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Some Independence Results Related
to the Kurepa Tree

RENLING JIN

Abstract By an w,-tree we mean a tree of power w; and height w,. Under
the assumption of CH plus 2! > w, we call an w,-tree a Jech-Kunen tree if
it has x many branches for some « strictly between w, and 2¢!. We call an
w;-tree being w,-anticomplete if it has more than w; many branches and has
no subtrees which are isomorphic to the standard w;-complete binary tree.
In this paper we prove that: (1) It is consistent with CH plus 2¢! > w, that
there exists an w;-anticomplete tree but no Jech-Kunen trees or Kurepa
trees; (2) It is independent of CH plus 2! > w, that there exists a Jech-
Kunen tree without Kurepa subtrees; (3) It is independent of CH plus 2! >
w, that there exists a Kurepa tree without Jech-Kunen subtrees. We assume
the existence of an inaccessible cardinal in some of our proofs.

Let T be a tree. For an ordinal «, T, is the a-th level of T and T |a =
Ug<q Tp. Let ht(T), the height of T, be the smallest ordinal A such that 7 = &.
By a branch of T we mean a linearly ordered subset of T which intersects every
nonempty level of T. Let &(T) = {B:Bis a branch of T'}. For at € T let
T(t) ={s€ T:s and ¢t are comparable}.

Let 7 be a tree. We recall that:

T is an w;-tree if |T| = w; and ht(T) = w;. Without loss of generality we
sometimes assume that (7,<7) = {w,<7) with unique root 0 if 7 is an w;-tree.

An w;-tree T is called a Kurepa tree if |T,| < w; for any o < w; and
|®(T)| > wy.

An w;-tree T is called a Jech-Kunen tree if w, < |®(T)| < 2¢'.

T'isasubtreeof Tif T'< Tand <y = <yN T’ X T’ (T’ inherits the or-
der of T). For an ordinal A we call (2<*,<) a standard \-complete binary tree.
A tree is called a \-complete binary tree if it is isomorphic to (2<*,Z). A sub-
tree T’ of T'is called closed downward if forany t' € T, {te T:t < t'} = T"

An w-tree T is called an w,-anticomplete tree if |®(T)| > w; and T has no
w;-complete binary subtrees.
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Facts

(1) Both Kurepa trees and Jech-Kunen trees are w;-anticomplete trees;

(2) Under CH and 2“* > w,, a Jech-Kunen tree is also a Kurepa tree if every
level of it is countable;

(3) Under CH and 2! > w,, a Kurepa tree is also a Jech-Kunen tree if it has
fewer than 2“! many branches.

The independence of the existence of Kurepa trees was proved by Silver (see
[SD. In [2], Jech constructs a model of CH plus 2* > w,, in which there is a
Jech-Kunen tree. In fact, it is a Kurepa tree with fewer than 2¢! branches. The
independence of the existence of Jech-Kunen trees under CH plus 2! > w, was
given by Kunen in [4], in which he gave an equivalent form of Jech-Kunen trees
in terms of compact Hausdorff spaces. The detailed proof can be found in [3],
Theorem 4.8.

The technique used by Silver and Kunen to kill Kurepa trees and Jech-Kunen
trees is to show that if an w;-tree 7 has a new branch in an w,-closed forcing ex-
tension, then 7 should have an w;-complete binary subtree. So in their models
all wy-anticomplete trees are also Kkilled.

In this paper we discuss two questions: (1) Assuming CH plus 2¢! > w,, can
we kill all Kurepa trees and Jech-Kunen trees without killing all w,;-anticomplete
trees? (2) How different are Kurepa trees and Jech-Kunen trees? For background
in trees see Todorcevic [6]; for background in forcing see Kunen [5]; and for Gen-
eralized Martin’s Axiom see Weiss [7], §6. By an inaccessible cardinal we mean
a strongly inaccessible cardinal.

Before proving theorems we need more notation of posets (partially ordered
sets with largest elements). We always let 1p be the largest element of a poset IP.

Let 1, J be two sets and A be a cardinal.

Fn(I,J,N\) = {f:f is a function, fS I X Jand | f| < N}

is a poset ordered by reverse inclusion. We omit A if A = w.
Let I be a subset of an ordinal « and \ be a cardinal.

Lv(I,N\) = {f:f is a function, f S (I X N) Xk, | f| <\
and ¥{a, B) € dom(f)(f(a,B) € a)}

is a poset ordered by reverse inclusion.

In forcing arguments we let ¢ be a name for ¢ and é@ be a name for ¢. We al-
ways assume the consistency of ZFC and let M be a countable transitive model
of ZFC.

Theorem 1 Assume the existence of an inaccessible cardinal. Then it is con-
sistent with CH plus 2°' > w, that there exists an wi-anticomplete tree but there
are neither Kurepa trees nor Jech-Kunen trees.

We need a lemma from Delvin [2].

Lemma 1 Let P, IP’ be two posets in M such that P has c.c.c. and P’ is
wy-closed in M. Let Gp be a P-generic filter over M and Gp- be a P’-generic fil-
ter over M[Gp]. Let T be an w,-tree in M[Gpl. If T has a new branch B in
M[Gpl][Gp'] — M[Gpl, then T has a subtree T’ in M[Gp], which is iso-
morphic to the tree (2<“' N M,<) (standard w,-complete binary tree in M).
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Proof: First we work within M. In the proof we always let i = 0,1. Without loss
of generality we can assume that

1p IFp (1p IFp (B is a branch of 7).

Claim 1 Let o < w; and q € P'. Then there is a ¢’ <p q such that 1p |Fp
(®(a, q', T, B)), where

®(a,q, T, B) =4r (3y € T,) (¢ IFp (¥ € B)).
Proof of Claim 1: See [1], Lemma 3.6.

Claim2  Leta<w, g €P and lp kp (¥(a, g, T, B)). Then thereis a § <
w1, B> o and q' <p: q such that 1p IFp (¥ (a,B,4,9° q', T, B)), where

¥(,8,9,q%q"', T,B) =4 lif x € T, and q \Fp (x € B), then there are
x' € Ty, x° # x' and x < x* such that q' IFp- (x' € B)].
Proof of Claim 2: See [1], Lemma 3.6.

Claim 3 Let 6 be an ordinal below w,. Let q,:vy < &) be a decreasing se-
quence in P’ and {o.,:y < &) be an increasing sequence in w, such that 1p |Fp
(®(ay, gy, T,B)) for all v < é. Let a5 = sup{a, :y < }. Then thereisa q <p:
q, for all y < & such that 1p IFp (®(as, g, T, B)).

Proof of Claim 3: Since P’ is w;-closed in M, there is a g’ € IP’ such that
g’ <p q, for all y < 4. By Claim 1 there is a ¢ <p- ¢’ such that 1p lrp (®(c;,
g, T, B)). This ends the proof of Claim 3.

We now prove the lemma. We construct a subset P = { p;:s € 2<“1} of P’
and a subset O = {o;:5 € 2<“1} of w; in M such that

(1) the map s~ p is an isomorphic imbedding from the standard w,-com-
plete binary tree to IP".

Q) vs,te2< (sctand s+t o, < ay).

(3) Olg~¢0y = Olg(1) for all s € 2<¢1,

@) 1p Ikp (2(ay, ps, T,B)) for all s € 2541,

(5) 1p Ikp (¥ (o, ats~coys Pss Pscoy» Ps~1y» T, B)) for all s € 2<<1.

Let oy =0 and py, = 1p-. Assume that we have o, and p; for all s € 2<“1.
Case I: a=vy+ 1.

Let s € 2. Since 1p IFp ($(as, ps, T, B)), then there is a 8 < w;, B> a, and
q' <p pssuch that 1p IFp (¥ (g, 8, Ps, q% q', T, B)) by Claim 2. Let a5~y =B
and p,-¢;, = q'. (Note that g°, ¢! are incompatible by Claim 2.)

Let G be any IP-generic filter over M. Then M[G] E [®(as, ps, T, B)].
Hence in M[G] there is an x € T, such that p, IFp- (x € B). Since M[G] F
[¥ (a5, 0y Pss Ps~0y» Ps~tys T B) and x € T, ], then there are x' € T,, . ,,
such that Dsiy IFp- (x* € B) in M[G]. This 1mphes that 1p IFp (P(os¢iy»
Ps~ciy» T, B)).

Case 2: « is a limit ordinal below w;.

Let s € 2*. Since (a,g: B < a) is 1ncreasmg in wy, {ps|p: B < a) is decreas-
ing in IP” and 1p Fp (®(as s, Ps)ss T, B)) for all 8 < a, then there is an
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= sup{a,)s: 8 < a} and a p; <p' ps|p for all B < & such that 1p Ikp (P(a,
ps, T, B)) by Claim 3.

We now work within M[Gp] to construct a subtree 7' = {Z;:5 € 2<“1 N
M} of T such that

(1) the map s ~ ¢ is an isomorphic imbedding from (2<“* N M,S) to T.
() t; € T,, and pslkp (£ € B) for all s € 2<' N M.

Let ¢, = 0, the root of 7. Assume that we have ¢ for all s € 2<* N M.
Casel: a=8+1.

LetsEZﬁﬂM Slnceps"']p' (t GB) and‘I/(as, Ol «»,ps,ps <0y > Ps* 1) T B)
is true, there are t' € T,,.,, such that t <7 t', t° # ¢! and ps-;y IFp (¢’ € B).
Let ty~;y =t forz—Ol

Case 2: « is a limit ordinal below w;.

Let s € 2% N M. Since ®(a;, ps, T, B) is true, there is an x € T,, such that
ps IFp (x € B). Since VB < a (p, < py)p), then pglbp: (455 € B). Now g <t X
because a; > oy for all 8 < a.

Let t; = x.

We have now finished construction and 7" is just the required subtree of 7.

Proof of Theorem 1: Let k be an inaccessible cardinal, IP; = Lv(k, w;), IP; =
Fn(x*,2,w;) and P; = Fn(w;,2) in M. Let G, be a IP,-generic filter over M,
M’ = M[G,], G, be a IP,-generic filter over M’, M” = M’'[G,], G; be a P;-
generic filter over M” and M” = M”[G;]. We want to show that M” F
[CH,2“! = w; and there exists an w;-anticomplete tree but there are neither
Kurepa trees nor Jech-Kunen trees].

We list some facts first:

(1) M’ E[CH, 2°!' = w, = « and there are no Kurepa trees]. The proof can
be found in [5], p. 261.

(2) M” E [CH, 2*! = w3 = «* and there exist neither Kurepa trees nor
Jech-Kunen trees]. See Juhdsz [3], Theorem 4.8, for the proof.

(3) M” E[CH, 2*' = w,].

Claim 1 There exists an wi-anticomplete tree in M".

Proof of Claim 1: Let T be an w;-complete binary tree in M”. We want to show
that T'is an w,-anticomplete tree in M. Since in M”, |®(T)| = [(B(T)HM"| =
w3, it suffices to show that T has no w;-complete binary subtrees in M”.

Suppose that is not true. Then T has an w;-complete binary subtree T’ =
{t;:s €21} in M". Since T’ |w is countable and T’ & T = w,, then there is a
6 < w; such that T’ |w € M”[G; N Fn(5,2)]. Let f € 2¢ be a new function in
M” —M"[G3;N Fn(6,2)]. Then Cf—- {tf [n' :nE€wlisnotin M”"[G3N Fn(s,2)].
But C; = {t € T'|w:t <7 t;} which is in M"[G3 N Fn($,2)]. This contradiction
ends the proof of Claim 1.
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Claim 2 There exist neither Kurepa trees nor Jech-Kunen trees in M”.

Proof of Claim 2: Let T be an w;-tree in M”. Then there is a § < « and a sub-
set I € k* of power w; such that

TeM[G N Lv(0,w)][G2 N Fn(l,2,w)][Gs].

Let P} = Lv(0,w,), P{ = Lv(x — 0,w;), P5 = Fn(l,2,w,), P5 = Fn(k* —
1,2, w;). Then IP; = P} x P{, P, = P;, X IP5 and all of these posets mentioned
here are w;-closed. Let G; = G, NP}, G{ =G, NP, G5 =G,NP;and G5 =
G, N IP5. Then G, = G; X G{, G, = G5 X G5 and

M" = M[G{]1IG{]1[G3]1[G51[G3] = M[G{][G31[G;3]1[G 1[G ].
Since
M[G{1[G;1(G3] E [|B(T)| <],

then there is a new branch of 7T in M” — M[G{]1[G5][G;] if T has more
than w; many branches in M”. Since IP; has c.c.c. and IP] X IP5 is w;-closed in
MI[G{]1[G;], then there is a subtree 7’ of T in M[G{]1[G31[G;], which is iso-
morphic to 2<“1 N M[G{1{G3],S) by Lemma 1.

This is impossible if 7'is a Kurepa tree because T’ | w + 1 is uncountable. This
is also impossible if T is a Jech-Kunen tree because 2<“' N M[G11[G3] =
29N\ M[G,1[G,] and |B(T)| = |®(T")| = (2¢1)MICIIG2] = + = 291 in M”.

Theorem 2 Assume the existence of an inaccessible cardinal. Then it is con-
sistent with CH plus 2°' > w, that there exists a Jech-Kunen tree which has no
Kurepa subtrees.

Proof: Assume that k is an inaccessible cardinal, P; = Lv(k,w;), P, =
Fn(w;,2) in M. Let G, be a IP,-generic filter over M, M’ = [G,], G, be a IP,-
generic filter over M’ and M” = M’[G,]. Let P3 = Fn(ws,2,w,) in M”, G5 be
a IP3-generic filter over M” and M = M"[G;]. We want to show that M"” E
[CH, 2" = w3 and there exists a Jech-Kunen tree which has no Kurepa sub-
trees] .

We list some facts first:

(1) M’ E [CH, 2** = w, and there are no Kurepa trees].

(2) M” E [CH, 2“! = w, and every w;-complete binary tree in M’ is an
wp-anticomplete tree]. This was proved in Theorem 1.

(3) M” E [CH, 2% = w; and every w;-complete binary tree in M’ is a
Jech-Kunen tree]. This is because an w;-closed forcing extension does
not add any new branches to an w;-anticomplete tree.

Let 7 be an w;-complete binary tree in M. Then T is a Jech-Kunen tree in
M" by Fact (3). We now want to show that 7 has no Kurepa subtrees in M.

Suppose that there is a Kurepa subtree 77 of Tin M”. Without loss of gen-
erality we can assume that 7" is closed downward.

Since B(T) = (B(T)M’, then B(T’) < (B(T)™" in M. Since T’ < T,
there is a subset I of w; in M” such that |I| = w; and 77 € M"[G3; N
Fn(l,2,w)]. T’ is still a Kurepa tree in M”[G3; N Fn(l,2,w;)]. Let py € G3; N
Fn (1,2, w;) such that

Dok (T is a Kurepa tree).
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For any B € ®B(T") there is a pg < p, such that pglF (B € ®(T")). Let
C=(BE®T):3p=<py(pl (B BT))).

Since T’ is a Kurepa tree in M”[G; N Fn(l,2, )], then |C| > w; in M".
|Fn (1,2, w;)| = w; because CH is true in M. So there is a p’ < po in Fn(1,2, w,)
such that

C'={BeC:p'IF(BE R(T))

has power > w;.

Let 7” = UC’ which is in M”. Then p’ IF (T” < T’) and that implies every
level of T” is at most countable. Since C’' € ®(T"”), then T” is a Kurepa tree and
this contradicts that there are no Kurepa trees in M”.

Theorem 3 It is consistent with CH plus 2°' > w, that there exists a Kurepa
tree which has no Jech-Kunen subtrees.

The following proof is due to K. Kunen.

Proof: Let M be a model of CH. In M, let « be a regular cardinal such that
wy < k and 2! < k. Let IP € M be a partial order such that a condition p € IP
is a pair (T}, [,), where T}, is a downward closed countable normal subtree of
(2=“1,C) of height a,, + 1 for some countable ordinal o, and /, is a one-to-one
function from some countable subset of « into the top level of 7,,. For two con-
ditions p,q € P, p < q iff 7},]ht(Tq) = T,, dom(/,) 2 dom(/,;) and for all £ €
dom(/,), lg(£) S I,(§).

IP is the partial order used in Jech [2] and [6] to force a Kurepa tree, where
IP is shown to be w;-closed and have w,-c.c.

Let G be a IP-generic filter over M, T = U{T,:p € G} and B(§) = {1t €
Ts:Ip € G(t < [,(£))}. In M[G], CH holds, 2! = k > w,, Tg is a Kurepa tree
with « many branches and ®(75) = {B(£) : £ < «} (see [2] or [6] for the detail).

Claim There are no Jech-Kunen subtrees of Tg.

Proof of Claim: Let T < Tg and &(T) = A < k in M[G]. Without loss of gen-
erality we assume that T is closed downward. Let 7= U {{s} X A;:s€2<“1} €
MP be a nice name for 7T (see [5], p. 208 for the definition of a nice name). Let
Po € P such that py I (T S Tg and |B(T)| = \ < «). Since P has w,-c.c., then
the set

S={t£<xk:3p=po (Pl B() € B(T))
has the cardinality < w; A\ < «. Defining
supt(T) = (¢ < k:3(s, p) € T(¢ € dom(},))}.

Since |2=“!| = w; in M and for every s € 2<“!, |A,| < w;, then |supt(T)| =
wi. Now pipk atyExk ;uch that £ & S U supt(7) U dom(/y,). Since &, & S, we
have py IF B(&y) & B(T).

Subclaim  For any £ € k — (supt(T) U dom(/,,)), po IF B(£) & ®(T).
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The claim follows from the subclaim because

Polk B(T) € (B(£): £ € supt(T) U dom(/y,)}

implies
DolF |B(T)] =\ < w.

Proof of Subclaim: We define an isomorphism / from IP to itself induced by ,
a permutation of « such that 7w (¢) = &, 7(&9) =fand 7(a) = aif a Ex —
{£,&0}. For any p € P, let i(p) = (T, i(l,)), where
(1, if £,£0 ¢ dom(l,)
(I, — KELENN U Ko, [, (£} if & € dom(/,) and &g & dom(/y)
i(ly) =4 ([ — K&os (8o} U K&, L, (§0))) if & € dom(/,) and & & dom(/,)
(p — (&0s Ip (80D <&, L (END U (&0, L, (E)),KE, 1, (£0))}
L if £, &9 € dom(/,)

let i, be a map from M PioMPF inducegl by i (see [5], p. 222 for the definitiqn of
ix). Then i(pg) IF i (B(&o)) GE.(B(I',.,(T)). Singe ¢ and £o are not in supt'(T) U
dom(/y,), then i(po) = po, ix(T) = T and ix(B(£,)) = B(£), hence po - B(£) &
®&(T).

Remark The author’s original proof of Theorem 3 involves the existence of
two inaccessible cardinals.

In next two theorems we show the negative sides of Theorem 2 and Theo-
rem 3. Before that we should introduce some properties of poset and General-
ized Martin’s Axiom. We take the form of Generalized Martin’s Axiom from [7]
in which they call it GMA(R,-centered).

Let IP be a poset. A subset Q of IP is called centered if every finite subset of
Q has a lower bound in P. A poset is called w;-centered if it is the union of w;
many centered subsets. A poset is called countably compact if every countable
centered subset of it has a lower bound.

GMA (Generalized Martin’s Axiom) is the statement: Suppose P is an w;-
centered and countably compact poset. Suppose « < 2¢!. If D, is a dense sub-
set of IP for each o < «k, then there exists a filter G of P such that GN D, # &
for all @ < «.

We now define a poset in terms of a tree and its branches. Let 7 be a tree
and ® be a subset of B (7). We let

P(T,®) = {{A,C) : A is a countable subtree of T which is closed downward,
C is a nonempty countable subset of @ such that for every Cin C, Af(C N
A) = ht(A)}

be a poset ordered by:
(A;1,C1) = (A4,,C) iff C,c C and Ay I ht(A,) = A,
for any (A4,,C1),{4,,C,) € P(T,®).



KUREPA TREES 455

Lemma 2 Let T be an w,-tree and ® < ®&(T). Then

(@) for any (A,,C,) and {A,,C,) € P(T,®), (A,C,) and {A,,C,) are com-
patible if and only if either A, [ht(Az) = A, and for each C € C,, ht(CN
Al) = ht(Al) or Azlht(Al) = A, andfor each C € (‘31, ht(CnN A2) =
ht(A3);

(b) IP(T,®) is w-centered and countably compact if assuming CH.

Proof: (1): “=": Easy.

“=”: Let (4,C) = (A;,C;) and (A,,C,). Assume ht(A;) = ht(A,). Then
Ay|ht(Ay) = (A|ht(A)))|ht(Ay) = A|ht(Az) = A, and for each C € C,,
ht(CN A,) = ht(A,) because ht(C N A) = ht(A) and A|ht(A1) = ht(A,).

(2): For any A S T such that A is countable and closed downward, let

Py = (A,C):(4,C) e P(T,®)].

Then IP, is a centered subset of IP(7,®). We have only w; many such A’s if as-
suming CH. So P(T,®) is w,-centered.

Suppose {{A4,,C,): n € w} is a centered subset of P(7,®8). Let A =U, e, An
and C =U,e, Gy

Claim 1: (A,C) e P(T,®).

Proof of Claim 1: If thereis a C € C such that hi#(C N A) < ht(A), then there
are m,n € w such that C€ C,, and it (CN A,) < ht(A,). Since {(A4,,,C,,) and
(A,,C,) are compatible, if ht(A,) < ht(A,), then ht(C N A,) = ht(A,)
because ht(C N A,,) = ht(A,,), a contradiction; if ht(A,) > ht(A,,), then
A | ht(A,) + A,, hence ht(C N A,) = ht(A,) by (1), also a contradiction.

Claim 2: (A,C) is a lower bound of {{A,,C,):n € w}.
Proof of Claim 2: If there is an n € w such that A ] ht(A,) + A,, then there is
at€ A|ht(A,) — A,. Let t € A, for some m € w. Since (A4,,C,) and{A4,,,C,,)
are compatible, if A,|ht(A,) = A, then t € A,, a contradiction; if A,,|
ht(A,) =A,,thente A4, | ht(A,) implies t € A, also a contradiction.

So (A,C) < (A4,,C,) for all n € w.

By Claim 1 and Claim 2, IP(7,®) is countably compact.

Theorem 4 Assume GMA and CH plus 2! = w3. Then every Jech-Kunen
tree has a Kurepa subtree.

Proof: Let T be a Jech-Kunen tree with w, many branches. Without loss of
generality we can assume that vz € T (|®(T(¢))| = w,). (We can make this by
throwing away all #’s with |®(7T(¢))| < w;.)
Let ® = ®&(T) = {B,:a < w,}. For every 8 < w, let
Dg=(A,C)EP(T,B):CN({B,:f<a<w)}*J}.
For every v < w; let
E, = ((A,C) e P(T,®): ht(A) > v}.

Then Dg and E,, both are dense subsets of IP(7,®) for all 8 < w, and y < w,. By
GMA there is a filter G of IP(7,®8) such that GN Dg # @ and GN E, # & for
all 8 and . Let

T' =J{A:(4,C) € G}.
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Then ht(T’) = w; because GN E, # < for all vy < w;.
Claim 1 |B(T)| = w,.

Proof of Claim 1: If |®(T’)| < w,, then there is a 8 < w, such that (7”) <
{By:a < (3}. But this contradicts that G N Dg # .

Claim 2 Va < 0 (|T,] < w).

Proof of Claim 2: Assume this is not true. Then there is an o < w; such that
|Te| = .

Let (A,C) € G such that ht(A) > o. Since A is countable, thereisa t €
T, — A. Let (A,C’) € G such that ¢ € A". Since (A4,C) and (A4’,C’) are compat-
ible, then either A|ht(A’) = A’ or A’ | ht(A) = A. A|ht(A’) = A’ is impossible
because t & 4. A’ | ht(A) = A is also impossible because t € A’ N T, and o <
ht(A).

By Claim 1 and Claim 2, 7" is a Kurepa subtree of 7.

Theorem 5 1t is consistent with GMA and 2! > w, that there exist Kurepa
trees with 2“' many branches and every Kurepa tree has Jech-Kunen subtrees.

We need a lemma to prove Theorem 5.

Lemma 3 Let M be a model of CH plus 2°' > w,. Let T be an w,-tree such
that for every t € T, |®(T(1))| = w, and let ® < ®(T) such that |®| = w, and
Joreveryt€ T, |®(T(¢)) N B| = wy. If G is a P(T,®)-generic filter over M and
T =U{A:(A,C) € G}, then Tg is a Jech— Kunen subtree of T in M[G].

Proof: Let 8 = {B,:a < w,}. Since
Dg={(A,C)eP(T,B):CN{By:B<a<w} # I}

is dense in P(7,®), then |®(7g)| = w, by the proof of Claim 1 of Theorem 4.
We now need to show that |®(7g)| = ws,.

Suppose that is not true. Then there is a B € (B(T))™ — ® such that B €
®(Tg) in M[G] since w,-closed forcing extension adds no new branches of 7.
Let (Aq,Co) IF (B € B(Tg)). Since B & Cy, there is an o < wy, o > ht(Ap)
such that B is different from C at a-th level for all C € C,. Let

Ay = ((U€o) U Ag) N (T|a + 1).

Then {(A4,,Cy) = {(Ay,Cq). Hence (A4,Cy) IF (B € B(Ty)). But if H is a IP-ge-
neric filter over M such that {(A4,,C,) € H, then B ¢ ®(Ty) in M[H] since
ht(BN A;) < ht(A,), a contradiction.

Proof of Theorem 5: Let M be a model of CH plus 2! = 2“2 = w; and there
are Kurepa trees with w3 many branches. (See [6], p. 282 for such a model.) Let
IP be the w; steps countable support iterated forcing poset for GMA in M and
G be a P-generic filter over M. We want to show that M[G] E [CH, 2¢' = w3,
there are Kurepa trees with w3 many branches and every Kurepa tree has Jech-
Kunen subtrees].

Let T be a Kurepa tree in M[G]. Without loss of generality we can assume
that for every t € T, |®(T(?))] = w,. Let B < ®(T) such that for every f € T,
|® N B(T(t))| = wp. Then P(T,®) is w;-centered and countably compact by
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Lemma 2. Let o < w3 such that 7, ® and P(7,®) are in M[G,], which is the
initial « steps iterated forcing extension of M in M[G] and IP(7,®) is the poset
used at a-th step forcing extension for GMA. Let H be the IP(7,®)-generic fil-
ter over M|[G,] such that M[G,,;] = M[G,][H]. Then

Ty = {4:(4,C) € H)

is a Jech-Kunen subtree of T in M[G,,]. Ty is still a Jech-Kunen tree in
M[G] because the poset for the rest of the forcing extension is w;-closed in
MI[G,.4].

Remark All the results in this paper about trees can be translated into the re-
sults about linear orders. Among them the one related Jech-Kunen tree is most
interested.

Let L be called a Jech-Kunen continuum iff L is a Dedekind complete dense
linear order with density w; and power strictly between w; and 2¢!. Assume CH
plus 2! > w,. Then there exists a Jech-Kunen tree iff there exists a Jech-
Kunen continuum.
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