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An Alternative Rule of Disjunction

in Modal Logic

TIMOTHY WILLIAMSON

Abstract Lemmon and Scott introduced the notion of a modal system's
providing the rule of disjunction. No consistent normal extension of KB pro-
vides this rule. An alternative rule is defined, which KDB, KTB, and other
systems are shown to provide, while K and other systems provide the
Lemmon-Scott rule but not the alternative rule. If S provides the alternative
rule then either —A is a theorem of S or A is whenever A -> ΠA is a theo-
rem; the converse fails. It is suggested that systems with this property are ap-
propriate for handling sorites paradoxes, where D is read as 'clearly*. The S4
axiom fails in such systems.

Lemmon and Scott introduced the notion of a modal system's providing the
rule of disjunction ([6], p. 44). This paper investigates similar rules for systems
that do not provide the rule of disjunction. It ends with an application to phil-
osophical issues about vagueness and sorites paradoxes.

First, some definitions. For any wff A, Π°A = A ΠJ+ιA = ΠJ''ΏA. S is a
modal system.

S provides the Lemmon-Scott rule of disjunction:
if h s D ^ ! v . . . v D Λ

then VsAi for some / (1 < / < n).

S provides the weak rule of disjunction:
if \-s\3jιAι v . . . v ΠjnAn for ally'i,. ..Jn (>0)

then VsAi for some / (1 < / < n).

S provides the bad rule of disjunction:
if \SAQVBAX v . . . vΠAn

t h e n VsAi f o r s o m e / ( 0 < / < « ) .
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S provides the alternative rule of disjunction:
if M o v D M ! v . . . v ΠJ»An for a\\ju . . . Jn (>0)

then \-sAi for some / (0 < / < « ) •

Of course, the weak and alternative rules have infinitary premises, but then
the Lemmon-Scott rule itself is not supposed to be a rule of proof within mo-
dal systems but a metalogical property of them. For present purposes, a modal
system is simply a set of theorems; amongst the admissible rules for such a sys-
tem, no particular subset will be marked off as derivable within a privileged ap-
paratus for proving theorems (Humberstone [5] makes further refinements). As
for the distinction between finitary and infinitary rules, the systems to be con-
sidered that satisfy the infinitary rules above will also be seen to satisfy finitary
versions of them, with y,- bounded by the modal depth of AOi..., An.

Discussion will be confined to normal systems (Hughes and Cresswell [4],
pp. 4-6). The following axioms will be mentioned: B (p-> DO/?), D (Up -»
0/7), D! (Up ++ Op), E (0/?-» DO/?), Gl (OUp-+ DO/?), T (Dp -+ p),
W (D(D/?->/?)->D/?),4 (Up-+UUp).

Trivially, if S provides either the Lemmon-Scott or the alternative rule then
it provides the weak rule. It will be noted that the weak and Lemmon-Scott rules
are equivalent for extensions of KT4 (= S4), in which hsDyli v . . . v UAn en-
tails \-sU

J1Aι v . . . v UJ'nAn for allyi,.. .Jn. Similarly, the bad and alternative
rules are equivalent for extensions of KT4. The main interest will be in systems
providing the alternative but not the Lemmon-Scott rule. The bad rule is in-
cluded only for symmetry; it is so-called because no consistent normal system
provides it (from Ys~Up v Up it yields \-s~Up or \~sP), although K and other
systems provide it in the special case when Ao contains no modal operators ([6],
p. 47).

Well-known examples of systems providing the Lemmon-Scott rule are K,
KD (=D), KT (=T), K4, KD4, KT4, and KW ([6], pp. 46, 79-81; [4], pp. 100-
101). But no consistent normal extension of KG1 provides the Lemmon-Scott
rule; for any such system S, h 5 D0~p v DO/? but neither \sθ~p nor hsθ/λ
Since B and E entail Gl in normal systems, no consistent normal extension of
KB or of KE provides the rule; for example, KTE (= S5) does not. The argu-
ment can be adapted to show that no consistent normal extension of K4G1 pro-
vides the weak rule. For if S extends K4G1, h sD'D0~/? v UjUθp for all
ij > 0, so \-sU0~p or \~sUθp if S provides the weak rule. By substitution,
hsOO~ (p v -/?). Since S is normal, hs~O~ (p v ~p) and so h5D^4 for any

A. Thus f-5D'~/? v ΠJp if / > 0 or j > 0. Since \-s~p vp, \-sU'~p v ΠJp for all
i,j > 0, so hs~/? or \-sp by the weak rule again, making S inconsistent. Simi-
larly, no consistent normal extension of KE provides the weak rule, for it is not
hard to show that \-KEΠiU(-p & /?) v UjO~p v Ώk<>p for all ij,k.

KG1 and KB can be shown not to provide the weak rule by a different
route. More generally, if S extends KG1 and provides the weak rule, S extends
KDG1, as neither KG1 nor KB does. For hκD''D(~/j &p)vθ(~pvp) and
H K G I D / + 1 0 (~p vp) for all /, so HKGID7 U(~p&p)v D y 0 (~p vp) for all ij;
thus if Sextends KG1 and provides the weak rule, \-sΠ (~p &p) or ĥ O (~pvp).
In the former case, hsD'— p v UJp for all i,j, so \-s~p or \-sp by another appli-
cation of the rule, making S inconsistent. In either case, S extends KDG1.
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In contrast, although KDG1, KTG1, KDB, and KTB do not provide the
Lemmon-Scott rule they do provide the alternative rule and therefore the weak
one. One might say that these systems are less deeply disjunctive than are K4G1
and KE (a system is disjunctive insofar as it cannot decide between the disjuncts
of its disjunctive theorems).

That the alternative rule is stronger than the weak one can be seen al-
ready from the cases of K, K4, and KW. They provide the Lemmon-Scott
rule and therefore the weak one. They do not provide the alternative rule, since
any normal system providing it extends KD, as they do not. For if S is normal,
\-s0 (~p wp) v •' D (-/?&;?) for all /, so h s0 (~p v/?) or H5D (~p & p); by
an earlier argument, S extends KD. One might say that systems providing both
the Lemmon-Scott and the alternative rule, such as KD and KT, are more thor-
oughly nondisjunctive than are K, K4, and KW.

Problem Find a normal system providing the weak but neither the Lemmon-
Scott nor the alternative rule.

A sufficient condition for a normal system S to provide the Lemmon-Scott
rule is that there be a class C of generated models such that every nontheorem
of S is false at a generating world of some model in C and an amalgamation
of any finite subset of C is a model for S ([4], p. 99). An amalgamation of a set
of models is their union together with an extra world from which all other worlds
are accessible. The condition is sufficient because if \-sΛi for no /, for each /
a model in C can be chosen at some world in which At is false, falsifying
ΏΛx v . . . v ΏAn at the extra world in the amalgamation of these models. Stan-
dard proofs that a system provides the rule of disjunction use this sufficient con-
dition.

Many systems can be shown to provide the weak rule of disjunction by a sim-
ilar construction, but now the extra world need only have the reflexive ancestral
of the accessibility relation to the world falsifying Ah since this suffices to fal-
sify ΏhAx v . . . v UjnAn for someyΊ,.. .Jn. This in turn permits a world fal-
sifying Ao to be used in place of the extra world, showing the system to provide
the alternative rule.

Theorem KD, KDG1, KDB, KT, KTG1, KTB, and KD! provide the alter-
native rule of disjunction.

Proof: The case of KTB will be taken first, and appropriate modifications in-
dicated for the others.

Suppose that HKTBA for no / (0 </</?, 1 < n). Since KTB is complete
with respect to reflexive symmetric models, there are reflexive symmetric mod-
els < WhRh Vi) and worlds ivf E Wt such that Vt(Ah wt) = 0 (0 < / < n; Wh W}
disjoint unless / =j). The plan is to form something like an amalgamation of
these models, a model (W9R, V) where w0R

JιWi(l < / < n) so that V(A0 v
ΏjιA\ v . . . v ΏjnAn, w0) = 0. However, because w0R

JιWj it cannot be assumed
that V(Aθ9 w0) = Vo(Ao, w0) - 0 if Ao contains modal operators. Moreover, R
must be symmetric to ensure that {W,R, V) is a model for KTB; thus WjRJiwOi

and it cannot be assumed that V(Ai9 wf ) = Vj(Ai9 W/) = 0. To overcome this
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problem, each (Wi9Ri9 Vt) is protected from the others by a buffer of a pile of
copies of itself, one for each layer of modal operators in Άh so that the truth
value of At in the most protected copy is not disturbed.

The modal depth (#) of a formula is defined as usual: #B = 0 for atomic B;
tt~B = #B; tt(B &C)= max{#£,#C); #D£ = ttB + 1. (W9R9 V) may now be
defined by:

w=(wox {0, . . . ,#A)))U.. . U(Wnx {0,...,#AJ.

<u9i)R(vJ>(ue WS9 v<Ξ Wt)iff

either (i) s = t9 \i — j \ < 1, uRsv
o r (ii) s = 0, t>0, i=j = 0

or (iii) s > 0, t = 0, / = j = 0.

V(B9(u9i)) = Vs(B9u)(u E WS9 B atomic).

Claim IfuGWs and #B < i then V(B,(u, /» = F5(5, u) (0 < / < #Λ)

Proof by induction on the complexity of B. The definition of Fis the atomic
case. The cases of — and & are routine. Suppose the claim true for B, where
#ΠB<i. Suppose that F(D5,(w, /» = 0. For some υGWt andy, <w, i)R(vJ)
and V(B,(vJ)) = 0. Now #B < / - 1, so 0 < /, so s = t9 \i -j\ < 1, and uRsv
by definition of R. Thus #B <j9 so V(B,(v,j}) = VS(B, v) by induction hy-
pothesis. Hence Vs(\3B,u) = 0 because uRsv and Ϊ^(JB, t;) = 0. Conversely,
suppose that VS(\3B, u) = 0. For some υ G WSi uRsv and VS(B, v) = 0. By in-
duction hypothesis, V(B,(v,i)) = Vs(B,υ). Moreover, (u,i)R(vJ). Thus
V(ΠB,(u,/» = 0. This proves the claim.

It follows from the claim that V(As,<ws,#As)) = VS(AS9 ws) =0 ( 0 < 5 < « ) .
Let5>0. IfttAo^i^hiwoJyRiwo^i-iy (Ro is reflexive); <wo,O>i?<w5,O>; if
0 < / < #Ay - 1, <^5, i>R(ws, i + 1> (#*is reflexive). Thus <wθ9#Ao)Rjs<ws,#Asy,
where Λ = # ^ 0 + #AS + 1. Hence F ί D ^ ^ W o ^ ^ o ) ) = 0. Thus F ( ^ o v
ΠjιA\ v . . . v D7"^,,, < wo,#^4o)) = 0. But i? is reflexive and symmetric because
each Rs is, given the nature of the construction, so < W9 R9 V) is a model for KTB.
This refutes KKTB^O v ΏJιA\ v . . . v ΏjnAn9 completing the proof that KTB pro-
vides the alternative rule.

For KDB, the proof proceeds in terms of serial symmetric models with re-
spect to which KDB is complete (R is serial iff for each u there is a υ such that
uRυ). It can easily be checked that R is serial and symmetric if each Rs is. The
argument for <wθ9#Ao)RJs(wS9#As) must be altered, since it appealed to reflex-
ivity in the case of KTB. Since Ro is serial, Wo contains a sequence of worlds
w0 = wo(#Ao)9 wo(ttAo - 1 ) . . . , wo(O) such that wo(#^o)^o^o(#^o - l)#o
R0w0(0). Similarly, since Rs is serial, Ws contains a sequence of worlds ws =
ws(#As)9 ws(#As-l)9..., ws(0) such that ws{#As)Rsws(#As- \)RS.. .Rsws(0);
by the symmetry of RS9 ws(0)Rsws(l)Rs.. .Rsws(#As). Thus if #A0 > i > 1,
<wo(/),/>/?<wo(/-l),/-l>;<>Vo(O),O>i?<w,(O),O>;ifO</<#Λ-l, <*>,(/),
i}R(ws(i+ 1),/+ 1>, giving <wo,#^o>^Λ<^,#Λ>

For KT and KD, a more economical {W9R9 V) will do:
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W=(Wox{09... JAo)) U (Wx X {0}) U...U(Wnx {0}).

{u9i)R{υ9j) (us WSiv<Ξ Wt)iff

either (i) s = t, i >j > / — 1, uRsv
or (ii) s = 0, ί > 0, / = 0.

V(B9(u9i)) = Vs(B9u) (u E WS9 B atomic).

The proofs are then simplifications of those for KTB and KDB respectively, with
the modifications in {W9R9 V) obviating appeal to the symmetry of Rs.

KTG1 is complete with respect to reflexive convergent models (R is conver-
gent iff if uRv and uRv*9 then for some w, υRw and v*Rw). The proof goes
through as for KTB, the only new point to check being that R is convergent if
each Rs is. To check this, suppose that <«, i)R(vJ) and <w, i)R(v*9j*)9 where
u E WS9 v E Wt9 and υ* E Wt*. Case (a), s = t, \i -j\ < 1, uRsυ9 s = t*9 \i -
j * \ < 1, uRsv*. Since Rs is convergent, vRsw and υ*Rsw for some w E Ws.
Then <v, j)R(w9i) and (v*9j*}R(w,i). Case (b). s = t, \i-j\ < 1, uRsv, 5 = 0,

/* > 0, / = j * = 0. Then (vJ}R(v,θy (j < 1 and Rs is reflexive) and <ι;*,
j*)R(v90) (t*>O,s = O,j* = O). Case(c).s = 0, t>09t*>0, i=j = y * = 0.

Then (v9j)R(u,θy and (v*,j*}R(u,0). The other possible cases are similar.
KDG1 is complete with respect to serial convergent models. Convergence

can be checked as before, except that in Case (b) one has (vJ)R(w90} and
(v*9j*)R(w,0> for some w E Wt such that uR/W (Rt is serial). However, there
is a hitch where the proof for KDB used the symmetry of Rs in proving < wθ9

#A0)Rjs(wS9#As)\ convergence is no substitute. The simplified construction for
KD avoids this difficulty, but yields a nonconvergent R. Fortunately, the proof
can be carried through in terms of serial backward-serial convergent models,
where a relation is backward-serial iff its converse is serial. If Rs is backward-
serial, Ws contains worlds ws = ws(#As), ws(#As — 1) , . . . , ws(0) such that
ws(0)Rsws(l)Rs...Rsws(#As). It is easy to check that R is backward-serial if
each Rs is. Thus a lemma is needed: the completeness of KDG1 with respect to
serial backward-serial convergent models.

Since KDG1 is complete with respect to serial convergent models, it suffices
to show that if a serial convergent model falsifies B9 so does a serial backward-
serial convergent one. Let {W*9R*9 V*) be serial and convergent. Define a new
m o d e K ^ * * , / ? * * , K**>by: W** = W* X N\ (u,i)R**(v9j) (u9ve W*9i9je

N) iff either i=j = 0 and uR*v or both u = υ and / =j + 1 V**(C9(u9 />) =
V*(C9 u) (u E W9 i E TV, C atomic). It is routine to show that R** is serial,
backward-serial, and convergent and that V**(B9(u90)) = V*(B9 u)(u E W*).

For the final system, KD! (K + Op <-> Dp), the proof takes a different form.
Note first that KD! is the nonmodal propositional calculus PC in disguise (al-
though purists will note that the latter, unlike the former, is Post-complete). To
see this, for each atomic wff A and isNlet Ai be an atomic wff, with Aj = Bj
only if A = B and / = j ; let s be the substitution such that sAt = Ai+Ϊ. Define
a translation t from wff to nonmodal wff by: tA — Ao (A atomic); t ~ A =
~tA; t(A & B) = tA & tB; tUA = stA. It can be shown that \-KΌiA iff
hpck4> for A is equivalent in KD! to the result of driving all its modal opera-
tors inwards (D commutes with — and &), t transforms the modal axioms of
KD! into theorems of PC and necessitation corresponds to uniform substitution
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using s. Now suppose that HKDI^O V ΏJιA\ v . . . v ΏJnAn9 where y, = #A0 +
Mi + . . . + #v4/_! + / (1 < / < n). Thus \-PCtAov tΠJiA{ v . . . vtΠJnAn. But
no two disjuncts of tA0 v tΠJιAι v . . . v t\3JnAn have any propositional vari-
ables in common, so by the Interpolation Theorem for PC (or, more strictly, its
Hallden-completeness) either hpc^o or hPCfDΛ/4/ for some /. In the latter
case, hpc^4| since tAj is a substitution instance of tΠJiAj. Thus KKD.Ά for
some /, and KD! provides the alternative rule of disjunction.

Corollary 1 KD, KDG1, KDB, KT, KTG1, KTB, and KD! provide the weak
rule of disjunction.

The alternative rule of disjunction produces a failure of a certain kind of
compactness. Where Xand Fare sets of formulae and 5 is a modal system, put
X Ihy Y iff for every uniform substitution s, if \-ss(A) for all A E X then
\-ss(B) for some B E Y. lh5 is an abstract consequence relation in that it is re-
flexive and admits thinning on the right and left and a cut rule; moreover, if
X\\-s Ythen s(X) \\-ss(Y) for any uniform substitution s. The rule of necessi-
tation for S can be expressed as {p} \\-s [ Πp}, and the Lemmon-Scott rule of
disjunction for a fixed n as {Πp\ v . . . v Πpn] \\-s {pΪ9... ,pn}. The alterna-
tive rule for n = 1 is [p v UJq:j > 0} \\-s {p,q} If S is a consistent normal
system and provides the alternative rule (and so for « = 1), lh5 fails to be com-
pact in that although [p v ΠJq:j > 0} Ihy [p,q], there is no finite subset X
of {p v Ujq :j > 0} such that X frs {p, q}. For otherwise {p v Ώjq: k > j > 0}
Ib {A tf) for some &; substituting - (^ & •# & . . . & D^^) (or just ~Ώkq if
5 extends KT) for p, one concludes that since hy~ (#& Ώq & . . . & D^ςr)v
D 7^ for A: >y > 0, either h 5 - (<? & Π r̂ & . . . & D^^) or \-sq, which are both
impossible by the consistency and normality of S.

One does not necessarily restore compactness by restricting the conclusion
of \\-s to a single formula. For example, if S = KD, KDG1, KDB, KT, KTG1,
or KTB, {pvΠJ(0q & O~q):j>0] \\-s {p}: for {pvΠJ(0q & O~q):j>
0} IK {p,0q & 0~<7) by the alternative rule, and the second formula in the
conclusion can be omitted as none of the systems in question has any theorem
of the form OA & <>~A (consider a one-world reflexive frame). Now if [p v
ΠJ(0q & 0—q): k >y > 0} \\-s [p] for some k, one concludes from the previ-
ous paragraph that h 5 ~(0# & 0~q & Π(0q & 0~q) & . . . & Uk(0q &
0~q))> which is not the case for any of the systems (consider a two-world frame
in which both worlds are accessible from both worlds). Thus for S = KD, KDG1,
KDB, KT, KTG1, or KTB, lh5 cannot be axiomatized for single-formula con-
clusions. One cannot provide axioms in the language of propositional modal logic
and rules of inference with finitely many premises such that X \\-s [A} iff A can
be inferred from X and those axioms by a finite number of applications of the
rules of inference, for any such axiomatization would yield a compact conse-
quence relation.

Although the alternative rule makes lhs noncompact for the systems covered
by the theorem, examination of the proof shows it to establish that each system
admits a finitary strengthening of the alternative rule. For S = KD, KDG1, KDB,
KT, KTG1, KTB, if \-sA0 v UjιAx v . . . v ΏjnAn then \-sAi for some /, where
ji = #A0 + #Ai + 1. This can be reduced toy, = #A0 + 1 for S = KD, KT. For
KD!, one hasy7 = #A0 + #A\ + ... + #̂ 4/_i + /. These systems admit parallel
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finitary strengthenings of the weak rule: put Ao = p & ~ p, so #A0 = 0. For sys-
tems providing the Lemmon-Scott rule, it is another finitary strengthening of
the weak rule.

Problem Do the alternative and weak rules have finitary strengthenings in
terms of #Aθ9..., #An for every normal system that provides them?

The difference between the finitary strengthenings of the rules for KD! and
those for the other systems is not merely an artifact of the proof. \-KΌ\^1~P V

Dp, but neither H K D!~P nor HKDIP, contrary to the finitary strengthening of
the weak rule for the other systems given above. KD! also violates the finitary
strengthenings of the alternative rule for the other systems. There is a related dif-
ference over what might be called the homogeneous alternative rule of disjunc-
tion: if VSAO v ΠJAX v . . . v ΏjAn for ally (>0) then VsAi for some z'(0 < / <
n), another strengthening of the alternative rule. KD! does not provide the ho-
mogeneous alternative rule, since hKD!<7 v Dy'~p v Ujp for ally. In contrast,
KD, KDG1, KDB, KT, KTG1, and KTB do provide the homogeneous alterna-
tive rule. The proof of the theorem for these systems can easily be adapted to
show that if h5v40 v ΏjιA\ v . . . v ΠJ'"An for someyΊ,... ,jn where y, > #A0 +
#Ai + 1 then VsAi for some / (where the inequality is strict, the truth value of
Af in the bottom copy of < Wi9 Rx, Ĵ  > is protected by a deeper pile of other cop-
ies than necessary). Thus if y = max{#^40 + &4i + 1,... ,#A0 + #An + 1} and
\-sA0 v UjAx v . . . v UjAn then rv4, for some /, so that S provides the homo-
geneous alternative rule. Similarly, say that S provides the homogeneous weak
rule of disjunction just in case if \-sΏ

JA\ v . . . v ΠJΆn for ally then \-sA, for
some /; this rule is intermediate in strength between the weak rule and the
Lemmon-Scott rule. By reasoning like that above, KD, KDG1, KDB, KT,
KTG1, and KTB provide the homogeneous weak rule (put Ao —p & ~p), but
KD! does not.

KD! also constitutes a counterexample to the natural extension of Lemmon
and Scott's semantic characterization of their rule to the weak rule. They show
([6], p. 45) that a consistent normal system provides the rule of disjunction iff
its canonical frame (W,R) (the frame of its canonical model) is left-directed, in
the sense that for any xx,..., xn E W there is a y E W such that yRxx,..., yRxn.
One might correspondingly suppose that a normal system provides the weak rule
iff its canonical frame is ancestrally left-directed, in the sense that for any
X\,..., xn E W there is a y E W such that yRJιxx,..., yRjnxn for some j \ , . . . ,
yΛ(>0). This condition seems to stand to the Lemmon-Scott condition just
as the weak rule stands to the Lemmon-Scott rule. One can indeed show that
if the canonical frame of a normal system is ancestrally left-directed, then
the system provides the weak rule of disjunction. However, the converse fails.
Since the sets {ΠJ'~p:j > 0} and [ΏJp:j > 0} are both consistent in KD!,
they have maximal consistent extensions xx and x2 E W respectively, where
(W,R) is the canonical frame for KD!. Suppose that yRJιxx and yRj2x2 for
some yeW. Then 0Jι Πh~p E y since D ̂ - p E xx, and 0h Ώhp E y since
Uhp E * 2 Thus {0yi Πj2~p,<>j2 ΠJιp) should be a consistent set in KD!. But
it is not, for hKD!<>71 D ̂ - p «-• ~ΠJι+hp and KKDIO 7 2 Π^P ++ Πjι+J2p. Thus no
such y exists. The canonical frame for KD! is not ancestrally left-directed, even
though KD! provides the weak rule.
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Although the frame of the canonical model for KD! is not ancestrally left-
directed, KD! can be characterized by a model whose frame is ancestrally left-
directed. For let Aθ9Aι,A2,... be an enumeration of the consistent formulae
in KD! (where the set of propositional variables is taken to be countable). By an
argument like that in the proof of the theorem, one can show that [Ao,O

JιAι,
0hA2,... } is consistent in KD!, wherey, = HA0 + #A\ + . . . + #Λ_i + i Thus
it has a maximal consistent extension x. The submodel of the canonical model
of KD! generated by x characterizes KD!: a formula is consistent in KD! iff it
holds at some world in this submodel (however, a set of formulas may be con-
sistent in KD! without all holding together at any world in the submodel, by the
argument of the previous paragraph). The frame < W, R) of any generated sub-
model is ancestrally left-directed, since the generating world has the ancestral of
R to any world in W. A similar argument can be given for KD, KDG1, KDB,
KT, KTG1, and KTB, withy'/ = #A0 + &4, + 1. However, in the absence of gen-
eral finitary equivalents of the infinitary rules of disjunction there remains:

Problem Find semantic characterizations of the infinitary rules of dis-
junction.

An important consequence of the alternative rule is:

Corollary 2 The following are equivalent for S = KD, KDG1, KDB, KT,
KTG1,KTB, andKΌl:
(a) \-sA-*ΠA
(b) VS~A or VSA
(c) \rs0A-+A.

Proof: (a) => (b). For any normal S, if \-?A -• ΏA then h 5DU -+ Πi+ιA for all
/, and hence \-sA -+Π'A, i.e. \-s~A v D M , for any /. If S provides the alterna-
tive rule of disjunction, \-s~A or VSA. (b) => (a). S is normal, (c) <=* (b). This is
like (a) & (b), for (c) is equivalent to \-s~A -> Π~A and (b) is symmetric be-
tween^ and ~A.

If \-s~A or \-sA whenever VSA -> ΠA, let us say that Sprovides the rule of
margins (the margin between the truth of A and its necessity). Any normal sys-
tem providing the alternative rule also provides the rule of margins. Thus, for
example, no consistent extension of K4 provides the alternative rule, since it
would have \-s~Up or \-sΠp, leading to inconsistency (in the latter case by an-
other application of the rule). More generally, no modality entails its own ne-
cessitation in any consistent normal system providing the alternative rule of
disjunction.

The equivalence of (a) and (c) in Corollary 2 follows from the rule of mar-
gins, but not conversely. If S extends KB, (a) and (c) are equivalent (if \-s0A -+
A then H5D0^4 -• ΠA, and HKB^4 -> ΠOA), so they are equivalent in KB4,
which does not provide the rule of margins (in contrast, (a) and (c) are not equiv-
alent in K4, for \~K4^P ~* ΠΠp but not \rK4<>Dp -* D/?). The equivalence of
(a) and (c) will not be treated as a rule of disjunction.

Corollary 2 is weaker than the theorem. A normal system can provide the
rule of margins without providing the alternative rule (even for n = 1). A coun-
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terexample is the system KT v KDB, where HKTVKDB^ iff h K τ ^ and HKDB^

KT v KDB is complete with respect to models that are either reflexive or both
serial and convergent. If KKTVKDB^ -• ΠA then hκτ^4 -+ ΠA and HKDB^ -*

ΠA; by Corollary 2, \-κτ~A or h K τ ^ and hKDB~^4 or hKDB^ If either
\~KT~A and K K D B ^ or hκτ^4 and I~KDB~^4> KTB would be inconsistent. Thus ei-

ther \-KΎ~A and f-KDB~-4 or \-κτA and \-KΌBA, SO hKτvKDB~^ or h K τ y κDB^.
However, KT v KDB does not provide even the weak rule. For f-κ τD'(D/? ~*
p)vΠJ(p-> ΠOp) and \-KDBΠ

i(Πp^>p)vΠj(p-+ ΠOp) for all /and j , but
neither \-KΎvKΌB\Jp -+ p nor \-KTVKΌBP-> &0p-

Nevertheless, the rule of margins has many of the consequences of the alter-
native rule. If S is normal and provides the marginal rule, it extends KD, and
if it is consistent, it does not extend K4 or KE.

The rule of margins signals a kind of expressive incompleteness in the sys-
tems which provide it. Suppose that D* is a (perhaps complex) operator in a
normal modal system 5, where Π*A is to be interpreted as the infinite conjunc-
tion A & ΠA & ΠΠA &... . Thus S should satisfy at least three conditions:
(i) if \-sA then \-sΠ*A; (ii) \~sΠ*p -•/?; (iii) \~sΠ*p -* ΠΠ*p. If S provides the
rule of margins, either \~sΠ*p or h5— Π*p by (iii). If the former, Vsp by (ii) and
S is inconsistent. If the latter, \-s~Π*(p v ~p) by substitution; but h5D*(/? v
~p) by (i), and S is again inconsistent. Thus a consistent normal system provid-
ing the rule of margins cannot express the ancestral of its own necessity opera-
tor. If an operator for the ancestral is introduced, the new system will not provide
the rule of margins.

Now for the application. Some things are clearly heaps, some are clearly not
heaps, and borderline cases are neither clearly heaps nor clearly not heaps
('clearly* could be taken epistemologically, semantically, or ontologically). ΠA
can be read as Ίt is clearly the case that A\ That A is a borderline case may be
expressed as ~ΠA & ~Π~A. Let S? be an appropriate system of modal logic
for this reading. The choice of a classical underlying propositional logic is con-
troversial in the context of vagueness, but it may be motivated by either a su-
pervaluational approach (Fine [3]) or the claim that clarity is an epistemological
rather than a semantic or ontological matter (Cargile [2], Campbell [1], Soren-
sen [7]). Given classical logic, one cannot assert 'If Xis a heap then X is not a
borderline case of a heap' and 'If X\$ not a heap then X is not a borderline case
of a heap' without abolishing the borderline cases altogether; rather, p & ~Πp
will be regarded as a consistent combination (p atomic). To assume that SΊ is
normal is to assume that the clear propositions are closed under logical conse-
quence, but that need not be implausible: if ^fis genuinely a borderline case of
a heap, it surely follows that one cannot deduce from what is clear that X is a
heap, nor that it is not. It also seems plausible that if something is clearly the
case, then it is the case. That makes SΊ at least as strong as KT.

Vagueness is often said to be ubiquitous in natural languages. One develop-
ment of this idea would be the claim that it is never a matter of logic that all cases
of A are clear cases, unless for the trivial reason that it is a matter of logic that
A has no cases or that everything is a case of A. In other words, if hstA -* ΠA
then either \-si~A or hs? A Thus the rule of margins can be taken to represent
the ubiquity of vagueness. It is therefore satisfying that KT provides the rule,
since on the present approach it is the minimal logic of clarity.
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The claim formalized in the previous paragraph is not equivalent to the claim
'It is a matter of logic that A lacks borderline cases only when it is a matter of
logic that A has no cases or that everything is a case of A\ The latter would be
formalized by the rule that if h5 ?D-^4 vD^l then \SΊ-A or \~stA. This rule is
a special case of the Lemmon-Scott rule of disjunction and is therefore possessed
by systems such as K, K4, KD4, and KT4 that provide that rule but not the rule
of margins. On the other hand, KD! provides the rule of margins but not the new
rule, since hκD!Π~P v Πp but neither HKD!~P nor HKDIA However, the new
rule follows easily from the rule of margins in extensions of KT, so the latter is
the stronger rule in S? and therefore seems a more appropriate representation
of the ubiquity of vagueness. The same point applies to the rule that if Vs^A ->
ΏA and hs?~A -> D ~ A then \-$i~A or hs?^4, corresponding to the claim that
all cases of A are clear cases and all noncases clear noncases only if A is a logi-
cal truth or falsehood. This rule is a consequence of both the previous one and
the rule of margins and is equivalent to the former in extensions of KT. It says
that when A is not a logical truth or falsehood, its truth-conditions are liable to
unclarity on at least one side; the rule of margins says that they are liable to un-
clarity on both sides.

The ubiquity of vagueness is relative to a language. If D M is introduced to
mean that A and clearly A and clearly clearly A and . . . , one must expect
Ώ*p -> DD*/7 to be a theorem of the new system and the rule of margins to fail,
as noted above. This does not mean that KT is the wrong logic for clarity, of
course, for what the rule of margins fails in may be a conservative extension of
KT. There is no need to deny that precise sentences can be introduced into a so
far thoroughly vague language. The rule of margins indicates that (with trivial
exceptions) such sentences have not yet been introduced.

The connection between vagueness and the rule of margins can also be dis-
cerned in the proof of the theorem. In the case relevant to the rule, one takes a
world at which A holds and a world at which ~ A holds and constructs a se-
quence of worlds from one to the other, each accessible from its predecessor. The
point is that there must be a cut-off point, a last world at which A holds; A &
~ \3A will hold at that world. This is reminiscent of a sorites argument.

Assume that S? is a consistent extension of KT and provides the rule of mar-
gins. It follows that S? does not extend K4. The failure of what is clear always
to be clearly clear is a striking result but one predicted by the epistemic theory
of vagueness. (Sorensen [7], pp. 242-243 argues from the epistemic theory of
vagueness and the vagueness of knowledge to the failure of the corresponding
principle for knowledge.) It is harder to accommodate within the standard ap-
paratus of supervaluations; this may be a version of the problem of higher-order
vagueness (perhaps a hierarchy of valuations is required).

One way to realize these ideas would be to suppose that A is clear at a world
iff it is true at all nearby worlds on some appropriate metric. Perhaps A is clear
iff we are very reliably right about it, and reliability is a matter of leaving a mar-
gin for error, at least for sentences of the language in question (Williamson [8],
pp. 103-108 offers a tentative defense of the epistemic theory along these lines).
One would thus consider models {W,R, V) with a metric d defined on W, where
uRv iff d(u, υ) < k (u, v E W, k > 0). R would therefore be reflexive and sym-
metric; conversely, every reflexive symmetric relation is induced by some met-
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ric in this way (to see this, put d(u, υ) = 0 iff u = v, d(u, v) = 1 iff uRυ but not
u = v,d(u,v) = 2 otherwise; let k - 2). Thus KTB would be the strongest sys-
tem valid for these models. It is satisfying that KTB provides the rule of margins.

Of course, KTB is not a plausible logic of clarity once undecidable propo-
sitions are taken into account. If Goldbach's Conjecture (GC) is false, it is clearly
false in the relevant sense, for a counterexample can be computed; by contra-
position and bivalence, if GC is not clearly false, it is true. The B axiom says that
if GC is true it is clearly not clearly false: but then it would be clearly true. The
truth of GC should not entail its clear truth, for it might be true yet not even in-
formally provable. The B axiom is implausible in the light of such examples. KT
is a better candidate for the strict logic of clarity. However, KTB is the system
that emerges when one idealizes away such phenomena and concentrates on what
may be the main source of sorites paradoxes. On this view, the impossibility of
identifying a cut-off point for A can be explained. The last cases of A are cases
of A near cases of ~ A, that is, they are cases of A & ~ \JA; but A & ~ DA has
no clear cases, for D (A & ~\3A) is a contradiction in any normal extension of
KT. Thus nothing is clearly one of the last cases of A.
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Appendix A table showing which systems provide which rules may be of use.
-I- means that the system provides the rule, - + that it does not but that some
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consistent normal extension of it does, and — that no consistent normal exten-
sion of it does.

Homo- Homo-
Lemmon- geneous geneous

Scott Weak weak Alternative alternative Rule of
rule rule rule rule rule margins

KD + + + + + +

KT + + + + + +
KDG1 + + + + +
KDB + + + + +
KTG1 + + + + +
KTB + + + + +
K + + + - + - + - +
KD! — + — + — +
K4 + + +
KD4 + + +
KT4 + + +
KW + + +
KTvKDB - + - + - + - + - + +
KG1 - + - + --4- - + - +
KB - + - + - + - + - +
K4G1
KE




