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Some Independence Results Related

to the Kurepa Tree

RENLING JIN

Abstract By an c^-tree we mean a tree of power ω{ and height ω!. Under
the assumption of CH plus 2ωi > ω2 we call an ω rtree a Jech-Kunen tree if
it has K many branches for some K strictly between a?! and 2ω i. We call an
α^-tree being ωi-anticomplete if it has more than α>i many branches and has
no subtrees which are isomorphic to the standard ω!-complete binary tree.
In this paper we prove that: (1) It is consistent with CH plus 2ωi > ω2 that
there exists an α^-anticomplete tree but no Jech-Kunen trees or Kurepa
trees; (2) It is independent of CH plus 2ωi > ω2 that there exists a Jech-
Kunen tree without Kurepa subtrees; (3) It is independent of CH plus 2ωi >
ω2 that there exists a Kurepa tree without Jech-Kunen subtrees. We assume
the existence of an inaccessible cardinal in some of our proofs.

Let Γ be a tree. For an ordinal a, Ta is the α-th level of Γ and T\ a =
\Jβ<a Tβ. Let ht(T), the height of Γ, be the smallest ordinal λ such that Γλ = 0 .
By a branch of Γwe mean a linearly ordered subset of Γ which intersects every
nonempty level of Γ. Let (B(Γ) = {B:B is a branch of Γ}. For a t G Γlet
T(ί) = {sG T:s and t are comparable}.

Let Γ b e a tree. We recall that:
Γis an ωi-tree if | Γ | = ω{ and ht{T) = ω^ Without loss of generality we

sometimes assume that <Γ,<Γ> = <ωi,<Γ> with unique root 0 if Γis an ω r tree.
An ωi-tree T is called a Kurepa tree if | Γ α | < ωi for any a < ω\ and

\(Ά(T)\>ωι.
An ωi-tree Γis called a Jech-Kunen tree if ω{ < \(Ά(T)\ < 2ω i.
T is a ̂ w^ree o/ Γif T c Γand < r = < r Π 7" x T (Γ inherits the or-

der of T). For an ordinal λ we call <2< λ,c> a standard λ-complete binary tree.
A tree is called a λ-complete binary tree if it is isomorphic to <2< λ,c>. A sub-
t r e e T o f Γ i s c a l l e d c l o s e d d o w n w a r d i f f o r a n y t' G T ' , [ t e T: t < τ t ' } Q T'.

An coptree Γis called an ωι-anticomplete tree if | (B(Γ)| > ω! and Γhas no
ωi-complete binary subtrees.
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Facts
(1) Both Kurepa trees and Jech-Kunen trees are ωi-anticomplete trees;
(2) Under CH and 2ω i > ω2, a Jech-Kunen tree is also a Kurepa tree if every

level of it is countable;
(3) Under CH and 2ωi > ω2, a Kurepa tree is also a Jech-Kunen tree if it has

fewer than 2ω i many branches.

The independence of the existence of Kurepa trees was proved by Silver (see
[5]). In [2], Jech constructs a model of CH plus 2ωi > ω2, in which there is a
Jech-Kunen tree. In fact, it is a Kurepa tree with fewer than 2ωi branches. The
independence of the existence of Jech-Kunen trees under CH plus 2ωi > ω2 was
given by Kunen in [4], in which he gave an equivalent form of Jech-Kunen trees
in terms of compact Hausdorff spaces. The detailed proof can be found in [3],
Theorem 4.8.

The technique used by Silver and Kunen to kill Kurepa trees and Jech-Kunen
trees is to show that if an ωrtree Γhas a new branch in an ωx -closed forcing ex-
tension, then T should have an ωt-complete binary subtree. So in their models
all ω^anticomplete trees are also killed.

In this paper we discuss two questions: (1) Assuming CH plus 2ωi > ω2, can
we kill all Kurepa trees and Jech-Kunen trees without killing all ωi-anticomplete
trees? (2) How different are Kurepa trees and Jech-Kunen trees? For background
in trees see Todorcevic [6]; for background in forcing see Kunen [5]; and for Gen-
eralized Martin's Axiom see Weiss [7], §6. By an inaccessible cardinal we mean
a strongly inaccessible cardinal.

Before proving theorems we need more notation of posets (partially ordered
sets with largest elements). We always let 1P be the largest element of a poset P.

Let /, / be two sets and λ be a cardinal.

Fn(I,J,λ) = [/:/isafunction,/g/x/and | / | < λ)

is a poset ordered by reverse inclusion. We omit λ if λ = ω.
Let / be a subset of an ordinal K and λ be a cardinal.

Lv(I,λ) = {/:/is a function,/g (I x λ) x κ9 \f\ < λ
and V<α,|3> e dom(f)(f(a,β) G a)}

is a poset ordered by reverse inclusion.
In forcing arguments we let ά be a name for a and a be a name for ά. We al-

ways assume the consistency of ZFC and let Mbe a countable transitive model
of ZFC

Theorem 1 Assume the existence of an inaccessible cardinal. Then it is con-
sistent with CH plus 2ωi > ω2 that there exists an ωranticomplete tree but there
are neither Kurepa trees nor Jech-Kunen trees.

We need a lemma from Delvin [2].

Lemma 1 Let P, P' be two posets in M such that P has c.c.c. and P' is
ω\-closed in M. Let Gψ be a Ψ-generic filter over Mand Gψ> be a W-generic fil-
ter over M[GΨ]. Let T be an ωrtree in M[GΨ]. If T has a new branch B in
M[GΨ] [GΨ'] - M [ G F ] , then T has a subtree T' in M[GΨ], which is iso-
morphic to the tree <2<α>1 Π M9<Ξ:) (standard ωγ-complete binary tree in M).
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Proof: First we work within M. In the proof we always let / = 0,1. Without loss
of generality we can assume that

1P Ihp U P ' \\-Ψ'(B is a branch of Γ)).

Claim 1 Let a < ωx and q G IP'. Then there is a q' <p> q such that lp Ihp
(Φ(a9 q'9T9B))9 where

Φ(α, q, t,B) =df (ly G ta)(q \\-Ψ> (y G B)).

Proof of Claim 1: See [1], Lemma 3.6.

Claim 2 Let a<ωu qEΨ' and lp Ihp (Φ(α, q, f9 B)). Then there is a β <
ωi, β > a and qt <Ψ> q such that lp Ihp (V(a9β9q9q°9q

1

9f9B))9 where

Ψ(a9β9q9q°9q
ι

9T9B) =df [ifxe ta and q lhP' ( x G 5 ) , then there are

x' G fβ9 x° Φ xι and x <Tx* such that qi lhP' (xz G Λ)].

Proof of Claim 2: See [1], Lemma 3.6.

Claim 3 Lei δ be an ordinal below ω\. Let qy: y < δ> be a decreasing se-
quence in IP' and (ay: γ < δ> be an increasing sequence in ωx such that 1Ψ Ihp
( Φ ( α 7 , qy9 f9B)) for all y < δ. Let ocδ = sup{α γ : y < δ]. Then there is a q <P<
qΊfor ally<δ such that 1 P Ihp (Φ(α δ , q919 B)).

Proof of Claim 3: Since IP' is ωι-closed in M, there is a qr G P r such that
tf' ^P' ^ fo r aU 7 < δ. By Claim 1 there is a ^ < p , # ' such that \Ψ Ihp (Φ(o:δ,
r̂, T9B)). This ends the proof of Claim 3.

We now prove the lemma. We construct a subset Ψ = [ps:sG 2 < ω i } of P'
and a subset O= {as:sG 2 < ω i } of ω! in Msuch that

(1) the map s^ps is an isomorphic imbedding from the standard ωi-com-
plete binary tree to IP'.

(2) Vs91 G 2 < ω i (sQt<mdsΦt^>as<at).

(3) <v«» = cv<i> for all s G 2 < ω i .
(4) lp Ihp (Φ(α5, A , Γ,5)) for all 5 G 2 < ω ' .

(5) lplhp (*(aS9as*φ>9pS9ps~<0>,Ps^i>,f9B)) for all s G 2 < ω i .

Let α<> = 0 and/7<> = l p . Assume that we have as and ^ for all s G 2 < ω i .

C α ^ 1: a = γ + 1.

Let s1 G 2 7 . Since 1P Ihp (Φ(aS9pS9 f9 B))9 then there is a β < ωx, /J > as and
r̂' <^/7 5 such that lp lhP (Ψ(aS9β,pS9q°9q

ι, T9B)) by Claim 2. Let <v<f.> = β
and/75</> = ^'. (Note that q°9q

ι are incompatible by Claim 2.)
Let G be any IP-generic filter over M. Then M[G] t= [Φία ,̂/?-?, T9B)].

Hence in M[G] there is an x G Γ?J such that ps Ihp- ( x G 5 ) . Since M[G] \=
[^(oίS9as^oy9pS9ps^0>9ps^ι)9 T,B) and x G Γ α J , then there are xi G Γ^^^
such that pS'O> Ihp- (x' G ,0) in M [ G ] . This implies that lp lhF (Φ(as~<i>9

Case 2: a is a limit ordinal below ωi.

Let s G 2 α . Since <α5| j8: j8 < a) is increasing in ωi, {ps\β: β < α> is decreas-
ing in IP' and lp Ihp (Φ(α5|0,/?5|0, T9B)) for all β < a9 then there is an
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as = supfoyi^:β < a] and a/?5 ^w ps\β for all β < a such that lΨ \\-Ψ (Φ(o:5,
pS9T9B)) by Claim 3.

We now work within M[GΨ] to construct a subtree T = [ts:s G 2 < ω i Π
M} of T such that

(1) the map s •-> ί5 is an isomorphic imbedding from <2< ω i Π M,<Ξ> to Γ.
(2) ts G 7^ and /?5 lhP<(ts G £) for all s G 2 < ω i Π M.

Let /<> = 0, the root of T Assume that we have ts for all 5 G 2 < α Π M.

Owe 1: a = β + 1.

Let5G 2^ ΠM. Since/?Jt-p' (^GB) and * ( α 5 , αr<0>,Λ>/V<o>,/?^<i>, T7,B)
is true, there are V G Γαj.<0> such that t <τ t\ t° Φ tι and/75^/> Ihp' (^ G B).

Let ^ </> = ί1'for/ = 0,l.

Case 2: a is a limit ordinal below ω^

Let s G 2α Π M. Since Φ(α5,/?5, Γ, 5) is true, there is an x G Tas such that
/?Jhp' (xGB). Since Vj8<α (/?5 < A|/s), thenps lhP' (4)/3 G 5 ) . Now ts\β <τx
because α5 > α^^ for all β < a.

Let ts = x.
We have now finished construction and T' is just the required subtree of T.

Proof of Theorem 1: Let K be an inaccessible cardinal, Ψ\ = Lv(κ, ωi), P 2 =
Fn(κ+

92,ωι) and P 3 = FΛ(ω!,2) in M. Let Gx be a Pi-generic filter over M,
M' = M[GX], G2 be a P2-generic filter over M\ M" = M'[G 2 ], G3 be a Pa-
generic filter over M" and Λ/w = M"[G3]. We want to show that M'" 1=
[C//,2ωi = ω3 and there exists an c^-anticomplete tree but there are neither
Kurepa trees nor Jech-Kunen trees].

We list some facts first:

(1) M' \= [CH9 2ωi = ω2 = K and there are no Kurepa trees]. The proof can
be found in [5], p. 261.

(2) M" V [CH, 2ωι = ω3 = κ+ and there exist neither Kurepa trees nor
Jech-Kunen trees]. See Juhasz [3], Theorem 4.8, for the proof.

(3) M"Ύ\CH9 2 ω i = ω 3 ] .

Claim 1 There exists an ωι-anticomplete tree in M"'.

Proof of Claim 1: Let Γbe an ωx -complete binary tree in M". We want to show
that Γis an ωi-anticomplete tree in M'". Since in M'", \(R(T)\ > |((B(Γ))M//1 =
ω3, it suffices to show that Γhas no ωi-complete binary subtrees in M"'.

Suppose that is not true. Then Γhas an ωi-complete binary subtree T' =
{ts:sG 2<ωi} in NT". Since T' \ω is countable and T' £T=ωu then there is a
δ < ωi such that 7" | ω G M"[G3 Π Fn(δ,2)]. Let/G 2ω be a new function in
M'" -M"[G3ΠFn(δ,2)]. Then Cf= {tf\n: nGω}is not in ΛT[G3 ΠFn(δ,2)].
But Cf = {t G TI ω: t <τ tf] which is in M"[G3 Π Fn(δ,2)]. This contradiction
ends the proof of Claim 1.
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Claim 2 There exist neither Kurepa trees nor Jech-Kunen trees in M'".

Proof of Claim 2: Let Γbe an α^-tree in M'". Then there is a θ < K and a sub-
set / <Ξ κ+ of power ωi such that

TEM[G{ Π Lv(θ, ωx)] [G2 Π Fn(I,2, W l )] [G 3 ] .

Let Pi = Lv(β,ωi), Pf = Lu(κ - β.ω^, P 2 = Fn(I,2,ωx), Ψ'ί = Fn(κ + -
1,2, ωi). Then Ψλ = Pi x Pΐ, P 2 = P 2 x P5 and all of these posets mentioned
here are ωx -closed. Let G[ = GxCλ Ψ\, G'{ = Gγ Π Pf, G£ = G2 Π P 2 and O2 =
G2 Π P5. Then Gj = G[ X Gf, G2 = G'2x G2' and

M"=M[Gi][Gf][C%][G£][G3] = Af[GJ] [GJ] [G3] [Gf] [GJ]

Since

M[Gί][Gί][σ 3 ]N[|(B(Γ) | <κ],

then there is a new branch of T in M'" - M[G[] [G2] [G3] if T has more
than α>! many branches in M"\ Since P 3 has c.c.c. and Pi x P 2 is ω!-closed in
M[G[] [G 2], then there is a subtree Γ' of ΓinMfGΠ [G2] [G 3], which is iso-
morphic to <2< ω i Π Λf [GJ] [G£],£> by Lemma 1.

This is impossible if T is a Kurepa tree because 7" | ω + 1 is uncountable. This
is also impossible if T is a Jech-Kunen tree because 2 < ω i Π M[GΠ [G2] =
2 < ω i ΠM[Gi][G 2 ] and |(B(Γ)| > |(B(Γ')| > (2 ω i ) M [ G l ] [ G 2 ] = κ+ = 2ωι mhΓ".

Theorem 2 Assume the existence of an inaccessible cardinal. Then it is con-
sistent with CHplus 2ωι > ω2 that there exists a Jech-Kunen tree which has no
Kurepa subtrees.

Proof: Assume that K is an inaccessible cardinal, IP! = Lυ{κ,ω\), Ψ2 =
Fn(ωu2) in M. Let Gγ be a Pi-generic filter over M, M' = [Gj], G2 be a P 2 -
generic filter over M' and M" = M'{G2]. Let P 3 = Fn(ω3,2,ωλ) in M", G3 be
a P3-generic filter over M" and M w =M"[G3], We want to show that M'" 1=
[Ci/, 2ωi = ω3 and there exists a Jech-Kunen tree which has no Kurepa sub-
trees] .

We list some facts first:

(1) M' 1= [CH, 2ωi = ω2 and there are no Kurepa trees].
(2) M" 1= [CH, 2ωι = ω2 and every ωi-complete binary tree in M' is an

ωi-anticomplete tree]. This was proved in Theorem 1.
(3) M'" N [CH, 2ω i = ω3 and every ωx-complete binary tree in M' is a

Jech-Kunen tree]. This is because an ω!-closed forcing extension does
not add any new branches to an ωi-anticomplete tree.

Let Γbe an ωγ-complete binary tree in M'. Then 7Ms a Jech-Kunen tree in
M'" by Fact (3). We now want to show that Γhas no Kurepa subtrees in M"'.

Suppose that there is a Kurepa subtree T' of Γin M'". Without loss of gen-
erality we can assume that T' is closed downward.

Since (B(Γ) = ((B(Γ))M\ then (Ά(T') c ((B(Γ))M" in M'". Since T £ T,
there is a subset / of ω3 in M" such that | / | = ωi and T G M / r[G3 Π
Fn(I,2,ω^]. Γr is still a Kurepa tree in M"[G3 Π Fn(I,2,ωλ)]. Let/?0 E G3 Π
Fn(I,2,ωι) such that

Po Ih (Γ 7 is a Kurepa tree).
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For any B G (B(Γ') there is ap B < p0 such that pB Ih (£ G (B(Γ')). Let

β = {£ G (B(Γ): 3 p < /?0(/7 Ih (B G (B(f')))}.

Since T is a Kurepa tree in M"[G3 Π FH(/,2,O>I)], then | C | > α^ in M".
IFn {1,2, G>I )| = ωi because C//is true in M". So there is a /?' < A> *n ̂  (Λ2, ωi)
such that

e' = {Bee:p'\\-(Be<R(t'))}

has power > ωi.
Let T" = U6 ' which is in M". Then/?' Ih (Γ" £ 7") and that implies every

level of T" is at most countable. Since e ' c ( B ( Γ ) , then T" is a Kurepa tree and
this contradicts that there are no Kurepa trees in M".

Theorem 3 It is consistent with CH plus 2ωi > ω2 that there exists a Kurepa
tree which has no Jech-Kunen subtrees.

The following proof is due to K. Kunen.

Proof: Let M be a model of CH. In M, let K be a regular cardinal such that
ω2 < K and 2ωi < K. Let IP G Mbe a partial order such that a condition p G IP
is a pair (Tp,lp), where Tp is a downward closed countable normal subtree of
( 2 < ω i , c ) of height ap + 1 for some countable ordinal ap and lp is a one-to-one
function from some countable subset of K into the top level of Tp. For two con-
ditions p, q G IP, p < # iff Tp I /tf (7^) = 7^, dom(/p) 2 dom(/^) and for all ξ G
dom(/f),/*($)£//,(*)•

Ψ is the partial order used in Jech [2] and [6] to force a Kurepa tree, where
IP is shown to be ωi-closed and have ω2-c.c.

Let G be a P-generic filter over M, TG=U{Tp:pE G] and B(ζ) = {t G
TG:3peG(t^lp(ξ))}. InΛf[G], C7/holds, 2ωi = K > ω2, ΓG is a Kurepa tree
with K many branches and (B(ΓG) = {£(£): ξ < K] (see [2] or [6] for the detail).

Claim There are no Jech-Kunen subtrees of TG.

Proof of Claim: Let Γ ς TG and (B(Γ) = λ < K in Λ/[G]. Without loss of gen-
erality we assume that Γis closed downward. Let f= U {{s} x As:s G 2<ωi} G
M p be a nice name for T (see [5], p. 208 for the definition of a nice name). Let
p0 G P such thatp0 Ih ( Γ g ΓG and |(B(Γ)| = λ < /c). Since P has ω2-c.c, then
the set

S = {ξ < κ:3p <po (p\bB(ξ) G ®(T))}

has the cardinality < α^λ < K. Defining

supt(Γ) = [ξ <κ:l<s,p) G t(ξ G dom(/p))J.

Since | 2 < ω i | = ω{ in Mand for every s G 2 < ω i , \AS\ < ωu then |supt(Γ)| <
ωi. Now pick aζ0G K such that £0 ί S U supt(Γ) U dom(/p0). Since ξ0 ί S, we
have/?olh£(£o)£ CB(f).

Subclaim For any ξ e K - (supt(Γ) U domί/^)), p 0 Ih £(ξ) ί (B(f).
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The claim follows from the subclaim because

A) Ih CB(Γ) c [B(ξ): ξ G supt(Γ) U dom(lPo)}

implies

/70IH|(B(Γ)| = λ < ω i .

Proof of Subclaim: We define an isomorphism / from IP to itself induced by TΓ,
a permutation of K such that τr(ξ) = ξ0, τr(ξ0) = £ and π(α) = α if α G K -
{£,£0}. For any/? G P , let i(p) = <Tp,i(lp)}, where

'/p ifξΛo£dom(lp)

dp - {<ξJP(ξ)>}) U {<£o,/,(£)» if δ e domί/p) and ξ0 £ dom{lp)

i(lP)=< (/p-ί<So,/p(δo)>})U{<{,/p(ίo)>} i f ί o e d o m ί / ^ a n d δ ί d o m ί / , , )

(/p " K£o. /P(£o)>,<£, lp(ξ)») U {<€o. /p(δ)>,<δ, /p(*o)»

i fξ,ξ 0 edom(/ p )

let /* be a map from M p to Mψ induced by / (see [5], p. 222 for the definition of
/»). Then i(p0) Ih i*(B(ξ0)) £ <Ά(U(T)). Since ξ and ^0 are not in supt(Γ) U
dom(lPo), then i(p0) = p 0 , /•(T1) = ̂ and i.(B(to)) =B(ξ), hence/7Olh^(ξ) ί
(B(Γ).

Remark The author's original proof of Theorem 3 involves the existence of
two inaccessible cardinals.

In next two theorems we show the negative sides of Theorem 2 and Theo-
rem 3. Before that we should introduce some properties of poset and General-
ized Martin's Axiom. We take the form of Generalized Martin's Axiom from [7]
in which they call it GMA(^2-centered).

Let P be a poset. A subset Q of Ψ is called centered if every finite subset of
Q has a lower bound in P. A poset is called ω!-centered if it is the union of ω!
many centered subsets. A poset is called countably compact if every countable
centered subset of it has a lower bound.

GMA (Generalized Martin's Axiom) is the statement: Suppose P is an coi-
centered and countably compact poset. Suppose K < 2ω i. If Da is a dense sub-
set of P for each a < K, then there exists a filter G of P such that GΠDaΦ0
for all a < K.

We now define a poset in terms of a tree and its branches. Let Γbe a tree
and (B be a subset of (B(Γ). We let

P(Γ,(B) = l(A,e) :A is a countable subtree of T which is closed downward,
G is a nonempty countable subset of (B such that for every C in C, ht(C Π
A) = ht(A)}

be a poset ordered by:

C4i,Ci> < <v42,e2>iff Q2^^ι and A{\ht(A2) = A2

for any (Aueι)i(A2,e2> G P(Γ,(B).
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Lemma 2 Let Tbe an ωrtree and (B c (B(Γ). Then
(a) /or any <AΪ9βι> and <A2,e2> G IP(Γ,(B), 04i,βi> α«rf O42,e2> are com-

patible if and only if either Ax \ ht(A2) = A2 and for each C E β 2 , ht(CΠ
Aι) = ht(Aχ) or A2\ht(Aι) = Ax and for each C E <3U ht(C Π A2) =
ht(A2);

(b) P(Γ,(B) is ωrcentered and countably compact if assuming CH.

Proof: (1): "<=": Easy.
"=>": Let <̂ 4,C> < Mi,βi> and C42,C2>. Assume ήf C4i) > ht(A2). Then

Ax\ht(A2) = ( ^ | ^ M 1 ) ) | Λ / M 2 ) =A\ht(A2) = A2 and for each C e 6 2 ,
fe(Cn^) = λ*G4i) because Λί(CΠ>4) = ht(A) and>l|Aί(i4i) = Λ/Ui).

(2): For any / i c r such that 4̂ is countable and closed downward, let

P4 = {<i4,e>:M,e>eP(r,(B)}.

Then P^ is a centered subset of 1P(Γ,(B). We have only ωi many such ^4's if as-
suming CH. So P(Γ,(B) is ωi -centered.

Suppose {(An9Qn):nGω} is a centered subset of P(Γ,(B). Let A =\Jn<ΞωAn

ande=U Λ e «e Λ .
Claim 1: (A,ey E P(Γ,(B).

Proof of Claim 1: If there is a C E β such that Λί (C Π ̂ 4) < Λ (̂̂ 4), then there
are m,nGω such that CeQm and ht(CΓ) An) < ht(An). Since <^ w ,e w > and
<Anien) are compatible, if Λ^(^4Λ) < ht(Am), then Λ/(C Π An) = Λ^(^4rt)
because ht(C Π Am) = ht(Am), a contradiction; if Λ/(̂ 4W) > ht(Am)9 then
v4m I ht(An) Ψ An, hence /tf (C (Ί v4w) = ht(An) by (1), also a contradiction.

Claim 2: <v4,C> & a lower bound of {(An,Gn) : n E ω].

Proof of Claim 2: If there is an n G ω such that 4̂1 ht(An) Φ An, then there is
a ί E ̂ 41 ht(An) -An.LettE: Am for some m E ω. Since <>lΛ,eΛ> and C4w,Cm>
are compatible, if An\ht(Am) = ̂ w , then ^ E ^4Λ, a contradiction; if Am\
ht(An) = y4Λ, then t E ̂ 4W | ht(An) implies t &An9 also a contradiction.

So (A,Q) < <^Λ,eΛ> for all n E ω.
By Claim 1 and Claim 2, JP(Γ,(B) is countably compact.

Theorem 4 ^sswme GMA crad CH plus 2ωi = ω3. ΓΛe« et ery Jech-Kunen
tree has a Kurepa subtree.

Proof: Let Γbe a Jech-Kunen tree with ω2 many branches. Without loss of
generality we can assume that "it E T (|(B(Γ(O)| = ω2). (We can make this by
throwing away all Γs with |(B(Γ(O)| ^ ωi.)

Let (B = (B(Γ) = {J?α: α < ω2). For every j8 < ω2 let

^ = «i4,e>GP(Γ,(B):en {Ba:β<a<ω2} Φ 0 } .

For every γ < ωi let

£ 7 = lM,β> E P(Γ,(B): Aί(i4) > 7}.
Then Z)̂  and £"7 both are dense subsets of P(Γ,(B) for all β < ω2 and 7 < ωi. By
GMA there is a filter G of P(Γ,(B) such that GΠDβΦ 0 and GΠEyΦ 0 for
all 0 and 7. Let

Γ = UM:αθGG).
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Then ht(T') = ω{ because G Π EΎ Φ 0 for all 7 < ωi.

Claim 1 \<Ά(T')\ = ω2.

Proof of Claim 1: If | (B(Γ')| < ω2, then there is a β < ω2 such that (ft(T') c
{£α: α < β}. But this contradicts that GΠDβΦ 0 .

Claim 2 Vα < ωi( |Γ; | < ω).

Proof of Claim 2: Assume this is not true. Then there is an a < ωx such that

| r ; | = ω i .
Let <>1,C> G G such that ht(A) > α. Since 4̂ is countable, there is a ί G

Γ; - ,4. Let O4',e'> G G such that / G Λ'. Since <^,β> and C4',e'> are compat-
ible, then either A \ ht (A) = ,4'or A \ ht {A) = A. A \ ht (Ά) = A is impossible
because / ί A. A'\ ht{A) = A is also impossible because t GA Π T'a and α <

By Claim 1 and Claim 2, 7" is a Kurepa subtree of Γ.

Theorem 5 It is consistent with GMA and 2ωi > ω2 Λ̂α/ there exist Kurepa
trees with 2ω i many branches and every Kurepa tree has Jech-Kunen subtrees.

We need a lemma to prove Theorem 5.

Lemma 3 Let Mbea model of CHplus 2ωi > ω2. Let T be an ωΓtree such
that for every t G Γ, |(B(Γ(O)| ^ ω2 am/ feί (B g (B(Γ) 5wcΛ ίAaί |(B| = ω2 a/irf
/or ««ry ^ G Γ, |CB(Γ(O) Γϊ (B| = ω2. 7/*G fe a P(Γ,(B)-generic filter over Mand
TG=U{A: (A,e) EG], then TG is a Jech-Kunen subtree of T in M[G].

Proof: Let (B = {5 a : a < ω2]. Since

£>0 = {M,β> G P(Γ,(B): β Π {^a: β < a < ω2] Φ 0 )

is dense in P(Γ,(B), then | (Ά(TG)\ > ω2 by the proof of Claim 1 of Theorem 4.
We now need to show that | (Ά(TG)\ = ω2.

Suppose that is not true. Then there is a B G ((B(Γ))M - (B such that B G
(B(ΓG) in M[G] since ωi -closed forcing extension adds no new branches of T.
Let 040>Co> Ih {B G (Ά(TG)). Since 5 φ. Go> there is an a < ωu a > ht{A0)
such that B is different from C at α-th level for all C E 6 0 . Let

Λi = ( ( U e o ) U Λ o ) n ( η α + i).

Then <^!,eo> < <i40,e0>. Hence <^i,C0> Ih (B G @>(TG)). But if if is a P-ge-
neric filter over M such that <^4i,eo> G //, then B (£ ($>(TH) in M[i/] since
ht(BΠAι) < ht(Aι),a contradiction.

Proof of Theorem 5: Let M be a model of C/f plus 2ωi = 2ω2 = ω3 and there
are Kurepa trees with ω3 many branches. (See [6], p. 282 for such a model.) Let
P be the ω3 steps countable support iterated forcing poset for GMA in M and
G be a P-generic filter over M. We want to show that M[G] (= [CH, 2ωi = ω3,
there are Kurepa trees with ω3 many branches and every Kurepa tree has Jech-
Kunen subtrees].

Let Γbe a Kurepa tree in M[ G]. Without loss of generality we can assume
that for every t G Γ, \(Ά(T{t))\ > ω2. Let (B c (B(Γ) such that for every t G T,
\<& Π (B(Γ(O)| = ω2. Then P(Γ,(B) is concentered and countably compact by
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Lemma 2. Let a < ω3 such that T, (B and P(Γ,(B) are in M [ G J , which is the
initial a steps iterated forcing extension of Min M[G] and Ψ(T,&) is the poset
used at α-th step forcing extension for GMA. Let H be the IP(Γ,(B)-generic fil-
ter over M[Ga] such that M[Ga+ι] = M[Ga] [H]. Then

TH = \J[A:<A,e>eH)

is a Jech-Kunen subtree of T in M[Ga+ι]. TH is still a Jech-Kunen tree in
M[G] because the poset for the rest of the forcing extension is ωγ-closed in
M[Ga+i].

Remark All the results in this paper about trees can be translated into the re-
sults about linear orders. Among them the one related Jech-Kunen tree is most
interested.

Let L be called a Jech-Kunen continuum iff L is a Dedekind complete dense
linear order with density ω! and power strictly between ω! and 2 ω i . Assume CH
plus 2ω i > ω 2. Then there exists a Jech-Kunen tree iff there exists a Jech-
Kunen continuum.
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