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The Admissibility of 7 in R4

EDWIN D. MARES and ROBERT K. MEYER

Abstract The logic NR of Meyer's "Entailment and relevant implication"
is extended to include the axiom scheme Π (A vB)-> (OA v ΠB) to create
the logic R4, so named because it is a conservative extension of S4. It has
been an open problem since the writing of "Entailment and relevant impli-
cation" whether Ackermann's rule y is admissible in R4. In this paper, we
close this problem by proving that y is admissible in this system.

In [4], Meyer formulates the system NR, which combines the axioms gov-
erning implication from Anderson and Belnap's system R with the axioms
governing the behavior of necessity from S4. NR, however, does not contain
S4 on a direct translation. For example, NR does not contain the scheme
~Π\(AvB)v (OA v ΠB). To overcome this deficiency, Belnap and Meyer have
suggested adding the postulate

Π(AvB)->(OAvΠB)

to the axioms of NR (see Routley and Meyer [6], p. 70). We call the system that
results from the addition of this new axiom scheme R4 (to signify the fact that
it contains all of S4). R4 has not yet been adopted as the system of modality and
relevance, at least to a large extent, because it has not been shown to be com-
plete over the semantics suggested in [6], and Ackermann's rule y (from \-~A vB
and \-A infer h#) had not been shown to be admissible in it. The purpose of
this paper is to remove the latter difficulty. That is, we show that y is admissi-
ble in R4.

Our argument uses a modified version of Meyer's method of metavaluations
(following, e.g., Meyer [5]). We build a structure of regular, prime R4 theories
that mimics, for the most part, a Kripke model for S4. We impose a binary ac-
cessibility relation on this structure. We then show, using a version of the method
of metavaluations, that each of the theories in our structure can be reduced to
a theory that is prime, regular, and consistent, while retaining the same acces-
sibility relation between these reduced theories. As a corollary of this construc-
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tion we show that y is admissible in R4. We also present a brief argument that
R4 is a conservative extension of S4.

/ We begin with a standard modal sentential language <£ that contains prop-
ositional constant$Pι,P2>P3> > connectives Λ, ~, ->, and the modal opera-
tor D. The language has the usual formation rules. We call the set of formulas
of <£ wff(<£) or merely wff. In our metalanguage, we use lower case letters from
the latter half of the Roman alphabet to range over propositional constants and
capital letters from the early part of the Roman alphabet to range over formu-
las in general. We also make use of two defined connectives, viz.,

Dv AvB =df ~(~AΛ~B)

DO OA=tf~Π~A.

R4 has the following axioms schemes:

AO A-+A
Al (A -> B) -> ((B -* C) -> (A -> O )
A2 A -> ((A -+B)-+B)
A3 (A-+(A-+ B)) -+(A-+B)
A4 (AAB)-+A

A5 (A A B) -> B
A6 ((A -+B)Λ(A-+ C)) ->(A-+(BΛ C))

A7 (AΛ(BV O) -> ((A ΛB)V(AΛ C))

A8 — A - + A
A9 (A^~B)->(B-+~A)
A10 ΠA->A
All D/l -+ D D ^
A12 D(i^5)-^ (D^->D5)
A13 (ΠA Λ D5) -+Π(AΛB)

A14 D M v 5 ) - ^ ( 0 y l v Dfi)
A15 If A is an axiom, ΠA is an axiom.

And it has the rules:

ΛI From A and B, infer A ΛB
-+E From 4̂ -• B and ^4, infer 5.

Anderson and Belnap's R contains A0-A9 and the rules ΛI and ->E (for the mo-
tivation of R, see Anderson and Belnap [1]). The system NR is made up of A0-
A13 + A15 with ΛI and ->E. Moreover, the following rule can be easily derived:

DI From A, infer ΠA.

We leave the derivation of this rule to the interested reader.
It is also easy to prove the following lemma:

Lemma 1 The following are theorems of R4:

Ώ(A -* B)-+ (0,4->0£)
(ΏA A 0B)-+0(AAB)

A -> OA.
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2 Now that we have set out R4, we go on to show that 7 is admissible in it.
Our proof relies heavily on a priming lemma due originally to Belnap (and, in-
dependently, to Gabbay —see [3]). Before we can state the lemma, we need to
state a few definitions. For formulas A and B, A hR 4 B iff b4 -» B. Where Δ
and Γ are sets of formulas, Δ I-R4 Γ iff for some Au.. ,An E Δ (n > 0) and
some Bu.. .Bm E Γ (m > 0), Ax Λ . . .Λ An hR 4i?i v . . . v Bm. If it is not the
case that Δ hR 4 Γ, we write Δ HR4 Γ. Where Γ has only one member B, we can
write Δ hR 4 B instead of Δ hR 4 Γ or Δ hR 4 [B]. A set of sentences Δ is said to
be an R4 theory (or in the context of this paper just theory) iff for any formula
B of <£, if Δ hR 4 B, then B E A. Note that every theory is closed under ΛI and
->E. A theory Δ is prime iff for all formulas A and B, if A v B E Δ, A E Δ or
B E Δ. A theory is regular if it is a theory and contains all theorems of R4 and
it is consistent if it does not contain both A and ~A for any wff A. A theory is
normal if it is regular, prime, and consistent.

For sets of formulas Δ and Γ, (Δ,Γ) is said to be a consistent R4pair iff
Δ HR4 Γ. (Δ,Γ) is an inconsistent R4 pair otherwise. We can now state the
priming lemma.

Lemma 2 (Priming) Let (Δ,Γ) be a consistent R4 pair. Then Δ can be ex-
tended to a prime theory Δ' such that (Δ',Γ) is a consistent R4 pair.

For a nice presentation of the proof of this lemma, see Dunn [2].
Now we take an arbitrary prime regular theory and show that it contains a

normal theory. Given the above priming lemma, this will imply that for any non-
theorem A there is a prime regular theory that does not contain A. To see that
this is so, just replace Δ in the statement of the above lemma with the set of the-
orems of R4 expressible in £ and Γ with {̂ 4}.

Before we can perform our reduction, we need to state a few more defini-
tions. Let Γbe an arbitrary prime theory, then

DO" 1 0"1 T =df [A:0Ae T]
D D 1 \J-ιT=df{A:ΠA E T]
DKT Kτ =df {7}: 7; is a prime theory and D - 1 Γ g 7} g 0- 1 Γ}.
DS For 7}, 7} E Kτ, S7}7} iff D " 1 Γ g 7} c 0" 17}.

We call 0~ ι T the depossibilitation of T and D - 1 T the denecessitation of T.
Let us take an arbitrary prime regular theory T. Let 7} be some member of

Kτ. It can be readily seen that 7} is also prime and regular. Moreover, if ΠA E
Γ, then, by All and ->E, UUA E Γ, so, by DKT, ΠA E 7}. And, if OA E Th

then, by A10, A9, and ->E, <>0A E 7}. So, by DKT, OA E T. This implies that

κTι g κτ.
We now need to show that the relation S is adequate for our purposes. We

do so by proving the following two lemmas.

Lemma 3 Let Tt be an arbitrary prime theory and letAEθ~ιTj. Then there
is a prime theory Tj such that A E 7} and D - 1 7 ; g 7} g 0 - 1 7 ] .

Proof: Suppose that A E 0"17}. Suppose also, for the sake of a reductio, that
for some BE D"17}. KB Λ A -* C, for some C not in 0" 17}. 1 By Lemma 1,
K > ( £ Λ , 4 ) -• OC. Since A E 0~ι 7}, OA E 7}, and since B E Π'1^, ΠB E 7}.
Since 7} is closed under ΛI, ΠBΛOAE 7}, whence, by Lemma 1, 0 (BΛA) E
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Th and so OC G 7}. Thus by the definition of 0"17}, C G 0 " 1 7}, contra hy-
pothesis. This shows that ((D-1^r U {A}), wff - (0~ιTi)) is a consistent R4
pair. So by the priming lemma, there is a prime theory 7} such that A G 7} and
D"17} c 7} g 0"17}, concluding the proof of the lemma.

We use the preceding lemma to prove the following important lemma:

Lemma 4 For an arbitrary prime theory 7},

(i) ΠΛ G 7} iffvTj(Tj GKTi^Ae Tj)
(ii) OA G 7} ifflTj(Tj GKTi&AG Tj).

Proof: (i) First, suppose that ΏA G 7}. Then ,4 G D " 1 ^ . Thus by the con-
struction of KTι, for all 7} G A^, ,4 G 7}. For the converse, suppose that for all
Tj G KTι, A E Tj and, for the sake of a reductio, suppose that ΠA ί 7}. We
show that D " 1 ^ hR4 ((wff - O " ^ ) U {,4}). Suppose otherwise. Then there
is some B G D " 1 ^ and some C G (wff - 0~ιTi) such that B hR 4 CvA. So
ΠB hR4 D(CvΛ), by DI, A12, and ->E. By Al, A14, and - E , ΠB hR4 OCv
DA But 7] is a theory and D£ G 7}, so OCvD/lG 7). Since 7} is prime, ei-
ther OC G 7} or Dv4 G 7). By assumption, OC φ 7}, whence ΠA E Th con-
tradicting the hypothesis. So by the priming lemma, there is a prime theory Tk

such that D -17) c 7^ c 0"17} and ,4 £ Tk. By DKT there is a theory 7^ in Λ^
such that A £ Tki contrary to the hypothesis of the reductio.

(ii) Suppose that 0,4 G 7}. Then, by Lemma 3, there is some 7} in KTι such
that AeTj. For the converse, suppose that A E Tj for some 7) G KTr It fol-
lows from the construction of KTj that 0̂ 4 G 7}, thus concluding the proof of
the lemma.

Note that by DS and DKT, 57}7} iff Tj G Kτ.. So, by the proof of the pre-
ceding lemma, it is clear that ΠA G 7} iff V7}(S7}7} =>AGTJ) and OA G 7} iff
3Tj(STiTj &A G 7)). We can also show that 5 is reflexive and transitive, just
like the accessibility relation in Kripke's model for S4. That it is reflexive follows
immediately from the fact that if A G 7], then 0̂ 4 G 7} and if ΠA E Th then
A G 7J. To show that it is transitive, suppose that S7}7} and STjTk. Thus if
^ G 7i, then 0,4 G 7}, and so 00,4 G Th But, since it is a theorem of R4 that
00,4 -+0A,0AETi. Furthermore, if ΠAETh then, because ΠA-^ΠΠA is
a theorem of R4, DD,4 G 7}. So Di4 G 7}. But this implies that A G Tk. In
other words, D " 1 Tt-^ Tk c 0"17}; i.e. 57^7^, whence we have shown that S is
transitive.

We define * {the Routley star operator) in the customary way. That is, for
a prime theory Γ, T* = [A : -,4 £ Γ}. It can be easily shown that T* is also a
prime theory and that T** = T We also define the set Kτ* = {Tf : Tt E Kτ].
Furthermore, following our treatment of Kτ, we define a binary relation S* on
Kτ* such that 5*7*7/ iff D " 1 ^ c Tj c O " 1 ^ .

As the following lemma shows, there is a tidy correlation between S and S*.

Lemma 5 For all Th Tj G Kτ, S7}7} iffS*TfT*.

Proof: => Suppose that S7}7}. Also suppose that D,4 G T*. Assume, for the
sake of a reductio, that A (£. Tf. By the definition of *, -A G 7}. By the defi-
nition of 5, 0~A G 7}; i.e. ~ΠA G 7}. By the definition of *, this implies that
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ΠA φ. T*9 contradicting our hypothesis. Now we must show that if A E T*9

then <>A E T*. Suppose that A E T*. Also assume that <>A <£ T*. By the defi-
nition of *, ~0Λ E 7}; i.e. Ώ-Ae. 7}. By S7}7} and the definition of S, -A E
7}; whence, by the definition of *, A £ 7}, contradicting our hypothesis. Thus
we have shown that, if 57}7}, then D " 1 T* c T* g 0 " 1 Γ*; i.e. S*T*T*.

<= Suppose now that S*TfTj. First, suppose that EL4 E 7}. We must show
that A E 7}. For the sake of a reductio, assume that it does not. Then, by the
definition of * and the fact that Tj* = 7}, ~A E T*. By the definition of S*,
0-^4 E Γ*, whence -ΠA E Γ*, since Γ* is a theory. By virtue of the fact that
Γ** = 7} and the definition of *, D 4̂ £ jh contradicting our hypothesis. Now
let us show that if A E 7}, §A E 7}. For the sake of a reductio, assume that
,4 E 7} and 0A<£Tj. By Γ** = 7} and the definition of*,~0AeT*9 so, by
the fact that Tf is a theory, Π~A E Γ*. By the definition of 5*, ~Λ E Γj\ By
the definition of * and T** = 7}, 4̂ ^ 7}, contradicting our hypothesis. Thus we
have shown that D ""* 7} g 7} g 0""17} (i.e. 57}7}) concluding the proof of the
lemma.

For each 7} E if/-, we define a metavaluation yz . ^ is a total function from
formulas into the set {T,F}. In addition, for each vt the following conditions
hold:

Trp Vi(p) =Tif f/7E 7}
TΓΛ V/04 Λ £ ) = T iff Vi(A) = T and vt(B) = T
Tr- t7/(~^4) = T iff ~>1 E 7} and yf (,4) = F
Tr-> v, (i4 -• ^) = T iff A -• ^ E 7} and either ϋ/04) = F or υ^B) = T
TrD U/(D^) = T iff VjiSTfTj => Vj(A) = T)
DTr Tη= lA:Vi(A) =T).

Trp, TΓΛ, Tr->, and Tr— are equivalent to the conditions that Meyer uses to
prove that y is admissible in R. The novelty of the approach of the present pa-
per is in its use of TrD.

We also define a binary relation STr on KTr, such that for Trh Trj E KTr,
SjyTηTrj iff 57J7}. By the definition of 5τ> and Lemma 5, S7}7) iff SjyTηTrj iff
S*T*Tj, for all Ti9TjGKτ. Since the three accessibility relations coincide, we
say that Sij iff S7}7} (iff SjyTηTrj iff S*Γ* Γ/).

Note that Tr-> forces each Trt to be closed under -+E. For suppose 4̂ -•
B E 7>v and ^ E 7> , . By DTr, t;,-^) Φ F. By Tr->, yf (fi) = Γ, and so, by DTr,
.8 E 7>/. In other words, 7>/ is closed under ->£'. Moreover, each 7>/ is closed
under ΛI. For suppose A E 7>, and B E 7>/. By DTr, Vi(A) = T and f/(^) =
Γ. So, by TΓΛ, Vi(AΛB) = Γ, whence, by DTr, A ΛB E 7>/ (i.e. 7>f is closed
under ΛI).

Following the now standard argument, we show that, given a prime regular
theory T9 for each 7} E AΓΓ, 7>, is normal. That is, 7>/ is prime, regular, and
consistent. The following lemma proves this latter point and is a key step in prov-
ing that Tη is regular. (Throughout the remainder of the paper we assume that
T, hence every member of Kτ, is prime and regular.)

Lemma 6 For all 7} E KTi T* g Γr,- g 7}.

Proof: For the most part, showing that 7>/ g 7} is trivial. The induction case
for D, however, is somewhat tricky so we do it here. Suppose that ΠA E 7>/.
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By TrD, for all 7V, such that Sij, A G Tη. By the inductive hypothesis, A G 7}.
So, for all 7} such that Sij, A G 7}. By the definition of S, then, for all 7} such
that D"17} c 7} c 0"17}, 4̂ G 7). So, by Lemma 4, DΛ G 7}. We must now
show that Tf c Tη. Suppose A G Γ*. We show by an induction on the com-
plexity of A that A G Tη. We may use the fact that Tf c 7}, which is straight-
forward to show.

Ctoe 7. 4̂ = p. The atomic case follows directly from Trp.

Case2. A = BΛC. Follows from TΓΛ and the inductive hypothesis.

Case 3. A = ~B. Suppose ~B G Tf. So - 5 G 7 ) . Assume for the sake of a
reductio that ~B $. Tη. By Tr~, B G 7>7. By the inductive hypothesis, B G 7}.
But, by the definition of *, this in turn implies that - 5 £ Tf, contradicting the
hypothesis of Case 3.

Case 4. A=B->C. Suppose that B-+CeTf. Thus £ -• C G 7}. Moreover,
suppose that B G Tη. Then, by the inductive hypothesis, B G 7}. Since 7} is a
theory, it is closed under ->E, so C G 7}. Assume for the sake of a reductio that
C ^ 7V,. Thus by the inductive hypothesis, C £ Tf, hence, by the definition
of *, ~CEL 7}. Since 7} is closed under & I , 5 Λ - C G 7}, and so since 7} is an
R4 theory and h R 4 (£ Λ ~C) -> - (5 -> C), - (5 -• C) G 7}. By the definition
of *, this in turn implies that B-+ C £ T*, contradicting our assumption and
concluding the proof of Case 4.

Case 5. A = ΠB. Suppose that ΠB G Tf. Also suppose that S*T*T* (hence,
Su). Then, by the definition of 5*, B G Γ/. And so by the inductive hypothe-
sis B G Tη, for all 77} such that Sij. Thus by TrD, ΠB G 7>/, concluding the
proof of the case and the lemma.

Lemma 7 For all Trt eKTr,Ae Tη or -A G Tη.

Proof: Suppose that A £ Tη. Then, by Lemma 6, A £ Tf. By the definition
of *, -A G 7}. By Tr~, ~A G Tη.

From Lemma 7 it follows that ~A G Γrt iff Vi(A) = F. It is also a conse-
quence of Lemma 7 that each 7V/ is prime. For suppose that Aw B G Tr^. By
Dv, ~(~AΛ ~B) G Tη. So ~AΛ~B£ Tη. By TΓΛ, either -.4 £ Tη, in which
case A G 7>, , or —5 φ. Triy in which case B G 7>, . It is equally straightforward
to show that if A G Tη or B G 7V,, then AvBeTη. Thus we can state the fol-
lowing derived condition on y, :

Trv t /04 v 5 ) = T iff u,(,4) = T or ^(JB) = Γ.

Moreover, each Tη is consistent. For suppose that A G 7V7. Then, by DTr,

Vi(A) = T. Therefore, by Tr~, Vi(~A) = F, whence, by DTr, ~A £ Tη. So, if
we show that every 7V, is a regular theory, we will have shown that they are nor-
mal. First we show that every instance of the axiom schemes are in each of the
Tη.

We use Lemma 7 to show that all instances of Axioms A8-A9 are members
of each Tη.
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Lemma 8 If A is an instance of A8-A9, then A G'Tηfor all Tη G KTr.

Proof: These proofs are very straightforward and well-known. So we prove only
the case for A8, leaving A9 as an exercise for the reader. Suppose A is an instance
of A8; i.e. A is of the form ~~B -> B. By Tr->, we must show (a) — B ->
BG Ttand (β) if — B e Tη, thenBG Tη. (a) follows immediately from the
fact that 7} is regular. To show (β), suppose that — B E 7V,. Suppose, for the
sake of a reductio, that B £ Tη. By Lemma 7, ~B G 7V7. But then, by Tr~,
Vi(~~B) = F; i.e. ——5 ^ 7V/, contra hypothesis.

To show that the relation STr is an adequate accessibility relation, we prove
the following:

Lemma 9 OA e Tη ifflTη{Sij &Ae 7V,).

Proof: => Suppose that OΛ G Tη. By DO, ~Π~A G 7V,. By Tr~, Π~A £ Tη.
By TrD, there exists a 7V, such that Sij and -A φ. 7V,. By Lemma 7, ,4 G 7V,.

«= Let 7Vy be such that Sij and A G 7Vy. By Lemma 6, ̂ 4 G 7}. By Lemma 4,
0i4 e 7); i.e. ~Π~A G 7}. By Tr~, we must show that ΠA £ Tη. Assume the
opposite. By TrD, A G 7V,. But, 7V, is consistent, so ~A £ TV,, contradicting
our assumption and concluding the proof of the lemma.

We continue the proof that each Trt is regular by proving the following
lemma:

Lemma 10 Let A be an instance of A10, Al 1, A12, A13, or A14, and let Tη
be an arbitrary member of KTr. Then A is in Trt.

Proof:

Case 1. A is an instance of A10; i.e. A = ΠB -> B. Trivial.

Case 2. A is an instance of Al 1 i.e. A = ΠB -> ΠΠB. (i) That A G 7) follows
from the fact that 7} is regular, (ii) Suppose D£ G Tη. It suffices to show that
for all x such that Six, BeTrx. Also assume that Sij and Sjk. We need to show
that B G Trk, as required. Since S is transitive, Sik. So B G Trk, as required.

Case 3. A is an instance of A12; i.e. A = D (B-> C) -> (D£ -> DC), (i) Since
7} is regular, Λ G 7}. (ii) Assume that D (B -> C) G 7V,. We show that (D£ ->
DC) G 7V/. To show this we first prove that (ΠB -> DC) G 7}. By Tr-> and the
assumption, D (2? -+ C) G 7}. Since 7} (like all regular theories) is closed under
->E, and A G 7}, (ΠB -+ DC) G 7}, as required. Now we show that either
D£ £ 7V/ or DC G 7V/. Suppose that D ^ G Tη. We show that DC G Tη. Sup-
pose that 7V, is such that Sij. By the assumption of (ii) and TrD, B-+C G 7V,.
Moreover, by assumption and TrD, B G 7V,. Thus, by Tr->, C G 7V,, as re-
quired. Thus, by Tr->, ΠB -> DC G 7V, , concluding the proof of Case 3.

Case 4. A is an instance of A13; i.e. A = (ΠB A DC) ->Π(BΛC). Trivial.

Case 5. A is an instance of A14; i.e. A = Π(BvC)^> (OBvΠC). (i) A G 7},
since 7; is regular, (ii) Suppose D (B v C) G TV,. By DS, for all Tη such that 5//,
5 v C G 7V,. By Trv, either B G 7V, or C G 7V,, for every such 7V,. Suppose
B G 7V,. Then, by Lemma 9, OB G Tη, whence, by Trv, OB v DC G 7V,. On
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the other hand, suppose that for no such 77} does B E 77}. Then, C E 77} for
every Tη such that Sij. by TrD, DC E Tη. By Trv, <>B v DC E Trh By (i), (ii),
and Tr-», A E Trh concluding the proof of the lemma.

To conclude our argument that each of the members of KTr are regular, we
must show that all instances of Axioms A0-A7 and A15 are in each Tη E KTr.
The following two lemmas do exactly this.

Lemma 11 For all Tri E KTr, if A is an instance of any of axioms A0-A7,
then A E Tη.

Proof: As usual.

Lemma 12 If A is an axiom o/R4, then ΠA E Tηfor all Tη E KTr.

Proof: Suppose A is an instance of one of the axiom schemes A1-A14. Then,
by the preceding lemmas, A E Tη for each 77} in KTr. Thus, by TrD, ΠA E Tη
for arbitrary 77*/ in KTr. By the same reasoning, for any axiom A, DD^4 E Tη,
DDD^4 E Tη, and so on. Generalizing, we can say that if A is an axiom of R4,
ΠA E 77*/, concluding the proof of Lemma 12.

Lemmas 1-12 enable us to prove the following corollary:

Corollary 13 Every Tri in KTr is normal.

Proof: Let 77*/ be an arbitrary member of KTr. We have already observed that
7>, is prime and consistent. By Lemmas 8, 10, 11, and 12, every instance of the
axiom schemes is in Tη. We have also observed that Tη is closed under ->E and
ΛI. Thus 77*/ is a normal theory.

In other words, every prime, regular R4 theory contains a normal R4 the-
ory as a subtheory. It is now very easy to prove the main theorem of the paper,
namely:

Theorem 14 y is admissible in R4.

Proof: Suppose Y~A v B and YA. Choose an arbitrary prime regular theory T
Following the construction we have outlined, build a set of theories Kτ. Using
our metavaluation technique, we have shown that we can reduce Kτ to a set
of normal theories KTr such that for each 7} in Kτ there is a 77*/ in KTr such that
Tη c 7}. Let 77* be such that Tr E KTr and Tr ̂  T Since Tr is regular, -A v
B E Tr and A E Tr. Since Tr is normal, it is consistent, whence -A $. Tr. But
Tr is also prime, so B E Tr. And so, B E Γ, that is to say, B belongs to every
prime regular theory. By the priming lemma, if a formula is in every prime reg-
ular theory, then it is a theorem, whence YB.

3 We now go on to give a simple proof that R4 conservatively extends S4.
Before we can do so, we need to state a few definitions. First we give a standard
definition of the material conditional, viz-,

ΌD ADB =df -A v B.

Moreover, we say that a formula A is in the modal vocabulary iff the only prim-
itive connectives that occur in A are Λ , ~, and D.
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Before we can show that S4 is a subsystem of R4, we need to state the fol-
lowing fact:

Fact 15 The following is a theorem of R4:

(A-+B)-+ (A DB).

Corollary 16 Let A be a theorem o/S4 in the modal vocabulary. Then A is
a theorem o/R4.

Proof: First, we note that it is shown in [1] that the Λ and ~ fragment of clas-
sical propositional logic is a fragment of E (see [1], §24.1.2). Since E is a sub-
system of R4, every substitution instance of a classical tautology is valid in R4.
Moreover, by the axioms of R4 and Fact 15 above, hD {A v B) D (OA v ΠB),
hDv4 D A, and \-\JA D ΠΠA. Furthermore, by the main theorem of this

paper, if K4 and b4 D B, then VB. Moreover, as we have said above, if K4,
then hDv4. Therefore, all the theorems of S4 are theorems of R4.

Lemma 17 If A is in the modal vocabulary and a theorem o/R4, then A is
a theorem o/S4.

Proof: Formulate S4 in the full vocabulary of <£, identifying D and -> (i.e., in-
terchanging them freely). It is clear that every theorem of R4 is a theorem of S4
thus formulated. So, restricting our attention to the modal fragment of this sys-
tem, every formula in the modal vocabulary that is a theorem of R4 is a theo-
rem of S4.

Theorem 18 R4 is a conservative extension of S4 in the modal vocabulary.

Proof: Follows directly from Corollary 16 and Lemma 17.
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NOTE

1. Note that D" 1 Tι is closed under ΛI and wff - 0"17} is closed under disjunction (i.e.
ifAe (wff - 0" 1 Ti) and B e (wff - 0"17}), then AvBe (wff - 0"17])). For this
reason we use single a single formula from each of D"17} and wff — 0"17} instead
of a conjunction from the former and a disjunction from the latter.
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