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Surface Reasoning

WILLIAM C. PURDY

Abstract Surface reasoning is defined to be deduction conducted in a sur-
face language in terms of certain primitive logical relations. A surface lan-
guage is a spoken or written natural language (in this paper, English), in
contrast to a "base language" or "deep structure" sometimes hypothesized to
explain natural language phenomena. The primitive logical relations are in-
clusion, exclusion, and overlap between classes of entities. A language and
a calculus for representing surface reasoning is presented. Then a paradigm
for reasoning in this calculus is developed. This paradigm is similar to but
more general than syllogistic. Reasoning is represented as construction of
fragments (subposets) of lattices. Elements of the lattices are expressions de-
noting classes of individuals. Strategies to streamline the reasoning process
are proposed.

/ Introduction The underlying premise of this paper is that the relations
of inclusion, exclusion, and overlap are primitive and important constructs of
human reasoning; that the surface language is adequate to express and manip-
ulate these constructs; and that disparate logics and complex transformations
linking them to the surface language are not necessary to explain language un-
derstanding and reasoning. The surface language, used in relation to a natural
language such as English, is the spoken or written language, in contrast to a "base
language" or "deep structure" sometimes hypothesized to explain natural lan-
guage phenomena. Surface reasoning is defined to be deduction conducted in the
surface language, in terms of the primitive relations, inclusion, exclusion, and
overlap, involving surface information (in the sense of Hintikka [6]). It is hypoth-
esized that surface reasoning captures the essence of human reasoning. There-
fore its study is a fruitful approach to understanding and implementing cognitive
agents.

This contrasts with the de facto standard approach to automated reasoning,
viz., deduction conducted in a disparate language, clausal-form logic, employ-
ing unification and resolution, typically performed in depth-first order. It is not
suggested that surface reasoning can supplant conventional forms of formal
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logic, but rather that surface reasoning provides a better description of natural
language understanding and reasoning as it is practiced by humans. Indeed, as
the reasoning process reaches greater depth, the conventional techniques of for-
mal logical analysis seem more appropriate.

Inclusion, exclusion, and overlap are formalized as the categorical statements
A, E, and /, respectively, of syllogistic. Syllogistic is therefore an ideal system
in which to represent surface reasoning. However, syllogistic is limited in scope
to monadic logic. A previous paper (Purdy [9]) introduced a polyadic logic which
shares the characteristics of syllogistic. The present paper extends this logic and
investigates surface reasoning in the context of the extended logic.

The principal results presented in this paper are the following.

(i) £N, a language in which to represent surface reasoning, is defined. This
language shares many characteristics with natural language, including
the use of certain generalized quantifiers.

(ii) The language is axiomatized and completeness properties are given.
(iii) Derived rules of inference are obtained. Principal among these are the

Monotonicity Rules.
(iv) A paradigm for surface reasoning similar to syllogistic is developed.

Graphical domains are described in which reasoning finds a natural rep-
resentation. The reasoning process is represented as construction (or
search) of fragments of these domains.

(v) Global strategies to streamline reasoning within this paradigm are pro-
posed. These strategies impose global restrictions or preferences regard-
ing the inference rules to be used.

(vi) A local strategy is described. This strategy provides guidance in select-
ing the direction in which construction is to proceed.

2 Informal definition of £N This section introduces the concepts under-
lying the language £N. A formal definition is given in the next section.

2.1 Boolean operators Every expression of £N denotes a set of /z-tuples
over a domain £), where n E ω is the arity of the expression. (For simplicity, an
expression and its denotation are represented by the same symbol.) For exam-
ple, the predicate like denotes a set of 2-tuples (p>o), such that p likes o. Hence
the logical types of £N are indexed by ω. Boolean operators Π and ~ denote the
operations intersection and complementation on these sets. When n = 0, the op-
erations correspond to conjunction and negation, respectively. Intersection of
a set of ^-tuples and a set of m-tuples (n < m) is defined:

XΠ Y:= {<yu...9ym>:<yu...9yn>eXΛ<yu...,ym>e Y).

When n — m, intersection is said to be homogeneous. Complementation of a set
of ^-tuples is defined:

Ϋ : = [ < ^ i , . . . , ^ > : < ^ i , . . . , ^ > ί Y).

2.2 The image operator The image operator embodies the overlap re-
lation. It appears in the works of DeMorgan, Peirce, and Frege, but was given
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its modern form, YUX, by Whitehead and Russell (see Quine [10]). For a set of
2-tuples Y and a set of 1-tuples X, the image of X by Y is defined Y"X :=
{<y) : 3x((y9x) G F Λ (X) £ X)}. £N incorporates a variation appropriate to
natural language, some^F, which denotes Ϋ"X. Thus some boy like denotes the
set of things that some boy likes.

For two unary expressions X and Y, the denotation of someXY particula-
rizes to {< > : 3ΛΓ«Λ:> E YΛ (X) G X)), that is, 'some ΛΊs Y9 (overlap). Similarly,
some^ΓΓ renders 'no Xis Y9 (exclusion), and some^fP renders 'no ̂ \"is non-F'
or 'all ^Γis Y' (inclusion). Thus all three primitive logical relations can be ex-
pressed by means of the image operator.

The image operator readily generalizes to an operator on an (n+ l)-ary ex-
pression and a unary expression, yielding an n-ary expression: some^ΓF denotes
K Vi. .,yn>-3x«x) G XA (x,yu.. .,yn) E Y)}. Thus if give is a ternary
predicate taking a donor, an object, and a recipient, some boy give denotes the
set of pairs <o, r) such that some boy gives o to r.

The image operator also can be generalized to operate on an rt-ary expres-
sion and an m-ary expression (m < n), yielding an (n — ra)-ary expression, but
this seems inappropriate for application to natural language.

The appropriateness of the image construction defined above to natural lan-
guage is supported by considerations related to 0-theory and case theory. Verbs
are viewed as relations whose arguments are bound by noun phrases. Continu-
ing the previous example, 'some boy gives a flower to a girl' is rendered by some
girl some flower some boy give. The first argument of give is bound by boy, the
second argument by flower, and the third argument by girl. Notice that argu-
ments are filled from right to left, while scope is given from left to right. (The
subexpression with the widest scope is on the left.)

someXY asserts that the overlap between X and Y is nonempty, but leaves
its nature otherwise unspecified. The image operator can be further refined to
cover a broader range of natural language quantifiers. Consider the refinement
kXY with the denotation:

{<yi,...,yn> card({x:<x> E X A ( x 9 y u ... , y n ) G Y})>k}.

Then kXY asserts that the overlap is not only nonempty, but also of cardinal-
ity at least k.

Refining the image still further, define mosUΠf to have the denotation:

l<yi,...9yn>' card(ix:(x) E XA <*, yu ... ,yn) G Y))

>card({x:(x) E XA <x9yl9... ,yn> £ Y})}.

Then mostΛΎ asserts an overlap between X and Y that is nonempty and involves
the majority of X.

Thus refined, the image operator allows most of the generalized quantifiers
of natural language to be represented in £N, either directly or by abbreviation.

2.3 The selection operator A selection operator is a tuple (ku..., km) of
positive integers, which operates on predicates of arity m. It plays the role played
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by bound variables in predicate logic. Its action can be illustrated by the fol-
lowing example.

someX4someX3SomeJΓ2some.Yi<4,1,3)R3 = some^some^iSomeX^i?3.

Selection operators subsume Quine's predicate functors, Inv, inv, Ref, Pad
(Quine [12]):

Inv = <π,l, . . . ,n — 1>
inv = <2,1,3,.. ,,n)
Ref = <1,1,2 Λ — 1>
Pad = <2,3 /i + 1>.

Unlike Quine's predicate functors, selection operators are restricted to op-
erate on predicate symbols only. This restriction does not affect expressiveness.
It is motivated by appropriateness to natural language.

Selection operators are used to render natural language constructs such as:

Passive: <2,1> kiss = be-en kiss by
Reflexive: <1,1> shave = shave self.

In the first example of this subsection, the selection operator selected three
of four arguments, ignoring the remaining one. Such selection operators will be
termed vacuous. In the subsequent examples, the selection operators are non-
vacuous. This seems to be the case in all natural language applications. It would
be possible to restrict selection operators to be nonvacuous. However, vacuous
selection operators will be allowed so that £N will be equivalent to predicate cal-
culus. It would also be possible to distinguish selection operators that: (i) only
permute arguments, (ii) only identify arguments, and (iii) only skip arguments,
using them in various combinations. In the interest of simplicity, this possibil-
ity will not be pursued. However, restriction of selection operators and its im-
pact on reasoning strategies will be considered in a later section.

2.4 Singular terms and the identity relation The identity is defined to be
a reflexive, symmetric, transitive, binary relation that obeys Leibniz' Law, that
identicals are indiscernible and indiscernibles are identical. It is well known that
the identity can be axiomatized in a first-order language as follows (e.g., Men-
delson [7]):

(i) VX(X = JC)

(ii) VxVy((x = y)-* (Φ(x, x) -> Φ(x, y)), where φ ranges over all well-formed
expressions.

It is also well known that a first-order axiomatization constrains the deno-
tation of the identity to be an equivalence relation only, while the intuitive ex-
pectation is that the identity denotes the diagonal relation, {<x, x>:xG3)). TWO
remedies are available, both having the same result. First, the identity can be de-
clared part of the logical vocabulary and required to denote the diagonal rela-
tion in every interpretation. Second, consideration can be restricted to so-called
normal interpretations, in which the identity is interpreted as the diagonal rela-
tion. Hence the identity justifiably is considered somewhat troublesome.

Sommers [14] denies the need for the identity relation. He claims that by en-
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dowing singular terms, such as Socrates, with "wild quantity," that is, taking
some Socrates is wise to be equivalent to all Socrates is wise one can enjoy the
benefits of the identity without the identity. Since this suggestion is followed in
<£̂ v, and since Sommers' position is surrounded by controversy and perhaps
misunderstanding, some discussion is warranted.

The nonlogical vocabulary of £N includes a supply of predicate symbols
R?(i E ω) of all arities n E (ω — {0}). In addition, a supply of singular predi-
cate symbols S"+ι (/ E ω) of arity n + 1 for all n E ω are provided. Singular
predicates have a quasi-logical status in the following sense. While the denota-
tion of a singular predicate may vary from one interpretation to another, it must
possess the following property in every interpretation.

V* l f . . . 9xn E 2D(3XE 3D«*i,.. . , * „ , * > E Sf + 1

Λ V*' E » « * ! , . . . , * „ , * ' > E SP+l - (X = X')))).

The singular expressions of £N are defined as follows:

(i) each unary singular predicate symbol S1 is a singular expression
(ii) if Sn+ι is an (n + l)-ary singular predicate symbol, and Si, . . . ,S n are

singular expressions, then someS^ someSiS'z+1 is a singular ex-
pression

(iii) nothing else is a singular expression.

The quasi-logical status of singular predicates, along with the axiom schema
someSX ΞΞ someS f̂, where S ranges over singular expressions and Jf ranges over
(n + l)-ary (n E ω) expressions of £N, ensures that someS/S,- is always inter-
preted as identity of the denotations of singular expressions S, and S, . For ex-
ample, if Socrates is a unary singular predicate and father is a binary singular
predicate, then some Socrates father is a singular expression that denotes the
(unique) individual which is the father of Socrates.

This device is not unique to £N or Sommers' Term Calculus. It is available
to first-order predicate calculus as well. Seeing how might clarify this matter.
Let the predicate calculus be equipped with the usual nonlogical constants, with
the following slight modification. Function symbols and constants are replaced
by singular predicate symbols defined as above, with the same quasi-logical prop-
erty. Singular expressions are defined as follows:

(i) if S1 is a unary singular predicate symbol, then λx(Sι(x)) is a singular
expression

(ii) if Sn+ι is an (n + l)-ary singular predicate symbol, and Si , . . . ,Sn

are singular expressions, then λx(3Xj lxn(Sn+ι(x\9... ,xn,x) Λ
SI(X\) Λ Λ Sn(xn)) is a singular expression

(iii) nothing else is a singular expression.

The following axiom schema is needed.

3x(S(x) A φ(x)) ~ vx(S(x) -> φ(x))>

where S ranges over singular expressions and φ ranges over well-formed formu-
las. Now it is easy to see that 3x(Sj{x) Λ SJ(X)) is always interpreted as identity
of the denotations of the singular expressions S, and Sy.
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Several observations are in order. First, Sommers' treatment of identity is not
radically different from the conventional treatment. Both require a restriction
placed on the notion of interpretation. The axiom schema required by Sommers'
treatment is quite similar to the axiom for Leibniz' Law, except that the former
entails the reflexivity property.

Second, Sommers' treatment does not provide all the benefits of the iden-
tity. For example, lx(X(x) A Vy(X(y) -* y — x)) can be expressed only by a
schema (i.e., infinite conjunction) such as something XΠ (someSXΠ someXS).
Whenever identity of quantified variables is expressed in predicate calculus, the
translation in £N must be a schema.

Third, Sommers' treatment nonetheless seems particularly suited to variable-
free logics for natural language. The use of schematic variables representing sin-
gular expressions is quite similar to the use of pronouns in natural language.
More important, Sommers' treatment makes identity a special case of the more
general principle of monotonicity.

2.5 Discussion £N is intended to be a vehicle for study and implementation
of surface reasoning. Other contenders include predicate calculus, Logic with
Generalized Quantifiers (Barwise [1]), Predicate Functor Logic (Quine [11]),
Term Calculus (Sommers [15]), combinatory logic (Steedman [16]), and various
varieties of lambda calculus. Each can claim adherents.

In its favor £N can claim a combination of features possessed by none of
them:

• Structural similarity to surface English
— a 'well-translatable' (Culίk [5]) English fragment suitable for reason-

ing can be defined (for an example, see [9])
— includes 'singular relations,' i.e., singular predicates of arity greater

than one
— includes the generalized quantifiers of natural language
— implicitly many-sorted

• Appropriate to the task of representing surface reasoning
— a reasoning paradigm similar to syllogistic can be defined
— has the expressiveness of predicate calculus, but not more expressive-

ness than necessary for its intended task
• Simplicity

— variable-free
— no special identity relation
— simple type structure.

3 Formal definition of £N The vocabulary of £N consists of the following
(letω+ :=ω - {0}):

1. Predicate symbols β> = (U,e«+<R#i) U (Uπe«+Sπ), where <Rn = [R?:
ι'e ω) and SΛ = ( S f : / e ω | .

2. Selection operators {<£!,..., λrΛ> : π E ω+, A:, E ω+, 1 < / < Λ ).
3. Quantifiers some, {k: k E ω+}, and most.
4. Boolean operators Π and ~.
5. Parentheses ( and ).
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<£yv is partitioned into sets of fl-ary expressions for n E ω. These sets are defined
to be the smallest satisfying the following conditions.

1. For all n E ω+, each S/1 E SΛ is an fl-ary expression.
2. For all / ί G ω + , each R" E (RΛ is an «-ary expression.
3. For each predicate symbol P E (P of arity m, < AΊ , . . . , &m>P is a fl-ary ex-

pression where « = max (A/)i</<w.
4. If ̂  is an «-ary expression then ~{X) is an /?-ary expression.
5. If X is an m-ary expression and Γis an /-ary expression then (ΛfίΊ Γ) is

an «-ary expression where n = max {I, m).
6. If X is a unary expression and Y is an (n + l)-ary expression then

(someAΎ) is an «-ary expression.
7. If ̂  is a unary expression and Γis an (n + l)-ary expression then (k^7)

is an fl-ary expression for each k E ω + .
8. If X is a unary expression and Y is an (n + l)-ary expression then

(mostΛΎ) is an «-ary expression.

In the sequel, superscripts and parentheses are dropped whenever no confusion
can result. Metavariables are used as follows: Sn ranges over SΛ; Rn ranges over
« Λ ; P ranges over <S>;X9Y, Z, PΓ, Frange over £N; X", Y", Z\ W\ Vn range
over λz-ary expressions of £N; and S ranges over singular expressions of £N.
Applying subscripts to these symbols does not change their ranges.

An interpretation of £N is a pair ύ — <X),T> where 3D is a nonempty set,
and T is a mapping defined on (P satisfying:

1. for each 5/ E Si, T (S/) = {<ί/» for some (not necessarily unique) rfE 3D,
2. for each SP+1 E Srt+i (Λ > 0), T ( 5 f + 1 ) c X)Λ+1, such that v<du...,

dn):ld:(du...9dn,dye^(SΓX)andVd':(dι,...9dn9d'yecϊ(SΓl)
implies d = d\ and

3. for each Rn E (RΛ, T(/?n) c ί) ' 7 .

Let α = <rf!, d2,... > E £Dω (a sequence of individuals). Then ̂  E <£yv is satis-
fied by a in β (written β (=« X) iff one of the following holds:

1. XG (9 with arity n and (du...,dn) E T ( J f )
2. T̂ = <Aτ!,..., km)P where P E (P with arity m and (dkχ9.. .,dkm) K P
3. X= Yandβ#aY
4. * = 7 Π Z and 3 Hα Y and 5 f=α Z
5. Â  = someY1ZΛ2+1 and for some d E 3D, <rf> \=a Y

ι and <rf> hα Zn+ι

6. Λ r=ky 1Z l l + 1andcίϊΓ£/αrfGίD:<£/> Hα Y
1 and (d) \=aZ

n+ι})>k
1. X = m o s t r ^ ^ 1 and card({d E 3D: (d) \=a Y

ι and <rf> l=α Z
n+ι}) >

card({d(ΞX>:(d) K Yι and <rf> ^ α Z Λ + 1 J ) ,

where 3 t̂ a X is an abbreviation for not (0 ̂ aX) and <rf/,,..., rf/n> l=α X is an
abbreviation for β N<£/fi,..., ̂ , ^ , d 2 t . . . > X.

X is true in β (written βfX) iff β^aX for every aGΐ>ω. Xis valid (writ-
ten (= Jf) iff f̂ is true in every interpretation of £N. A 0-ary expression of £N

is called a sentence. A set Γ of sentences is satisfied in β iff each X E Γ is true
in 3.

The following abbreviations are introduced to improve readability.
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1. Rn : = < / ! , . . . , \ ) R n

2. XV Y:= (XΠ Ϋ)

3. Xc Y:=(XΠ Ϋ)
4. X= Y:= (Xc Y)Π (Ycx)

5. T:= thing := (SQ1 QSQ1)
6. some^someJ^_! someA^ Y := (someA^ (someA^_i (someA^ Y)

...))

7. someArl Y2

n ° Y
2

n_x o . . . y* : = ( s o m e . . . ( s o m e(someA r l Y2)Y2^)'

r?>
8. MX{Y:=someXιY

9. noA^Y^someA^Y

10. IkA^1 Y := kXι YΠ (k + l)Xι Y

11. kA^Y^kA^Y.

It is easy to see that:

1. β \=aXU r iff (3 N^A^or 3 |=α Y)
2. ί ί h α X c y iff (β μα A

r implies 3 Hα Y)
3. βtaX= Yiff (£1 N« Ariff 3 t=α Y)
4. 3 |=α T for every 3 and a
5. 3 Nα someArl Y2 o . . . o r? iff for some α j , . . . ,αΛ G 3) : {ax,dλ) hα Yf

and <α2,^i> K Yl and- -and <an9an^} K Y2

n and (an) K X1 (thus
denotes composition of relations in β)

6. β t=α alLY1 Y iff for all d G 3), <rf> K, Arl implies <rf> hα Y
7. 3 hα no X1 Y iff for all rfGB, <</> Nα A

rl implies (d) ψa Y
8. 3 f=α !kArl Yiff card({d(Ξ 3) : <rf> Nα A

rl and <rf> Nα Y}) = A:
9. 3 Nα kA^1 Yiff ccrrί/ ({tf G 3D : <rf> t=α A^1 and <rf> Nα Y}) < A:.

4 Axiomatization of £N The axiom schemata of £N are the following (see
definitions of metavariables given in the previous section):

BT Every schema that can be obtained from a tautologous Boolean wffby
uniform substitution ofnullary metavariables of '£N for sentential variables, Π
for A , and " for ->.

C someSin someS,-,<kx,..., km)P = someSik someSik P, where P is

of arity m and n = max (^y)i<y<m-

5 some5/w someS/, (some^A^^1) = someS^ someS^someSΛf " + 1 .
D someS/" someS,, (Xm Π Yι) = (someS/m someS/,Xm Π someS/V

someS/j Yι) where n = max (I, m).
EG (some5Arl Π someSin some5/lsome5Y/7+1) c some5/#ι someS/,

someA r l r π + 1 .

KG1 someS/n someS,^ someA^ ιγ«+ι = someSin someS/, 1JT1 Y"+1.

KG2 (someSX1 Π someS//? someS/lsomeSY/7+1 Π some5/Λ someS/,
kίA^1 Π S) YΛ+1) c someS/Λ someSZl (k + l)Ar l Y72"1/^each k G ω+.

MG1 (someSX1 Π alI5/V all.S^allA^1 YΛ+1) c someS/V some5/1mostArl

MG2 (some5/A
rl Π some5/n some5/lsome5/Y

Λ+1 Π some5/rt someS/,
most(Arl Π ξ Π Ŝ ) Y"+ι) c someS,,, someS/ 1mostArl Y"+1.
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The inference rules of <£^ are the following:

MP From X° and X° c Y° infer Y°.

El From (Z° Π someS 1^ 1 Π someS,— some S,, some S 1 F Λ + 1 ) , where S1

is a unary singular predicate symbol which does not occur in X \ Yn+ι,
Z°, or 5,-,,..., 5ZΛ, infer (Z° Π someS/rt someS^someΛfJ y + 1 ) .

KI From (Z° Π someS 1 ^ 1 Π someS^ someS^someS1 F * + 1 Π someS;Λ

• someS/ 1k(Ar l Π S 1 ) ! ^ * 1 ) , where S1 is a unary singular predicate
symbol which does not occur in X1, Yn+ι, Z°, or Siι9..., S, Λ, infer

(Z° Π someS//7 someS,, (k + l)Xι Yn+ι) for each k E ω+.

MI From (Z° Π someS/^1 Π someS,— someS^someS/ Yn+{ (Ί (allSz-

allS^all^1 Yn+ιΌ someS/w - someS^mostί^1 ΠSjπ sJ)Yn+ι))9 where

5/ and 5/ are unary singular predicate symbols which do not occur in X1,

Yn+\ Z°, or 5 / l f . . .9Sin9 infer (Z° Π someS/n someS^most^1 Yn+ι).

The set T of theorems of £N is the smallest set containing the axioms and
closed under MP, El, KI, and MI.

Axiom S can also be written

S someS/n some5/1allSXA2+1 = someSin someS/1some&\r'7+1.

In view of this "wild quantity" of singular expressions, someSin -someS/,
MSXn+ι and someS/ someS/1someSJfΛ+1 will usually be written simply

The following theorem establishes the soundness of this axiomatization:

Theorem 1 I e T only if 1= X.

Proof: Let T be extended to singular expressions by the inductive definition:
^{Sin'"ShS

n+l) = {(d)} where for 1 < y < n9 T ( S / } ) = {{d^>}, and {dh,...,

di , d) G T ( 5 Λ + 1 ) . Observe that by the definition of satisfaction, ( T ^ ) , . . . ,
τ"(S//7)> ¥Xn iff <T(S i 2 ), . . . ,T(S/Λ)> ¥ShX

n iff- -iff 5 HS^ ShX
n. From

this observation and the definition of validity, it is not difficult to show that the
axioms are valid and that validity is preserved by the inference rules. Details will
be given only for MG1, MG2, and MI. In this proof, Qι := {d: (d) \= X],
e\:={d:<d)£Xns}},e\:={d:(d)\=Xns}nSl},ande2:={d:(d,cΐ(Siι),
. . . ,T {Sin)} N Y]. Understanding the arguments of this theorem can be facili-
tated by translating them to van Benthem's tree of numbers (van Benthem [4] and
Westerstahl [18]).

Claim (i) MG\ is valid.

Proof: Let β be an arbitrary interpretation of £N. β¥SXC\Sin Shvλ\XY iff
βtSXandβt Sin - ShMXY iff <T(S)> N X and Vrf e X): <rf> N X implies
<rf,T(S/l),... ,T(5/J> |= 7. Therefore card(β1 Π C2) > 1 and card{Qx Π 62) =
0. Hence 3 N S^ ShmostXY.

Claim (ii) MG2 fe valid.
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Proof: Let 3 be an arbitrary interpretation of £N. As above, 3 1= SiXΠ Sin

S/Λ rns / n .-shmost(xn£ns jy iff <T(s,)>> x, ms,) ,^ , , ) , " . . ,
T(S/π)> 1= r, and card(Q'{ Π e 2 ) > card(Q'{ Π C 2 ). Since T(S,) £ C{ but

T(S/) e e ί , cύrrrf(ei n e 2 ) = card{&\ n e 2 ) + 1 > card{Q\ n e 2 ) + l =

card(Q\ Π β"2) + 1. Therefore, for any value of T(S y ), card(Q1 Π e 2 ) >

card(β\ Π C2) > card(β\ Π β"2) + 1 > card(ex Π β~2). Hence, 3 N £,„• •

S/, most ly.

Claim (iii) MI preserves validity.

Proof: Suppose N(Z° Π S/jf Π Sin ShS} Y Π (S^- - -S^aMΛ^y U S/|f- - -

S^mostiX Π S/ Π Sj)Y)), where S/ and S/ do not occur in X, Y, Z°, or
Sh,..., S/Λ, but there exist interpretations β such that β NZ° Π Sin S,-, m o s t l y
Thus card\ex Π β 2 ) > card(eλ Π β 2 ) > 0. Since S/ is/A β5Λ (i.e., has no other
occurrences), there are among the 3 interpretations 3' such that T(5/) E &ι Π
C 2. Therefore, 5' (= S/^ and 3' 1= Sin -S^S/ y. Now there are two cases to
consider:
(a) card(Gι Π Q2) = 0 . _ =

Then ύf # Sin S/.someΛfy, i.e., £J' t= S/π S/jSomeJry, which contradicts the
assumption. _
(b) card(Qι Πe2)>0.
Then card((2>ι Π β 2) > 1. Since Sj is fresh, there are among the β' interpretations

β" such that T (S/) G βj Π C"2. Therefore, card{<2,'{ Π β 2 ) = card(ex Π 6 2 ) ^ 1

and card(Q'i Π e"2) = card(Gι Π e 2 ) - 1 . Hence 3" t= S/Λ S^mostί JT Π S/ Π

S/)y, which again contradicts the assumption.

The axiomatization is not complete however. Indeed the quantifier most can-
not be axiomatized in a first-order language. This can be shown as follows. (See
also [1].)

Suppose most is axiomatizable in £N. Let X = mostTB and let Γ be a set of
sentences such that for any interpretation β of £N, 3 N X iff β (= Γ. Let n =
(0,l,2,...,/z - 1) and fπ = {0,1,2,... ,L/i/2J + 1). For each /z G ω+, define
interpretation βn = <«,%>, where % ( # ) = fΛ. Obviously, for each n G ω+,
3Λ N ^ , and by hypothesis, 3Λ 1= Γ.

Now define 3 = HnGω 3n/F, where Fis a nonprincipal ultrafilter (e.g., an
extension of the Frechet filter to an ultrafilter). By Los's Theorem (e.g., see Bell
and Slomson [2]), 3 t=Γ. Since F contains no singletons, ikTTcannot be satis-
fied in 3 for any k. Therefore 3 is infinite. Similarly, ikTB cannot be satisfied
in 3 for any k9 so ̂ (B) is infinite. Hence both Γand B denote infinite sets of
the same cardinality in 3, viz., 2*° ([2], Theorem 6.3.12). It follows that 3 \t
mostTB, a contradiction.

If the quantifier most were eliminated, the axiomatization of the remainder
of £N would be complete. The proof is a standard Henkin proof. Given a set
of sentences Γ, a maximal consistent extension Γ + with witnesses is constructed.
Witnesses are provided by Si. The singular expressions, modulo equivalence in
Γ+, comprise the domain of the interpretation.

Alternatively, if interpretations are restricted to some fixed finite upper
bound (e.g., by adding the axiom NTT), the axiomatization is complete. Of
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course, this is tantamount to accepting incompleteness. In any event, incomplete-
ness does not negate the usefulness of the axiomatization for reasoning about
natural language discourse.

5 Theorems The theorems presented in [9] can be generalized to apply to
the extended language of this paper. Since the proofs closely follow those given
in [9], the theorems will be stated without proof.

The main results are two monotonicity theorems. These theorems establish
the monotonicity properties of quantifiers. They subsume the resolution prin-
ciple. In addition, other properties of natural language quantifiers, including con-
servativity, are proved.

Before stating the first monotonicity theorem, some definitions are needed.
An occurrence of a subexpression Y in an expression W has positive

(negative) polarity if that occurrence of Y lies in the scope of an even (odd) num-
ber of " operations in W, unless that occurrence of Yis a subexpression of Fin
most FZ, in which case y has both positive and negative polarity. This defini-
tion can be applied to expressions containing abbreviations by replacing the ab-
breviations with their definitions. The definition of polarity is summarized in
Table 1. In this connection, singular expressions require special mention. Since
allSX := some&Y = someSX = someSX, any governing occurrence of a sin-
gular expression can be taken to have either positive or negative polarity.

An occurrence of a subexpression Ym, where m > 1, is governed by X in W
if Wjs someXYm, some^y^, someX(Ym Π Zι), some^Ϋ^ Π Zι)9kXYm,
kXYm, kX_(Ym Π Z7), kX(Ym Π Zz), mostly™, mostly™, most ly™ Π Z'),
mo$tX(Ym Π Zι), or the complement of one of these expressions. An occur-
rence of Ym is governed byXn Xχ in W, where 1 < n < m, if Fis governed by
Xn in JFand that occurrence of Ym is governed by Xn-\ -X\ in F. An occur-
rence of Ym in (ku . . . , km)Ym is governed by Xkm -Xkι in Wif {ku ...,
km)Ym is governed by Xn Xx in W, where n = max{ki)x<i<m.

Table 1.

if F is: and polarity of F is: then polarity of X is: and polarity of Y is:

some^ry +(-) +(-) +(-)

2λ\XY +(-) -( + ) +(-)
noXY +(-) -( + ) -( + )
kXY +(-) +(-) +(-)
ikXY +(-) +and- {+and-) +and- (+and-)
kXY +(-) -( + ) -( + )

mostly +(-) +and-(+and-) +(-)
XnY +(-) +(-) +(-)
X^Y +(-) -( + ) +(-)
XUY +(-) +(-) +<-)
X= Y +(-) +and-(+and-) +and-(+and-)

Theorem 2 (First Monotonicity Theorem) Let Ym occur in W with posi-
tive (respectively, negative) polarity. Let (allT)m(Ym c zι) (respectively,
(a\lT)m(Zι c y™)), where I < m. Let W be obtained from Wby (i) substi-



24 WILLIAM C. PURDY

tuting Zι for that occurrence of Ym, (ii) substituting (ki,..,k{) for selection
operator (kγ,..., km) on Ym, if any, and (iii) eliminating all occurrences of
governing subexpressions that no longer govern after the substitutions in (i) and
(ii). Finally, let someTXfor every governing subexpression X with an occurrence
of negative polarity that was eliminated in (iii). Then (aHΓ)Λ(JF<Ξ W), where
h is the arity of W.

Before the second monotonicity theorem can be presented, another defini-
tion is needed.

A subexpression Ym will be said to occur disjunctively in expression W iff
(i) W= MXn ^\XxY

m U Z, where n < m; or (ii) W=fύ\Xn a\\Xk+ι(Zι U
Z2), where 0 < k < n and Ym occurs disjunctively in Z\.

Theorem 3 (Second Monotonicity Theorem) Let Ym occur disjunctively in
W, governed by Xk- -Xx.Let (a l l^ al l^ (Ym c Z1)), where l<m.Let W
be obtained from W by (i) substituting Z1 for that occurrence of Ym, (ii) sub-
stituting <Λri,... ,Λ>> for selection operator (ku... ,km) on Ym, if any, and (iii)
eliminating all occurrences of governing subexpressions that no longer govern
after the substitutions in (i) and (ii). Finally, let someTX for every governing
subexpression X that was eliminated in (iii). Then (?\\T)h{W<Ξz W), where h
is the arity of W.

It is easy to see (from the equivalence ( Γ g z ^ f Γ U Z1)) that this
theorem corresponds to the resolution principle in conventional logic. A corol-
lary provides a rule corresponding to unit resolution.

Corollary 4 (Cancellation Rule) __Let Ym occur disjunctively in W, governed
by Xfc -Xi. Let MXk -alL^F^. Let W be obtained from W by deleting
that occurrence of Ym and all occurrences of governing subexpressions that no
longer govern. Let some TX for every governing subexpression X that was
deleted. Then (MT)h(WQ W), where h is the arity of W.

A second corollary establishes a distributivity property.

Corollary 5 (Distributivity Rule) Let Ym occur disjunctively in W, governed
byXk--Xx.Let (all^/ allAΓj Z1)), where l<m.LetW be obtained from W
by replacing that occurrence of Ym with (ZιΠYm). Then {MT)h(W^ W),
where h is the arity of W.

The final theorems establish the property of conservativity and the rules for
conversion in the case of unary expressions.

Theorem 6 (Conservativity) (schema)
(i) (allΓ)w-1some^rrm s (allΓΓ^some^y" 7 Π X)

(ii) (allΓ)m-1all^ym = (allΓ)m-1all^r(ym Π X)
(iii) (allΓ)"7"1 kXYm = (allΓ)"7"1 kX(Ym Π X)
(iv) (a l lΓ ) w l mostly"7 s (allΓ)"7"1 most ly" 7 Π X).

Theorem 7 (Conversion) For unary expressions X and Y:
(i) someXY = someYX

(ii) all^y^alUf)^
(iii) kXY=kYX.
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6 A paradigm for surface reasoning Reasoning is viewed as theorem prov-
ing, using either direct or indirect proof methods. The objective of this section
is to develop a paradigm for reasoning in £N that resembles syllogistic (mo-
nadic) reasoning, i.e., reasoning about inclusion, exclusion, and overlap of classes
of individuals. To this end, a graphical domain is defined in which these rela-
tions can be naturally represented. But first a standard form for problem state-
ments is defined.

Any sentences of £N can be purified [12], that is, put in a form in which all
quantifiers have minimum scope. The procedure is well-known, using DeMor-
gan's laws (instances of Axiom BT) and the following lemmas, which follow di-
rectly from the First Monotonicity Theorem, the Distributivity Rule, and the
Conservativity Theorem.

Lemma 8 (schema) someJfrt s o m e ^ (Yn Π Z°) = (somev\frt

s o m e ^ r Π Z 0 ) .

Lemma 9 (schema) a\\Xn allΛΊ (Yι Π Zm) = (allJT/ all^Y ι Π d\\Xm

•2L\\XxZ
m), where n = max(l,m).

Lemma 10 (schema) someXY" = someT{X Π Yn).

After purification, the prime subexpressions all have the form someT(Zχ Π
• Π Zg) or alIΓ(F! U UF/,). Putting the result of purification in disjunc-
tive normal form yields a disjunction of expressions of the form someΓ^ Π
• Π someTXk Π al lΓ^ Π Π all7Ύ/, where the Xt are conjunctions of
prime subexpressions and the Yj are disjunctions of prime subexpressions. A set
Γ = {some 7 3 ^ , . . . ,someTXk,a\\TYu . . . ,all7Ύ/} of sentences comprising such
a disjunct, or a set of sentences equivalent to these under Axiom S and Lemma
10, will be called a standard form. Sentences of the form SX are ambiguous with
regard to their position in Γ. To remove this ambiguity, the convention will be
adopted that SXis always interpreted as aMSXoτ allΓ(S c X). Obviously, any
problem (i.e., finite set of sentences) can be stated as a disjunction of standard
forms. Indeed most problems involved in natural language reasoning can be
stated as a single standard form.

The subset Γ+ = (someT^,. . . , some 7 ^ } will be called the positive part,
and the subset Γ_ = {all TYU ... ,all7Ύ/} the negative part, of Γ. Often the pos-
itive part will consist of a single element. The positive part represents a lower
bound, LB, on the models of Γ in that at least the denotations of the Xj are as-
serted to be nonempty. Similarly the negative part represents an upper bound,
UB, on the models of Γ in that at most the denotations of the Yj are asserted to
be nonempty. Therefore if Γ has a model, then each Xt G LB must be nonempty
and contained in each Yj E UB.

Let Γ c £N be a consistent set of sentences. The relation ^ Γ , or simply ίΞ
when no confusion can result, is defined: X1 E Ym :̂ > Γ h ($λT)n{Xι <^Ym),
where n = max(l, m). It is easy to see that ^ is a quasi-order on £N. Moreover,
if « is defined X » Y :& (X c Y) Cι (Y^X), then c is a partial order on
<£///«. The poset LΓ = (£N/», ^> is the Lindenbaum algebra ofT. It can be
shown (e.g., Bell and Slomson [3]) that LΓ is a Boolean lattice with greatest and
least elements |someΓΓ| and |someΓΓ|, respectively. Further, if \X\ and \Y\
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are equivalence classes of £ # / « , then the meet and join of \X\ and \Y\ are
\XΠ Y\ and \XU Y\, respectively, and the complement of \X\ is \X\.

The following properties of L Γ are easy to prove:

1. |some7T| = |all7T| = \T\ = \(n}T\ where (n)T := (n)S0 c (n)S0

2. I some TT \ = |some7T| = \T\ = \{n)T\
3. \(someT)mXn\ c |some7T| iff \(someT)m+1Xn\ c |some7T| for 0 <

m < n
4. \Xn\ ξέ I some TT | iff Γ h(someΓ)"^"
5. jsome7T| c | ^ « | iff Γ h (all7y*«.

Let «£„ c jβ^ be the set of Λ-ary expressions. Then LΓ>Λ = <£„/«, E> is a
sublattice of LΓ for each n E ω. From Properties 1 and 2, LΓ)/7 has the same
greatest and least elements as LΓ.

Define rankr:£N-+ ω as follows (cf. Rantala [13]).

1. r(P) = 0 f o r P G ( P
2. r«kl9...9km>P) = 0 for Pe<P
3. r(jr) = ri^)
4. r(AΓΠ y) =max(r(^),r(y))
5. r(some^r) = max(r(X),r(Y)) + 1.

If Γ is a set of expressions, then r(Γ) :=sup{r(X) :Xe Γ). Now let £id) c
<£^ be the set of expressions of rank < d. It can easily be seen that Lγd) =
<£ ( c 0 /«,c> is a sublattice of LΓ for each ί/Gω.In general, L ^ = <£^V«,g>
is a sublattice of LΓ for each n G ω and rfGω.

Reasoning can be considered a search of LΓ. The discussion to follow will
emphasize refutation, but the same principles hold for direct proof. If a stan-
dard form Γ is inconsistent, then LΓ has only one element. Conversely, incon-
sistency of Γ can be established by proving that in LΓ, |some7T| = |some7T|.
This would follow for example if some7Xe Γ+ and for some Y:X^(YΠΫ).
The search for such a Y is the essence of reasoning by refutation. In general, it
is not decidable whether such a Y exists (since predicate logic is undecidable).
Whether such a Y exists in the restricted lattice Lp/) is decidable. But even in this
restricted domain the problem is NP-hard (since SAT can be reduced to it).
Therefore, some constraints must be imposed on the search. In the following sec-
tions, two types of constraint will be discussed: (i) constraints that require, or
at least give preference to, certain theorems and inference rules to be used in the
search; and (ii) constraints that give preference to certain search paths.

By Property 3 it is sufficient to restrict the search to LΓ ) J, since LΓ>0 is con-
tradictory iff LΓ>i is also. The relations between elements of LΓ>1 are inclusion,
exclusion, and overlap, and thus search of L Γ 1 closely resembles syllogistic rea-
soning. From Properties 4 and 5, it follows that a standard form directly yields
elements of LΓ>i.

Let r(Γ) = d. Lrf{ is finite and therefore atomistic. The atoms of L$?} cor-
respond to the attributive constituents at depth d of Hintikka's distributive nor-
mal forms ([6] and [13]). Thus, the atoms denote all the classes of individuals
that can exist in the world entailed by Γ.

For these reasons, construction of a contradictory subposet of Lffi is pro-
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posed as a model of indirect surface reasoning. Similarly, construction of a sub-
poset of Lrfl which exhibits the conclusion X £ some7T is proposed as a model
of direct surface reasoning.

7 Global strategies This section presents strategies for simplifying proofs
by imposing global restrictions and preferences on the reasoning process. The
strategies are illustrated by examples. Criteria for strategy selection are proposed.

Let Γ be a standard form which is to be shown inconsistent. Γ might repre-
sent the whole or part of a logic problem, or it might represent a natural language
discourse with the denial of some conclusion from that discourse. The illustra-
tions of reasoning will be presented graphically as subposets of jJ?}. Expressions
of £N will represent their equivalence classes.

7.1 Breadth-first strategy Meaning inclusion or entailment as it relates to
natural language understanding is often taken to be identical with logical entail-
ment, leading to the paradox of logical omniscience. Hintikka [6] suggests a way
to avoid this:

Whatever the meaning of a sentence is or may be, it seems to me that the (literal)
meaning of a (grammatically correct) sentence has to be something that anyone
who knows the language in question can effectively find out. . . . [Therefore]
trivial implication seems to me a much better explication of the idea of mean-
ing inclusion than logical implication.

Suppose Γ is as described above and r(T) — d. Trivial implication of the con-
clusion by the premises is indicated by the trivial inconsistency of Γ. Γ is trivi-
ally inconsistent if a search restricted to Lff} can produce a contradiction.

Generalizing this explication of meaning inclusion yields the following
breadth-first strategy. Initially the search is restricted to \}γ\. If this fails to pro-
duce a contradiction, the search is extended to LrfΓ1 } If this fails as well, the
search is extended to Lrfi~2), and so on, until a contradiction is found or some
limit on resource use is reached. Of course, as the reasoning process moves to
LffΓ'* for increasing /, it passes from surface reasoning to depth reasoning.

This strategy can be used in conjunction with any other strategy. If a limit
is not imposed, it is a complete strategy.

7.2 Cancellation strategy The Cancellation Rule (CANC), used in conjunc-
tion with the First Monotonicity Theorem (MON), is very effective for a certain
class of problems. A well-known nontrivial example is Schubert's Steamroller (see
[9] and Stickel [17] for details). However, CANC and MON alone are not com-
plete. Therefore, the cancellation strategy limits itself to giving preference to the
use of CANC and MON (cf. the unit preference strategy (Wos [19])).

A simple illustration of the cancellation strategy is provided by the following
example.

If Ben owns a donkey, then he feeds it. Every donkey that Harriet rides is
owned by Ben. Susie is a donkey and Harriet rides Susie. Therefore, Ben feeds
Susie.
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HR UBO BOU BF

HR BO BF BO

HR D BOΠBF

HRΠD /

S

Figure 1. Example of cancellation strategy.

In standard form, Γ = {MD(BO U BF),a\\D(HR U BO),SD, SHR}. The rel-
evant subposet of Lrfl is shown in Figure 1. Inferences based on cancellation ap-
pear as dotted arcs. The conclusion follows from S EΞ BF. Notice that S E D
immediately implies (by MON) that S c (BO U BF) and S c (HR U BO). These
inferences correspond to unification in conventional logic. Subsequent cancel-
lations correspond to unit resolution. This example also illustrates direct rea-
soning.

7.3 Instantiation strategy If <ΛΊ , . . . , km) and </i,..., /w> are distinct se-
lection operators, then < £ 1 } . . . , km)Rm and </i,..., lm)Rm will be called var-
iants of each other. A set Γ of sentences in which no predicate symbol occurs with
two or more distinct selection operators will be said to be without variants.

If the problem statement is not without variants, use of EIC and Axiom C
may be necessary to establish the connection between sentences involving dis-
tinct variants of the same predicate. EIC is the contrapositive form of Rule El
and is sound for refutation proofs. If such predicates are already governed by
singular predicates, then only Axiom C need be used. Early use of EIC and
Axiom C under these conditions will be called the instantiation strategy.

The next example, taken from Quine [12], illustrates the instantiation
strategy.

All natives of Ajo have a cephalic index in excess of 96. All women who have
a cephalic index in excess of 96 have Pima blood. Therefore, anyone whose
mother is a native of Ajo has Pima blood. (The following tacit assumptions are
also made. Every mother is a woman. Everyone whose mother has Pima blood
also has Pima blood.)

The premises and denial of the conclusion are given by the standard form: Γ =
(alL4C9aΠ(FFΠ C)P,some(some>lM)P,all(somethingM)^,all(somePM)P}.
Use of EIC is necessary to relate the sentences involving M and M. The construc-
tion is shown in Figure 2. Heavy arcs represent premises; dotted arcs show the
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two uses of EIC. Except for one use of Axiom C, the lighter arcs represent in-
ferences involving MON. Contradiction is evidenced by b !Ξ (PΠ P).

Some problem statements involve variants, but the variants can be elimi-
nated. In other problems, the variants are noneliminable, as illustrated by the
following example.

Any transitive symmetric binary relation is reflexive.

In standard form for refutation: Γ = {(allthing)2(i? oR c R)9 (allthing)2(i? = R),
something<l,l>/?}.

In Quine's example, the variants can be eliminated to yield the equivalent
standard form: Γ' = {alL4C,all(Wn C)P,some(some^M)P,allthing allJPM,
all(somePM)P}. The construction based on Γ" is given in Figure 3. Heavy and
lighter arcs have the same significance. Notice that this construction is no smaller

allthing(Me WΠM) P

all W M IV DC somePM I

thing some(WΠ C)M

some(WΠA)M

something (W Π A Π M)

someA(WnM)

C somePM p

A some^M Π P

Figure 3. Previous example with variants eliminated.
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and the variety of inferences no less than the previous one. Indeed by some cri-
teria it may be judged more complex.

In those cases where the problem statement is without variants, it would seem
that Axiom C could have no essential role in a proof. Moreover, if conversion
is unnecessary, it would seem also that EIC is not required. However, this is not
the case. A counterexample is given below. It is based on the observation that
in any inference, polarity of corresponding subexpressions is unchanged except
when Axiom S is used. This can be seen by examining each axiom and inference
rule. For each axiom, corresponding subexpressions in the two expressions un-
der the main connective have the same polarity, with the sole exception of Ax-
iom S. For each inference rule, corresponding subexpressions in the antecedent
and consequent have the same polarity.

Now consider the example: if somei?alL4i? and some^lCthen some^someCR.
The premises and the conclusion are without variants. However, the subexpres-
sion A in the premise someBaUAR corresponds to the subexpression C in the
conclusion somel?someC7?, and they have different polarities. By the above ob-
servation, this change in polarity can be accomplished only by application of Ax-
iom S. This, in turn, can be accomplished only by use of Rule EL

7.4 Reasoning with MON only Even when variants are eliminated, the
construction for the previous example remains complex. The complexity is due
to the sentence allthing allίVM, i.e., "Of all things all non-women are non-
mothers." An equivalent form, (allthing)2(Me; W), i.e., "All who stand in the
mother relation are women," is less awkward. In the latter form one recognizes
a property that is not typical in natural language, viz., an inclusion relation be-
tween expressions of differing arities. Inclusions that involve only prime subex-
pressions of the same arity will be called homogeneous. A set of sentences
containing only homogeneous inclusions will also be called homogeneous. Where
only homogeneous inclusions are involved, MON assumes the following simpler
form.

MONH Let Ym occur in Wwith positive (respectively, negative) polarity.
Let ( a l l 7 T ( y w c Zm) (respectively, (al lΓ) m (Z m c γm))m Let W be obtained
from Wby substituting Zm for that occurrence of Ym'. Then (MT)h(W^ W')9

where h is the arity of W.

In many cases, a problem statement can be rephrased to be homogeneous and
without variants. The following is Sommers' [14] version of Quine's problem,
which does just this.

All natives of Ajo have a cephalic index in excess of 96. All women who have
a cephalic index greater than 96 have Pima blood. Therefore, anyone Ajoan on
both sides has Pima blood. (Tacit assumptions are as follows. All descended
from someone with Pima blood have Pima blood. Anyone who is Ajoan on
both sides is a descendent of some woman Ajoan. All cases of [the first state-
ment] are cases of every woman Ajoan being a woman with a cephalic index
greater than 96.)

In standard form this problem can be given: Γ = {alL4C,all(W Π C)P,
some(someAB)PiM(somePD)P,M(someAB)some{WnA)D}. The last tacit
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P

WΠC somePD

some(JV ΠC)D

some(WΠA)D

C someAB P

A someAB Π P

Figure 4. Previous example reformulated.

assumption, alWC <Ξ a\l(WΓϊ A)(WΠ C), is redundant since it is a valid sen-
tence. The construction of a contradictory subposet is shown in Figure 4. It in-
volves MONH only.

These considerations motivate the following simple strategy, called the mono-
tone strategy. Whenever the problem statement Γ is homogeneous and without
variants, give preference to inferences involving MONH only. This strategy is
very effective for a restricted class of problems, notably problems of the kind
appropriate for Sommers' Term Calculus. Like the cancellation strategy, it is not
complete and so is limited to giving preference to reasoning with MONH only.

There is a connection here with Quine's fluted expressions (Noah [8] and
Quine [11]). The language of fluted expressions forms a proper sublanguage of
the language of £N expressions without variants. For example, the problem just
considered cannot be stated in the language of fluted expressions. The predicate
calculus restricted to fluted expressions is decidable. It is not known whether £N

without variants is decidable [8].

7.5 Strategy selection Four global strategies have been defined: breadth-
first, cancellation, instantiation, and monotone. They constitute only a first step
toward a set of global strategies. What is wanted is a classification of standard
forms by their syntactic properties that correlates with an optimal strategy.
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Whether such a classification exists is an open question. The strategies of this
section can be summarized as follows.

1. The breadth-first strategy is indicated for all problems. It seems likely that
for natural language understanding d rarely exceeds 3. Therefore a limit
of 3 or 4 on d would appear reasonable.

2. If the standard form contains sentences in which some subexpression has
disjunctive occurrences of opposite polarities, the cancellation (preference)
strategy is indicated.

3. If the standard form is not without variants, use of EIC and Axiom C is
indicated to relate sentences containing different variants of the same
predicate.

4. If the standard form is both homogeneous and without variants, the
monotone (preference) strategy is indicated.

A standard form may decompose into subsets, each belonging to a distinct class.
In this case, the subproblems are treated independently.

* A local strategy In this section, the use of pattern matching to guide con-
struction of a contradictory subposet is considered. A general description of this
local strategy is as follows. The subposet construction proceeds under the appro-
priate global strategies. It begins with a nonnull node (known to be nonnull from
the premises). This node may be an intersection of the form XΠ Y. In this case,
the goal is to find a Z such that X^Z and F E Z. This is symbolized:

Goal: unify (X)1,(Ϋ)l.

Alternatively, the nonnull node may not be an intersection, having the form X.
In this case, the goal is to find X !Ξ X, symbolized:

Goal: unify (ΛΓ)ΐ,(*H.

Goals are pursued by recursion on the structure of the expressions involved.
Subexpressions are considered in right to left order. For example, from the goal:

Goal: unify (someXZ)t,(someywμ

the first subgoal would be:

Goal: unify (Z)ΐ,(WK)l.

The strategy will be illustrated using the following example.

All who enter the country unaccompanied by a VIP are searched by a customs
official. All who enter the country carrying contraband and who are searched
by an honest customs official are reported. All smugglers carry contraband. All
who carry contraband are dishonest. Yesterday, some smugglers entered the
country unaccompanied by anyone else, but were not reported. Therefore, some
VIPs or customs officials are dishonest.

A standard form of the problem for proof by refutation is: Γ = {a\\(E Π
soϊneT^4)someCS, all(£ Π someZλF Π some(C Π H)S)R, MBsomeDF,
all(someZ>F)/7, some(£Π B Π sόmeBA)R, all(FU C)H]. Initially, the given
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subposet of L Γ J contains only one node known to be nonnull, viz., (F Π B Π
someBΛ) Π /?. This node is the intersection of two chains. These chains will
be extended upward, seeking a node on one chain labeled Z, such that a node
on the other chain is labeled Z. This objective is pursued by recursion on the
structure of the expressions found on the two chains.

1. Goal: unify (F Π B Π some2L4)T,CR)4
observation: (E Π someDF Π some(C ΠH)S)^R

2. Goal: unify (E Π B ΠsomeBA)h(E Π someDFΠ some(C Π H)S)i

2.1. Goal: unify (some&4)T,(some(Cn H)S)l
2.1.1. Goal: unify (.4)1,(5)4

observation: no inferences possible

2.1.2. Goal: unify (someA4)ΐ,(some(C Π H)S)i
observation: C^(CΓ)H); hence, someCS ̂  some(C Π H)S

2.1.3. Goal: unify (some&4)ί,(someGS)4

observation: (E Π someVA) E someCS

2.1.4. Goal: unify (someJR4)ΐ,(someK4)4
observation: (E is absorbed by Goal 2)
2.1.4.1. Goal: unify (£)t,(F)ΐ

observation: V^H
2.1.4.2. Goal: unify (£)ΐ,(//)ΐ _ β

observation: someDF !Ξ i/; hence, H £Ξ some^DF
2.1.4.3. Goal: unify (5)ί,(someDF)4

observation: 5 E someDF
2.2. Goal: unify (£)ΐ, (someDF)4

observation: B c someDF.

The initial goal has been achieved, and so a contradiction has been obtained.
This strategy could employ heuristics to order alternative derived goals. For

example, for the goal:

Goal: unify (^)ΐ,(7)4

possible heuristics include:

(i) consider the expression with the simpler construction first
(ii) consider the expression with the fewer possible inferences first

(iii) consider inferences Xc X' ( Γ c y ) first that make X' and Y (Xand
Y') most similar in terms of polarity and rank of their subexpressions.

9 Conclusion In the theory of reasoning presented in this paper, a problem
statement in standard form defines a lattice of expressions, each denoting a class
of individuals. The reasoning process is represented as construction of a frag-
ment of this lattice. Restriction of the reasoning process to unary expressions and
construction of a partially ordered subset are salient features of the theory. A
number of advantages follow.

First and most important, the reasoning process is similar to syllogistic, deal-
ing with classes and their relation by inclusion, exclusion, and overlap. The
monotonicity of natural language quantifiers, which is the basis of syllogistic,
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is the unifying principle of surface reasoning, embodied in inference rule MON.
The simplicity and directness of surface reasoning is a result. Where the prob-
lem statement is homogeneous and without variants rule MON alone usually suf-
fices. Reasoning in such cases is virtually identical to syllogistic reasoning.

Second, the local strategy, which guides the search for a contradiction by syn-
tactic pattern matching, is based on an explicit order. Patterns exhibited by ex-
pressions of the subposet can be interpreted only in the context of the partial
order; while several pairs of expressions may have the syntactic potential to pro-
duce a complementary pair, only those that lie on intersecting chains can pro-
duce a contradiction.

Third, the partial order provides a subsumption relation on the classes of in-
dividuals. (These classes are called sorts in conventional logic.) The subsump-
tion relation allows MON to unify expressions without processing variables and
in particular without an "occur check". In the cancellation strategy, which cor-
responds to the unit resolution strategy of conventional logic, unification is pro-
vided by MON with resolution performed by CANC.

A reasoning procedure is a calculus together with an algorithm to control
deduction in the calculus. £N is proposed as an appropriate calculus. The par-
adigm presented in this paper, together with the strategies for efficient con-
struction of model fragments, constitutes an operational definition of a control
algorithm.

This paper only begins the study of strategies in the context of surface rea-
soning. Much more can be accomplished. And beyond uniform strategies, such
as those considered here, methods for incorporating problem domain-specific
information into the reasoning process will be crucially important in emulating
human reasoning and understanding of natural language.
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