shown in [1] that the \wedge and \sim fragment of classical propositional logic is a fragment of \mathbf{E} (see [1], §24.1.2). Since \mathbf{E} is a subsystem of $\mathbf{R 4}$, every substitution instance of a classical tautology is valid in $\mathbf{R 4}$. Moreover, by the axioms of $\mathbf{R 4}$ and Fact 15 above, $\vdash \square(A \vee B) \supset(\diamond A \vee \square B)$, $\vdash \square A \supset A$, and $\vdash \square A \supset \square \square A$. Furthermore, by the main theorem of this paper, if $\vdash A$ and $\vdash A \supset B$, then $\vdash B$. Moreover, as we have said above, if $\vdash A$, then $\vdash \square A$. Therefore, all the theorems of $\mathbf{S 4}$ are theorems of $\mathbf{R 4}$.

Lemma 17 If A is in the modal vocabulary and a theorem of $\mathbf{R 4}$, then A is a theorem of $\mathbf{S 4}$.

Proof: Formulate $\mathbf{S 4}$ in the full vocabulary of \mathcal{L}, identifying \supset and \rightarrow (i.e., interchanging them freely). It is clear that every theorem of $\mathbf{R 4}$ is a theorem of $\mathbf{S 4}$ thus formulated. So, restricting our attention to the modal fragment of this system, every formula in the modal vocabulary that is a theorem of $\mathbf{R 4}$ is a theorem of $\mathbf{S 4}$.

Theorem $18 \quad \mathrm{R} 4$ is a conservative extension of $\mathbf{S} 4$ in the modal vocabulary.
Proof: Follows directly from Corollary 16 and Lemma 17.
Acknowledgments An earlier version of this paper was read at the Automated Reasoning Project of The Australian National University. We would like to thank those in the audience, especially Kit Fine, Errol Martin, M. A. McRobbie, R. A. Girle, Mark Grundy, and Gustav Meglicki. We are also indebted to an anonymous referee. In addition, Mares wishes to acknowledge the support of The Social Sciences and Humanities Research Council of Canada while writing this paper (fellowship 456-89-0738).

NOTE

1. Note that $\square^{-1} T_{l}$ is closed under $\wedge \mathrm{I}$ and wff $-\nabla^{-1} T_{i}$ is closed under disjunction (i.e. if $A \in\left(\mathrm{wff}-\nabla^{-1} T_{i}\right)$ and $B \in\left(\mathrm{wff}-\diamond^{-1} T_{i}\right)$, then $A \vee B \in\left(\mathrm{wff}-\nabla^{-1} T_{i}\right)$). For this reason we use single a single formula from each of $\square^{-1} T_{i}$ and wff $-\diamond^{-1} T_{i}$ instead of a conjunction from the former and a disjunction from the latter.

REFERENCES

[1] Anderson, A. R. and N. D. Belnap Jr., Entailment: The Logic of Relevance and Necessity, vol. 1, Princeton University Press, Princeton, 1977.
[2] Dunn, J. M. "Quantification and RM," Studia Logica, vol. 35 (1976), pp. 315-322.
[3] Gabbay, D. M., "On second order intuitionistic propositional calculus with full comprehension," Archiv für Mathematische Logik und Grundlagenforschung, vol. 16 (1974), pp. 177-186.
[4] Meyer, R. K., "Entailment and relevant implication," Logique et Analyse, no. 44 (1968), pp. 472-479.
[5] Meyer, R. K., "Metacompleteness," Notre Dame Journal of Formal Logic, vol. 17 (1976), pp. 501-516.
[6] Routley, R. and R. K. Meyer, "The semantics of entailment II," Journal of Philosophical Logic, vol. 1 (1972), pp. 53-73.

Department of Philosophy
Dalhousie University
Halifax, Nova Scotia
Canada B3H 3J5

Automated Reasoning Project
The Australian National University
Canberra, Australia 2601

