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Ancestral Kripke Models and

Nonhereditary Kripke Models for

the Heyting Propositional Calculus

KOSTA DOSEN

Abstract This is a sequel to two previous papers, where it was shown that,
for the Heyting propositional calculus H, we can give Kripke-style models
whose accessibility relation R need not be a quasi-ordering relation, provided
we have:

x\=A &Vy(xRy=* y VA).

From left to right, this is the heredity condition of standard Kripke models
for H, but, since R need not be reflexive, the converse is not automatically
satisfied. These Kripke-style models for H were called "rudimentary Kripke
models". This paper introduces a kind of dual of rudimentary Kripke mod-
els, where the equivalence above is replaced by:

x^A <#3y(yRx &y \=A).

From right to left, this is again the usual heredity condition, but the converse,
which is automatically satisfied if R is reflexive, yields a proper subclass of
rudimentary Kripke models, whose members are called "ancestral Kripke
models". In all that, the semantic clauses for the connectives are as in stan-
dard Kripke models for H. The propositional calculus H is strongly sound
and complete with respect to ancestral Kripke models.

The remainder of the paper is devoted to Kripke-style models for H
where the semantic clauses for the connectives are changed so that we need
not assume any of the heredity conditions above. The resulting Kripke-style
models are called "nonhereditary Kripke models". These models are inspired
by some particular embeddings of H into 54 and a somewhat weaker normal
modal logic. With respect to a notion of quasi-ordered nonhereditary Kripke
model, we can prove a certain form of strong soundness and completeness
of H. With respect to another notion, where quasi-ordering is not assumed,
we can only prove the ordinary soundness and completeness of H.

Received November 14, 1990; revised February 18, 1991



KRIPKE MODELS 581

The standard conception of Kripke models for Heyting's logic is based on
the following assumptions:

(I) valuations must be defined inductively, starting from atomic formulas;
(II) the accessibility relation R must be at least a quasi-ordering relation,

i.e., it must be reflexive and transitive;
(III) heredity must be satisfied, in the sense that if a formula A holds at a

point x of a model, which we write x E v(A)9 then Vy(xRy => y E
v(A)).

In [2] and [3], one can find the beginning of an investigation of Kripke-style
models for Heyting's logic where these assumptions are changed in various ways
and the following is established.

First, if we reject (I), we also may reject (II), and get models where R must
be only serial (i.e., Vxly(xRy)), provided we have assumed in addition to (III)
the following converse heredity condition:

Vy(xRy=>y£ v(A)) =>Λ:E V(A).

This condition is trivially satisfied if R is reflexive, but our R need not be reflex-
ive any more. The resulting models, with respect to which we have strong sound-
ness and completeness of the Heyting propositional calculus, were called
rudimentary Kripke models.

Even if we keep (I), but work with both heredity and converse heredity, (II)
is not necessary. Instead of a quasi-ordering, we will have a more general, and
somewhat more involved, type of ordering. The resulting models, with respect
to which we have again strong soundness and completeness of the Heyting prop-
ositional calculus, were called inductive Kripke models. In all that, the conditions
for valuations, and in particular the clauses concerning connectives, are as in the
standard conception. We have only introduced converse heredity, which is any-
way satisfied in standard Kripke models.

In this paper, we repeat the pattern of these changes with a condition that
is in a certain sense dual to converse heredity. Heredity may alternatively be writ-
ten as:

ly(yRx &ye v(A)) => x E v(A),

and our dual condition, which we call ancestrality, is the converse implication:

xE v(A) => ly(yRx &yG v(A)).

This condition is trivially satisfied if R is reflexive, but, as before, our R need
not be reflexive.

If we reject (I), we also may reject (II), provided we have assumed heredity
and ancestrality. We call the resulting models ancestral Kripke models. These
models make a proper subclass of rudimentary Kripke models, and, in them,
both R and the inverse relation must be serial. Nothing else need be assumed
about R.

Next, even if we keep (I), but work with heredity and ancestrality, (II) is
again not necessary, and we get analogs of inductive Kripke models that we call
inductive ancestral Kripke models. As before, the conditions for valuations, and,
in particular, the clauses concerning connectives, are as in the standard concep-



582 KOSTA DOSEN

tion. We have only introduced ancestrality, which is anyway satisfied in standard
Kripke models.

In the first section, we investigate ancestral Kripke models in general, and
obtain strong soundness and completeness of the Heyting propositional calcu-
lus with respect to these models as a corollary of results of [2]. In the second sec-
tion, we investigate inductive ancestral Kripke models.

In the third section, we make another type of change. We reject (III), as well
as all other similar conditions, like converse heredity and ancestrality. This will
entail a change in the standard conditions for valuations concerning connectives,
which up to now we did not touch. We call the resulting models nonhereditary
Kripke models. With nonhereditary Kripke models, for questions we consider,
it is not interesting whether (I) is kept or not, because there is nothing like
heredity that our inductively defined valuations must inherit from atomic for-
mulas. It may be more interesting to see whether (II) must be kept. With our
main notion of nonhereditary Kripke model, which seems to be the simplest one
could think of, it must. With another notion of nonhereditary Kripke model,
briefly envisaged at the end, (II) can be replaced by a somewhat more general
assumption.

As ordinary Kripke models for Heyting's logic are related to an embedding
of Heyting's logic into the modal logic 54, so nonhereditary Kripke models are
related to some particular embeddings of Heyting's logic into S4 and a somewhat
weaker normal modal logic. We shall see that some, but not every, form of strong
soundness and completeness can be established for the Heyting propositional
calculus with respect to our main notion of nonhereditary Kripke model. With
respect to the notion where (II) is rejected, we will obtain only the ordinary
soundness and completeness.

The various types of Kripke-style models investigated in [2], [3], and here are
meant to be primarily an instrument for the analysis of the inner mechanism of
Kripke models. We do not propose rudimentary Kripke models as something to
replace standard Kripke models for the technical investigation of Heyting's logic.
For the time being, we want these new models to be only an instrument that will
help us to understand better the standard models.

It is not clear whether our new Kripke-style models also have a philosophi-
cal significance. Our intuition cannot remain the same if valuations are not de-
fined inductively, or if the accessibility relation is not reflexive and transitive,
or if heredity is not satisfied, or if the semantic clauses for connectives are changed.
However, our aim is not to work for a single new intuition to replace the old one.
It is rather an attempt to delimit a field within which we can look for new models
without ever leaving standard Kripke models too far behind.

Kripke models for intuitionistic logic are often taken as a paradigm when we
try to model other nonclassical logics. So, it might be worth knowing all the pos-
sibilities inherent in this paradigm, lest we should be stranded by a too narrow
imitation of features that are perhaps accidental. (In [4] one can find models for
logics based on weak implications, like relevant and linear implication, that are
in some respect analogous to rudimentary Kripke models.)

This paper is a sequel to [2] and [3], and a full understanding of a number
of things we want to say here presupposes an acquaintance with these earlier pa-
pers, especially [2]. However, we shall try to make this paper as self-contained
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as possible, short of repeating rather straightforward things. For some basic re-
sults (for example, soundness with respect to rudimentary Kripke models), we
must rely on [2] or on the acuity of the reader. As in the earlier papers, we con-
centrate on propositional logic and leave aside a possible extension of our ap-
proach to predicate logic.

/ Ancestral Kripke models Our propositional language has infinitely many
propositional variables, the binary connectives -», Λ, and v, and the proposi-
tional constant _L. We use the following metavariables, i.e. schematic letters:

propositional variables: p9q9r9...
formulas: A9B9C9...
sets of formulas: Γ, Δ, θ , . . .

possibly with subscripts or superscripts. As usual, A++B is defined as {A -+B) A
(B->A)9 and -*A as A -• JL. The set of all formulas is called L. In the metalan-
guage, we use =>, «=>, &, or, not, V, 3, and set-theoretical symbols with the usual
meaning they have in classical logic.

The Heyting propositional calculus H in L is axiomatized by the following
usual axiom-schemata:

(A -+ (B-+ O) -+ ((A -+B) - (A -> C))9 A -> (B-+A),

(C-+ A) -+ ((C-> B) -> (C-+ (A ΛB)))9 (AΛB)->A, (AΛB)-+B9

A^(AvB)9B^ (AvB), (AvB)-+ ((A - C) -> ( ( £ - C) - C)),

and the primitive rule modus ponens.
A frame is a pair < W, R) where W is a nonempty set and R a binary relation

on W. We use the following metavariables:

members of W: x,y9z9...
subsets of W: X,Y,Z9...

possibly with subscripts or superscripts; PW is the power set of W.
We define Rk

9 where £ is a natural number, by the following inductive
clauses:

xR°y <=* x = y9

xRk+1y «* 3z(xRkz & zRy).

It is clear that xRιy <=> xRy. We define R~k and R* by:

xR~ky <=>yRkx9

xR*y & (3k > 0)x#*y.

The relation i?" 1 is the relation inverse to R and /?* is the reflexive and transi-
tive closure of R.

On PW9 we define the operations Cone', where / is an integer, Cone and
Cone inv by:
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Cone1X = [x^yiyWx &y(ΞX)}9

ConeAr= {x:3y(yR*x&yeX)}9

Cone i n v^= {x:3y(xR*y &yeX)}.

In this section, we use only Cone1 and Cone"1, whereas Cone and Cone inv,
which are closure operations (see [10], Chap. I, §8) will be used in the next
section.

For every X^ W9 let -Xbe W - X, i.e. the complement of X with respect
to W. A set Xis hereditary iff X c -Cone" 1 -X, i.e., for every x:

xGX=> Vy(xRy^yEX).

A set X is conversely hereditary iff —Cone"1 —X <Ξ X9 i.e., for every x:

\/y(xRy => y G ̂ ) => x G X

It is easy to verify that X is hereditary iff Cone1 X Q X, i.e., for every x:

3y(yRx &yeX)^>xeX.

A set X is ancestral iff JΓ £Ξ Cone1 X, i.e., for every x:

xGX=> 3y(yRx&yeX).

Note that, if R is reflexive, every X is conversely hereditary and ancestral.
A hereditary and conversely hereditary X satisfies for every x:

x G X<* Vy(xRy => y G X),

whereas a hereditary and ancestral X satisfies for every x:

x G X& 3y(yRx &yGX).

Note that the first equivalence is analogous to the schema:

φ(x) t*Vy(χ = y=*φ(y)),

which can serve to axiomatize equality in the predicate calculus, whereas the sec-
ond equivalence is analogous to the schema:

φ(x) **ly(y = x&φ(y)),

which can also serve to axiomatize equality in the predicate calculus (cf. [5], §6).
A pseudo-valuation i ona frame < W, R) is a function from L into PW that

satisfies the following conditions for every A,B E L:

(v-+) v(A-+B) = -Cone"1 -(-v(A) U v(B))
= [x:Vy{xRy => (y G υ(A) =>y G v(B)))},

(VA) V(AΛB) = v(A) Π υ(B),

(vv) v(AvB) = υ(A) U υ(B)9

(v±) v(±) = 0.

We use X -+R Yas an abbreviation for -Cone" 1 - (—X U Y); i.e., -+R is the
binary operation involved in (f->). The conditions (v-+)9 (VA)9 (VV), and (v±)
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are exactly like the usual semantic clauses for connectives in Kripke models for
Heyting's logic.

A valuation υ on a frame (W,R) is a pseudo-valuation that satisfies:

(A-Heredity) for every formula A, the set v(A) is hereditary;
(Converse A -Heredity) for every formula A, the set v(A) is conversely hered-

itary.

In other words, for a valuation v, we have v(A) = —Cone"1 — v(A). Apseudo-
Kripke model is a triple < JV, R, v) where < JV9 R) is a frame and v a pseudo-
valuation on (W,R). A rudimentary Kripke model is a pseudo-Kripke model
(W,R, υ) where v is a valuation. Ordinary Kripke models are quasi-ordered ru-
dimentary Kripke models, i.e. rudimentary Kripke models (W,R, υ) where R is
reflexive and transitive. A formula A holds in (JV,R, v) iff v(A) = W.

Consider now the following condition:

C4-Ancestrality) for every formula A, the set v(A) is ancestral,

for which we can easily prove:

Proposition 1 Every pseudo-valuation that satisfies A-Ancestrality satisfies
Converse A-Heredity.

Proof: Suppose the pseudo-valuation υ on (W,R) satisfies yl-Ancestrality, and
suppose Vy(xRy ^y G v(A)). It follows that * G v((B-+B) -+A). Then, by A-
Ancestrality, we have 3y(yRx & y G v((B -> B) -• A)), which implies ly(yRx
& Vu(yRu => u G t>(̂ 4)))> and this implies x G t>(̂ 4).

So, every pseudo-valuation that satisfies A -Heredity and ^4-Ancestrality is
a valuation. We shall call such valuations ancestral valuations. Rudimentary
Kripke models (IV, R, v) where υ is ancestral will be called ancestral Kripke
models.

Converse ^4-Heredity and v(±) = 0 imply that, for every rudimentary
Kripke model, the relation R is serial, i.e., Vxly(xRy). Analogously, A-
Ancestrality and v(B-^B) = W imply that, for every ancestral Kripke model,
R~ι is serial, i.e., Vxly(yRx). So, in ancestral Kripke models, both R and R~ι

must be serial.
We need not assume anything besides the seriality of R and R~ι for frames

of ancestral Kripke models. For, if both R and R~x are serial, then, by letting
v(p) be either Woτ 0 , and by using (v->), (VΛ), (VV), and (v±) as clauses in
an inductive definition, we obtain an ancestral valuation v such that v(A) is ei-
ther Wor 0 (cf. Proposition 2 of [2]).

Since on every frame where R is serial, and where R~ι is not necessarily se-
rial, we can define a valuation v by letting v(p) be either Wor 0 as above (cf.
Proposition 2 of [2]), it is clear that not every valuation is ancestral, and, hence,
that not every rudimentary Kripke model is ancestral. A less trivial counterex-
ample is provided by the canonical rudimentary Kripke model (defined in [2],
§2). This is the model (WC9RC, vc), where Wc is the set of prime theories (i.e.,
consistent and deductively closed sets of formulas that have the disjunction prop-
erty), Rc is defined on Wc by:



586 KOSTA DOSEN

TRCA& ((Γ = Δ& 1A(A£T &VB(BeΓ orB^A EΓ)))

or

( Γ ^ Δ & Γ c A ) )

and vc(A) = {T G WC:A EiT}. Then we can check that υc is a valuation (as in
Proposition 12 of [2]). However, υc is not ancestral, since, for a theorem A of
H and for the set TH of theorems of H, we have:

TH E M Λ ) & not 1A(ARCYH & Δ E ι>cG4)).

That ARCTH is impossible is shown as follows. The prime theory Δ must be dif-
ferent from TH since we do not have YHRCYH. But Δ Φ TH & A c γH is equally
impossible, since that would mean that a theorem of His missing from a prime
theory.

The condition of ̂ 4-Ancestrality is trivially satisfied if, in (WyR, v), the re-
lation R is reflexive. However, v4-Ancestrality may be satisfied without R being
reflexive, as we have shown in the penultimate paragraph. This is also shown by
the following proposition, analogous to Proposition 7 of [2]:

Proposition 2 For every quasi-ordered rudimentary Kripke model (WyR,v),
there is an ancestral Kripke model < W\ R\v') where R' is neither reflexive nor
transitive such that, for every A, we have v(A) = W iff v\A) = W\

Proof: Let Wu W2, and W3 be mutually disjoint copies of W, each in one-one
correspondence with W. The point x from W corresponds to X\ from W\, ΛΓ2

from W2, and x3 from W^. On Wx and W3, we define, respectively, R\ and JR3

by:

(Vx,jE W)(x1Rιyι**xRy),

(vx,ye W)(x3R3y3^xRy)9

and, on W2, we define an irreflexive relation R2 by:

(vx,y E W)(x2R2y2<* (xRy &xΦy)).

Let now W = Wx U W2 U W3, and let R' be defined on W by:

Λ ^ ^ U Λ i U Λ a U K x ! , ^ ) : ^ ^ PΓ} U {<x2,x3> :xe W).

The relation R' is not reflexive because R2 is not reflexive, and it is not transi-
tive because <XI,JC3> £ R'. Next, for / E {1,2,3}, let v^A) = {JCZ E W^X E
y(^4)}, and let ι/(v4) = ̂ i(v4) U ̂ M ) U ̂ (^4). It remains to check that i;' is
an ancestral valuation on (W\Rf).

Note that the mapping / : W -> FF defined by /(JC, ) = Λ: is a pseudo-
epimorphism from <W/r/,Λ/> onto (W,R), since we have:

(vχhyjeWHχiR'yj*f(XiW(yj)),

(Vx, E FF'XV̂  E W)(f(Xi)Ry * (fy E ^ ) ( / ( ^ ) =y & XiR'yj))

(cf. [8], pp. 70-75). We also have for every xt E W and every A:

xiGv/(A)^f(xi)Sv(A).
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If, in < W\ R\ υ') of the proof above, we omit Wγ from W\ and hence also
Rx from R' and v\ (A) from v'(A), we obtain another nonreflexive rudimentary
Kripke model, but this rudimentary Kripke model is not ancestral.

It follows easily from results in [2], §1 that if is strongly sound and complete
with respect to ancestral Kripke models. Let Γ \-A mean as usual that there is
a proof of A in H from hypotheses in Γ, i.e., there is a sequence of formulas ter-
minating with A, each of which is either in Γ, or a theorem of //, or obtained
by modus ponens from formulas preceding it in the sequence. Then our strong
soundness and completeness may be stated as follows:

Proposition 3 For every T QL and every A EL:

Γ \-A& (*) for every (W,R,v), Π C G r v(C) = W^ v(A) = W,

«* {**) for every <W,R,v)9 Π C G Γ V(C) C V(A)9

where (W, R, v) ranges over ancestral Kripke models.

For soundness, we just use the fact that every ancestral Kripke model is a ru-
dimentary Kripke model, and, for completeness, the fact that every ordinary
quasi-ordered Kripke model is an ancestral Kripke model. Of course, this strong
soundness and completeness imply the ordinary soundness and completeness of
//with respect to ancestral Kripke models; namely, A is provable in //iff A holds
in every ancestral Kripke model. Proposition 2 guarantees that, for //, we can
also prove strong soundness and completeness, in both senses of Proposition 3,
as well as ordinary soundness and completeness, with respect to ancestral Kripke
models that are neither reflexive nor transitive (the proof of Proposition 7 of [2]
guarantees the same with respect to rudimentary Kripke models that are neither
reflexive nor transitive).

2 Inductive ancestral Kripke models In the third section of [2], we have in-
vestigated the maximal class of frames such that for every pseudo-valuation υ
the conjunction of the conditions:

(p-Heredity) for every propositional variable/?, the set v(p) is he-
reditary;

(Converse/i-Heredity) for every propositional variable/?, the set v(p) is con-
versely hereditary

implies A -Heredity and Converse A -Heredity. Here, we shall investigate the anal-
ogous maximal class of frames such that for every pseudo-valuation v the con-
junction of the conditions of p-Heredity and:

(/j-Ancestrality) for every propositional variable/?, the set v(p) is ancestral

implies ^4-Heredity and ^4-Ancestrality. These frames are interesting because on
them we can define ancestral valuations inductively. It is enough to define v
for propositional variables so that /7-Heredity and /7-Ancestrality hold, and use
(v-»), (VA), (VV), and (v±) as clauses in an inductive definition, in order to
obtain an ancestral valuation. Ancestral Kripke models on such frames will be
called inductive ancestral Kripke models. To describe these models, we shall first
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review some notions introduced in [2] and introduce some analogous new no-
tions.

For a frame (W,R), a nonempty X c w is called an ω-chain from x iff
there is a mapping/ from the ordinal ω onto X such that/(O) = x and (Vn G
ω)f(n)Rf(n + 1 ) . Let ω( c) = {X^ W\ X is an ω-chain from x]. A nonempty
X c= w is called an ω ~-chain from x iff there is a mapping / from ω onto X such
that/(O) = x and (Wi G ω)f(n)R~ιf(n + 1). Let αΠ*) = {Λ^ W\ Xisan ω~-
chainfrom x\.

Next, on PW, we define the operations Clω and Intω by:

C\ωX=[y:(VY<Ξω(y))YnX*0}9

lntωX=[y:(3Y<Ξω-(y))Yς:X}.

These operations resemble a closure and interior operation respectively, since they
satisfy:

X^C\ωX, \ntωX^X,

C\ω Clω X = Clω X, Intω X = Intω Intω X,

ciω x u ciω r c ciω (x u r), intω (^ n Y) c intω * n intω r.

If 7? is serial, then Clω0 = 0 , and, if/?"1 is serial, then W- λx&JV. However,
we need not have:

ci ω (x u Y) <Ξ ci ω j r u ci ω r, intω ̂ r n intω y c i n t ω (XΠY).

It is easy to show that:

Cone X is the least hereditary superset of X;

Clω X is the least conversely hereditary superset of X

(the second assertion is proved in Proposition 16 of [2]). So, ΛMs hereditary iff
X = Cone^f, and X is conversely hereditary iff X - Clω X. For Intω, we can
prove the following:

Proposition 4 The set Intω X is the greatest ancestral subset of X.

Proof: To show that Intω X is ancestral, suppose y G Int ω X Then there is a
Y G ω"( y) such that y c J a n d a z G Γ such that zRy. The set obtained from
Y by rejecting y is an ω~-chain from z included in X\ i.e., z G I n t ω X

To show that Intω Jf is the greatest ancestral subset of X, suppose Y is an-
cestral, Y^X, and y E Y. Then, by repeatedly using the ancestrality of Y, we
obtain a Zi such that Z\Ry and Zi E Γ, a Z2 such that Z2^Zi and Zi G 7, etc. The
set of all these zΛ's makes an ω~-chain from y included in X. So, y G Int ω X

As a corollary of this proposition, we obtain that X is ancestral iff X =
I n t ω X

It is easy to check that -Q,ox&inυ-X = [x: vy(xR*y => y G X)}9 and that
—Cone/Λy—, which is an interior operation, satisfies:

-Cone/Λl, -X is the greatest hereditary subset of X.

So, Cone is analogous to Clω and -Cone,,^- to Intω. Hereditary sets may be
characterized either as sets X such that X = Cone X or, alternatively, as sets X
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such that X = - C o n e ^ -X. However, an operation that applied to X would
give the greatest conversely hereditary subset of X need not exist, as the following
counterexample shows. Let W — {a,b,c,d\ and R = {<#,#>,<#,6>,<ό,c>,
<&,d),(c,c)9(d,d)}. Then the greatest conversely hereditary subset of [c,d]
does not exist ({c} and [d] are conversely hereditary, but [c,d] is not, since
Clω{c, d} = [b, c, d}). Analogously, an operation that applied to X would give
the least ancestral superset of X need not exist. A counterexample is obtained
by taking the frame of the previous counterexample with R inverted, i.e., W =
{α,6,c,rf} andi? = {(a,a),(b,a),(c,b),(d9b),(c,c),<d,d)}. Then the least an-
cestral superset of {a,b} does not exist ({a,b,c] and [a,b,d] are ancestral,
but {a, b] is not, since Intω{a, b] = {a}). Note that, in the frames of these coun-
terexamples, both R and R"1 are serial. Hence, these frames are appropriate for
ancestral Kripke models.

It is easy to check that, for every frame (W,R), the relation R is reflexive
iff (yX c W)C\ω X = X (see Proposition 17 of [2]), or, alternatively, iff (VX c
W)X=lntωX. Proposition 18 of [2] asserts that, if Xis hereditary, then ClωX
is hereditary. Analogously, we have the following:

Proposition 5 If X is hereditary, then Intω X is hereditary.

Proof: Suppose x G Intω Λfand xRy. Then there is a YG ω~(Λr) such that 7 c
Xy and Y U {y] G ω~(j>) Since X is hereditary, r U ( ^ ) c j , and, hence, y G
Int ω X

So, for every X, the set Clω Cone A" is hereditary and conversely hereditary,
and, for every hereditary and conversely hereditary X, we have X = Clω Cone X.
Analogously, for every X, the set Intω Cone X is hereditary and ancestral, and,
for every hereditary and ancestral X, we have X = Intω Cone X.

We can prove the following proposition, related to Proposition 19 of [2]:

Proposition 6 The condition:
(a) for every pseudo-valuation v on (W,R}9 if v satisfies p-Heredity and Con-

verse /7-Heredity, then v satisfies A -Heredity and Converse A -Heredity
is equivalent with the conjunction of the following conditions:

(al) for every X.Y^W, C\ω Cone X -*R C\ω Cone Y is hereditary,
(a2) for every XyY^W, Clω Cone ̂ U Clω Cone Yis conversely hereditary;
(a3) 0 is conversely hereditary.

Proof: We show first that (a) implies (al), (a2), and (a3). If (al) fails for some
X and y, then there is a pseudo-valuation v that satisfies /7-Heredity and Con-
verse /7-Heredity such that v(pχ) = Clω ConeX and v(p2) = Clω Cone Y, but
v(Pi -+Pi) is not hereditary. If (a2) fails, we proceed similarly to obtain that
v(pι vp2) is not conversely hereditary. If (a3) fails, then v(±) is not conversely
hereditary.

That the conjunction of (al), (a2), and (a3) implies (a) is shown by induc-
tion on the complexity of A. Note that the following conditions are satisfied for
every frame < W, R) and every X, Y <Ξ W:

Clω Cone X -+R Clω Cone Y is conversely hereditary;
Clω Cone X Π Clω Cone Y is hereditary and conversely hereditary;
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Clω Cone X U Clω Cone Y is hereditary;
0 is hereditary.

Let Cone~Λf = -ConeinvX (as in [2], §3). It follows from the proof of
Proposition 19 of [2] that the conditions (al), (a2), and (a3) can be expressed
equivalently as follows:

(al) Vx, z(xR2z => (VZ G ω(z))lt(xRt &teClω Cone {z} &t£ Clω Cone" Z));
(a2) Vx{\fXuX2 G ω(z))iy(xRy &y£Clω Cone~X1 &y£Clω C o n e ~ ^ 2 ) ;
(a3) Vxly(xRy), i.e., R is serial.

Condition (al), called prototransitiυity in [2], follows from transitivity (let t be
z), but not the other way around. Condition (a2), calledprotoreflexivity in [2],
follows from reflexivity (let y be x), but not the other way around (the intuitive
meaning of these conditions is explained in more detail in [2]).

Now, we can prove the following analog of Proposition 6:

Proposition 7 The condition:
(b) for every pseudo-valuation v on (W,R}9 if v satisfies /?-Heredity and p-

Ancestrality, then v satisfies yl-Heredity and >1-Ancestrality
is equivalent with the conjunction of the following conditions:

(bl) for every X9Y^ W, Intω Cone X ->R Intω Cone Y is hereditary;
(b2) for every J J c w, Intω Cone X Π Intω Cone Y is ancestral;
(b3) for every I J c W9 Intω Cone X -+R Intω Cone Y is ancestral.

Proof: We show first that (b) implies (bl), (b2), and (b3). If (bl) fails for some
X and Y, then there is a pseudo-valuation υ that satisfies p-Heredity and
jP-Ancestrality such that v{pλ) = Intω ConeX and v(p2) = IntωCone Y, but
v(P\ ->Pi) is not hereditary. If (b2) or (b3) fails, we proceed similarly to obtain
that v(pι v/?2), or respectively v(pχ ->p2), is not ancestral.

That the conjunction of (bl), (b2), and (b3) implies (b) is shown by induc-
tion on the complexity of A. Note that the following conditions are satisfied for
every frame (W, R} and every X, Y c χ:

Intω Cone X Π Intω Cone Y is hereditary;
Intω Cone X U Intω Cone Y is hereditary and ancestral;
0 is hereditary and ancestral.

It is a lengthy, but not very difficult, exercise to show that the conditions (bl)
and (b2) can be expressed equivalently as follows:

(bl) vx,z(xR2z^>(vZeω-(z))lt(xRt&telntωConeZ&t£lntωCone"{z}));
(b2) vx(vXuX2eω-(z))3y(yRx&yelntωConeX1 &^GlntωConeJΓ2)-

The analogy of (bl) with (al) is obvious; (bl) also follows from transitivity (let
t be z), but not the other way around. Similarly, (b2) is analogous to (a2); (b2)
also follows from reflexivity (let y be x), but not the other way around. By def-
inition, (b3) may be written as:

(b3) (VX9 Y c W)\tx(>ty(xRy => (y G IntωConeAΓ => y G IntωCone Y)) =>
lz(zRx & Vί(xRt => (t G Intω ConeX => t G Intω Cone Y)))).
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When we instantiate X and Y by the same set, it is clear that (b3) implies that
Vxlz(zRx), i.e. that R~x is serial. When we instantiate X by JFand Y by 0 ,
then (b3) implies that Vxly(xRy), i.e. that R is serial.

These considerations show that the assumptions of reflexivity and transitivity
for ordinary Kripke models do not function in exactly the same manner. Tran-
sitivity secures (al) and (bl), and is tied to implication. Reflexivity secures (a2)
and (b2), and is hence tied to disjunction and conjunction, but it also secures (a3)
and (b3), and is hence also tied to ± and implication. Reflexivity also secures at
one stroke Converse A -Heredity and ^4-Ancestrality. With reflexivity, we have
reduced assumptions about valuations to an assumption about frames, which
does not mention valuations.

The strong soundness and completeness of H with respect to inductive an-
cestral Kripke models is an easy consequence of Proposition 3 and the fact that
ordinary quasi-ordered Kripke models are inductive ancestral Kripke models.

3 Nonhereditary Kripke models In [2] and [3], and the previous sections
of this paper, we have Kripke-style models for //that differ from ordinary quasi-
ordered Kripke models only in the conditions concerning frames. The conditions
of Converse A -Heredity and ^4-Ancestrality, which we assumed for valuations
in addition to ^-Heredity, are satisfied in ordinary Kripke models, because the
frames of these models are reflexive. Since the conditions for valuations concern-
ing connectives, which we have stated in the definition of pseudo-valuation, do
not differ from the standard conditions, we may say that we have not altered the
conditions for valuations. In this section, we shall consider Kripke-style mod-
els for //where conditions for frames need not be changed, i.e., these frames
may be quasi-ordered, but conditions for valuations will be changed. We want
to show that there are such Kripke-style models where none of the heredity con-
ditions, A -Heredity, Converse A -Heredity, and ^4-Ancestrality, need be satisfied.
This will be achieved at the cost of changing also the conditions for valuations
concerning connectives. We shall find these Kripke-style models by considering
some particular embeddings of //into the modal logic SA (the ordinary Kripke
models for //are inspired by another such embedding; see [9], p. 92). So, we
shall first introduce these embeddings.

Let us enlarge our propositional language with the unary connective D, and
let LD be the set of all formulas of this enlarged language. The modal logic SA
in LD is axiomatized by adding to our axiomatization of//the following axiom-
schemata:

((A -> B) -> A) -• A,

Ώ{A^>B)->(nA-+ΏB)y ΠA-+A, ΠA -> ΠΠA,

and the primitive rule of necessitation (i.e., from A, infer ΠA).
Consider now the translations (i.e. one-one mappings) t and s from L into

LD defined by the following inductive clauses:

t(p)=p, s(p)=p,

t(A-^B) = Πt(A)-+Πt(B), s(A^B) = Πs(A)->s(B)9
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t(AΛB) = Πt(A)ΛΠt(B), S(AΛB) = S(A)ΛS{B)9

t(AvB) = Ut(A) v Πt(B), s(AvB) = Πs(A) v Bs(B)9

t(±) = _L, s(±) = _L.

The translation t prefixes D to every proper subformula of a formula of L, and
s resembles a translation considered in ([7], IV, §5.1) for embedding intuitionistic
logic into linear logic (the translation related to ordinary Kripke models for H
prefixes D to propositional variables and implications; cf., for example, [6],
Chap. 3, §7). In order to connect the translations t and s, we will use the follow-
ing theorems of 54:

(1) Ώ(ΠA-+ ΠB)++Ώ{ΠA-+B),

(2) Π(ΠAΛΠB)++Π(AΛB).

Note that (1) and the rule converse to necessitation (i.e., from ΠA, infer A) may
replace ΠA -• A and ΠA -• ΠΠA in the axiomatization of S4. We can prove
by induction on the complexity of A that, for every A:

(3) Πt(A)++Πs(A)

is a theorem of S4. In the induction step, we use (1) when A is of the form B -•
C, and (2) when A is of the form BΛC. Then we can easily establish the follow-
ing proposition:

Proposition 8 For every A E L:

A is provable in H^t(A) is provable in S4,

<&s(A) is provable in 54.

Proof: Note that Πt(A) is the result of prefixing D to every subformula of A.
It is well-known that A is provable in //iff Πt(A) is provable in 54. By (3), we
have that A is provable in //iff Πs(A) is provable in S4. Then we use the fact
that 54 is closed under necessitation and the rule converse to necessitation.

Next, to fix notation and terminology, we introduce as follows the standard
Kripke modelling of 54. A modal Kripke model for 54 is a triple < W, R, v) where
(W,R) is a quasi-ordered frame and v:LΠ -+ PWsatisfies:

v(A^B) = -v(A)Uv(B),

V(AΛB) =V(A)ΠV(B),

v(AvB) = v(A) Uv(B),

v(±) = 09

v(ΠA) = -Cone"1 -υ(A)

= [x:Vy(xRy^>ye v(A))}.

As before, A holds in (W,R, v) iff v(A) = W.

Let Γ h 5 4 A mean that there is a proof of A in 54 from hypotheses in Γ
without necessitation, i.e., there is a sequence of formulas terminating with A
each of which is either in Γ, or a theorem of 54, or obtained by modus ponens
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from formulas preceding it in the sequence; and let Γ II-54 A mean that there is
a proof of A in S4 from hypotheses in Γ with necessitation, i.e., there is a se-
quence of formulas terminating with A each of which is either in Γ, or a theo-
rem of SA9 or obtained by modus ponens or necessitation from formulas
preceding it in the sequence. Next, let DΓ = {DC: C E Γ}. It is easy to estab-
lish the following equivalence:

(4) Γ l h 5 4 - 4 ^ Π Γ \-S4A.

We need this equivalence to prove the second of the following two strong sound-
ness and completeness propositions (for the proof of these propositions, we rely
on standard notions of modal logic, like the notions of canonical model and gen-
erated submodel; see, for example, [8]):

Proposition 9 For every T ̂  LΠ and every A E LΏ:

Γ VSAA^ (**) for every {W9R9v)9 Π C e Γ v(C) c V(A)9

where (W9 R9 v) ranges over modal Kripke models for S4.

Proof: (Soundness) We use the fact that, for [-54, we have the deduction theo-
rem; i.e., Γ U ( C j \~S4 B implies Γ \-S4 C-+B.

(Completeness) We can infer from not Γ \-S4 A that Γ U {-*A} can be ex-
tended to a maximal consistent set Γ'. In the canonical model, Γ' E Π C G Γ V(C)

a n d Γ ' £ v(A).

Proposition 10 For every Γ c l Q and every A E LΠ:

Γ\\-S4A& (*) for every (W9R9v)9 nCGTv(C) = W^ v(A) = W9

where < W9 R, v) ranges over modal Kripke models for S4.

Proof: (Soundness) From the left-to-right direction of (4), we have that Γ II-54 A
implies DΓ hS4^4. Since v(C) = JFimplies v(ΠC) = W, we have that Π C G r
v{C) = Wimplies Π c e Γ v( DC) = W. Then it is enough to apply the soundness
part of Proposition 9.

(Completeness) From the right-to-left direction of (4), we have that not
Γ Ihs4 A implies not DΓ \-S4 A. So, by the completeness part of Proposition 9,
there is a (W9R, v) and an x E JFsuch that xE. Π C e Γ v(ΠC) a n d x ^ v(A),
Then take the submodel (Wx,RX9vx) of (W9R,υ) generated by x. For this
model, we have Π C G Γ v(C) = Wx and v(A) Φ Wx.

It is clear that Γ \-S4 A implies Γ lhs4 A and that (**) implies (*), but the
converse implications fail, since we have [p] \\-S4 Πp and not [p] \-S4 D/λ It is
also clear that the deduction theorem of the soundness part of the proof of Prop-
osition 9 fails for H-54, since p -> Πp is not provable in S4.

We can now strengthen Proposition 8. Namely, if Γ h A means, as in the
first section, that there is a proof of A in H from hypotheses in Γ, and if t(Γ) =
{t(C):CeT} and5 (Γ) = {s(C):CeΓ}9 then we can prove:

Proposition 11 For every Γ c i and every A E L:

T\-A^Πt(T) \-S4t(A)9

*t{Γ)\\S4t(A)9
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*Πs(Γ)\-s4S(A),

<*S(T)\\S4S(A).

Proof: To establish the third equivalence, we use Proposition 8 and the fact that,
for both h and h5 4, we have the deduction theorem. Then we obtain the re-
maining equivalences by applying (3) and (4).

It follows easily that, for every Γ c l and every A E L:

t(T)\-s4t(A)*Γ\-A,

s(T)\-S4s(A)=>Γ\-A9

but the converse implications may fail, since we have neither {p9Πp -> Ώq} Vs4Q
nor [p9Πp^q] hS4 #.

The embedding of i f into S4 by the translation s, from Proposition 8, sug-
gests the following Kripke-style models for H, which we shall call nonhereditary
Kripke models. A nonhereditary Kripke model is a triple {W, R9 υ) where (W9 R)
is a quasi-ordered frame and v:L^>PW9 called a nonhereditary valuation, sat-
isfies the following conditions for every A, B E L:

(vs-+) v(A -+B) = Cone"1 -v(A) U v(B)
= [x:Vy(xRy =>ye. v(A)) =*xe v(B)},

(VA) V(AΛB) = v(A) Π v(B)9

(vsv) v(AvB) = -Cone"1 -v(A) U -Cone"1 -v(B)
= {x:Vy(xRy=*ye v(A)) orvy(xRy=>ye v(B))}9

(v±) v(±) = 0.

This differs from the conditions for pseudo-valuations in replacing (v-+) and
(vv) by (vs-+) and (vsv). Note that now we have:

xe υ(^A) & 3y(xRy & y £ v(A)),

which is quite different from the usual semantic clause for -<, induced by con-
ditions for pseudo-valuations:

xe v(^A)**Vy(xRy=>y£ v(A)).

As before, A holds in < W9R, υ) iff v(A) = W.
From Proposition 8 and the standard Kripke modelling of 54, it is easy to

infer the ordinary soundness and completeness of H with respect to nonheredi-
tary Kripke models; i.e., for every A E L:

(0) A is provable in H&A holds in every nonhereditary Kripke model

(cf., for example, [6], Chap. 3, §7). Actually, we can also prove the following
strong soundness and completeness:

Proposition 12 For every V Q L and every A E L:

T\-A**{*)forevery{W9R9v)9 nCGTv(C) = W=*v(A) = W9

where (W,R9v) ranges over nonhereditary Kripke models.

Proof: (Soundness) If Γ is empty, then we use the soundness direction of (0).
If Γ is not empty and V \-A9 then, for some [CΪ9..., Cn] c Γ , where n > 1,
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(Ci Λ . . . Λ Cn) -+A is provable in //. By the soundness direction of (0), for ev-
ery nonhereditary Kripke model (W,R, v), v((Cι Λ . . . Λ Cn) -+A) = W. We
easily infer that, if υ(Cχ Λ . . . Λ Cn) = W, then v(A) = W, from which (*)
follows.

(Completeness) Suppose not Γ hA. Then, by Proposition 11, not s(T) \\-S4

s(A), and, by the completeness part of Proposition 10, there is a modal Kripke
model for 54 in which all the formulas in s(T) hold, but s(A) does not hold.
This model yields a nonhereditary Kripke model that falsifies (*).

However, we cannot prove the strong soundness and completeness of//with
respect to (**) of Proposition 3, because, for nonhereditary Kripke models
(W9R, v), we need not have:

Γ \-A => (**) for every (W,R, F>, Π C e Γ v(C) g υ(A).

For example, we have {p,p~^>q} hq, but we need not have v(p) Π v(p-^q) c;
υ(q). We falsify this last inclusion in the nonhereditary Kripke model where
W = { a , b } 9 R = « α , α > , < α , & > , < & , b } } 9 v ( p ) = [ a ] , a n d υ ( q ) i s e i t h e r 0 o r { b } ;
in this model, aEv(p)Πv(p^>q) and a £ v(q) (cf. the remark after the proof
of Proposition 11, and Proposition 9).

The following algebraic fact stands behind this failure of strong soundness
and completeness with respect to (**). In an arbitrary frame, let X -+s Fbe an
abbreviation for Cone"1 — X U Y; i.e., -*5 is the binary operation involved in
(vs->). Then we can prove:

xn Y^Z=>XQ Y^SZ,

but the converse implication may fail. In the frame of our counterexample above,
we have [a, b] £ [a] ->s 0 , but we don't have [a, b] Π [a] c 0 (we may put
[b] instead of 0 as well). This means that ->s is not the residual of Π, and that
we cannot use it to get the relative pseudo-complement of a Heyting algebra
where Π is the meet operation. On the other hand, in [2], it is explained how the
binary operation -+R involved in (v-+) makes the relative pseudo-complement
of a Heyting algebra of hereditary and conversely hereditary sets where Π is the
meet operation. In the context of ancestral Kripke models, we have the follow-
ing analogous fact. For every frame (W9 R) and every nonempty set A of hered-
itary and ancestral subsets of JFclosed under ->R and Π, for every X9Y,ZEA,
we have:

XΠ YQZ&XQ Y-+RZ.

When we verify this equivalence from left to right, we use the assumption that
Xis hereditary. For the other direction, we first establish that WE. A (there is
a VinA and V-+R V — W\ since W\% ancestral, R~ι must be serial). Then we
use the assumption that Y is hereditary and W ->R Z ancestral (cf. the proof of
Proposition 1).

The frames of nonhereditary Kripke models must be quasi-ordered. This can
be inferred from the fact that S4 is the weakest normal modal logic in which H
can be embedded by s. Namely, s(p -*/?) is Πp -*p, and, for every normal mo-
dal logic, s(p -> ((/? vp) v (p vp))) is equivalent with Πp -» ΠΠp.

An alternative notion of nonhereditary Kripke model may be obtained by re-
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lying on the translation t instead of s. In the conditions for nonhereditary valu-
ations, we can replace (vs-+) and (VA) by:

(vt-+) v(A -+B) = Cone"1 -v(A) U -Cone" 1 -v(B)
= {x:Vy(xRy => j> G v(A)) => Vy(xRy => j> G v(B))},

(vtA) V(AΛB) = -Cone" 1 -v(A) Π -Cone" 1 -v(B)
= [x:Vy(xRy^>yGv(A)) &Vy(xRy=>y£ v(B))}.

With this alternative notion of nonhereditary Kripke model based on quasi-
ordered frames, we could rewrite most of this section with essentially the same
results.

If we replace (vs-+) and (VA) by (t;,->) and (V(A), we can introduce a fur-
ther change in our notion of nonhereditary Kripke model by rejecting the as-
sumption that the frames of these models are quasi-ordered. Instead, for these
frames, we assume only R2 = R, i.e.:

Vx9y(xR2y^xRy),

which is transitivity and its converse, called weak density. Then we can still prove
(0), i.e. the ordinary soundness and completeness of//with respect to these new
nonhereditary Kripke models. This can be inferred from the fact that the weak-
est normal modal logic in which H can be embedded by t is obtained from our
axiomatization of 54 by replacing ΠA ->A by ΠΠA -+ ΠA (this system is called
Kt'° in [1], and the translation t is there called t'\ note that, here, ± is primitive
and -i defined). The necessity of UUA++ UA is inferred from the presence of
((B-+B)-+A) ++A in//.

Actually, for proving the necessity of R2 = R, it does not matter whether we
take (VA) or ( I ^ A ) as our condition for conjunction. (Note, by the way, that,
in a normal modal logic with UUA ++ UA, we can prove D ( U A A UB) ++
U (A A B ) . ) It equally does not matter whether, with (t/5->) instead of (vt->),
we assume (VA) or ( v t A ) . Reflexivity and transitivity are necessary in either
case. So, the change hinges only on implication.

However, we cannot prove the strong soundness and completeness of H
with respect to nonhereditary Kripke models with (vt^>) and (IVΛ) based on
frames that must satisfy only R2 = R. A counterexample is obtained by taking
W= {a,b}9 R = {<tf,&>,<&,&>}, v(p) = W9 and v(q) = {b}. It is clear that
R2 = R and, by (vt-+), we obtain v(p -> q) = W. Since, of course, we have
{p>p-*q} I" Q> strong soundness with respect to (*), and a fortiori (**), must
fail.
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