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End Extensions of Normal Models

of Open Induction

DAVID MARKER

Abstract A domain is normal if it is integrally closed in its fraction field.
We prove that every countable normal model of Open Induction is normal.

/ Introduction Our goal is to show that countable normal models of Open
Induction have normal end extensions. We begin with background information
on Open Induction.

Let L be the language of arithmetic where we have function symbols + and ,
a relation symbol <, and constant symbols 0 and 1. We let Open Induction be
the Z-theory axiomatized by the axioms for discrete ordered rings and the fol-
lowing schema:

Vί[(φ(0, jc) Λ Vy > 0(φ(y,x) -+ φ(y + 1, *))) -> Vy > Oφ(y,x)]

where φ(u, v) is a quantifier-free L-formula.
Although it is customary to consider only positive elements in a model of

arithmetic, the algebraic nature of Open Induction makes it convenient to con-
sider the entire ordered ring. The algebraic nature of Open Induction is high-
lighted by the following result of Shepherdson.

Theorem 1.1 (Shepherdson [6]) Let Rbea discrete ordered ring and let K be
the real closure of the fraction field ofR. Risa model of Open Induction if and
only if for all a E K there is r ELR such that \ r - a | < 1.

Using this criterion Shepherdson showed that Open Induction is indeed a very
weak theory. He constructed recursive models of Open Induction in which V2
is rational. The main idea behind his construction is the following:

Let M be a model of Open Induction and let K be the real closure of the frac-
tion field of M. Consider the field K* = \JK((t1/n)) where K((X)) denotes the
field of formal Laurent series over AT in the indeterminant X. K* is the field of
Puiseux series over K. It is well-known that K* is a real closed field (see for ex-
ample Walker [8]) where t is infinitesimally small with respect to K. We let
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M* = f Σ ant
n/q e ^ * : m < 0 and q0 £ Mj.

It is easy to see that M* is a discretely ordered ring and every element of K*
is within distance 1 of an element of M*. Thus M* is a model of Open Induc-
tion. In fact, M* is an end extension of M. Thus every model of Open Induc-
tion has an end extension which is a model of Open Induction.

We say that a domain R is normal if it is integrally closed in its fraction field.
In [1], van den Dries suggested that some of the pathologies of Shepherdson's
models could be avoided if one considered normal models. For example, in a nor-
mal model V2 cannot be rational. On the other hand, many other extreme pa-
thologies of Open Induction hold in normal models as well. For example, in
Maclntyre and Marker [3] we construct a normal model of Open Induction M
with a nonstandard primes such that M/{p) is an algebraically closed field (re-
cently Smith [7] has shown that this is still possible if we insist that Mis a Bezout
ring).

Building normal models of Open Induction requires more subtle techniques
than the Shepherdson construction. The main idea is the following lemma of
Wilkie. A discrete ordered ring R is said to be a Z-ring if for any natural num-
ber π, R/(n) = Z / ( Λ ) .

Lemma 1.2 (Wilkie [9]) Let R be a discrete orderedZ-ring and letKDR be
a \R\ +-saturated real closed field. Let OLELK such that for all r E i?, \ a — r | > 1.
Then there is β E Ksuch that \ a - β \ < 1 and for all nonconstant polynomials
p(X)GR[X], \p(β)\>nforallnEZ.

Once we have such a β, consider N = \JR[β/n]. ΛΠs a discretely ordered
Z-ring and TV contains an element within distance open of a. By iterating Lemma
1.2 and applying Shepherdson's criterion, Wilkie proved that every discretely or-
dered Z-ring can be extended to a model of Open Induction. Our goal is to give
a strengthening of Lemma 1.2 which allows us to build normal end extensions
of countable models.

Our main result is the following:

Theorem 1.3 IfM is a countable normal model of Open Induction, then M
has a proper end extension which is a normal model of Open Induction.

2 The construction We fix M a countable normal model of Open Induction.

Definition Suppose McN. We say that N is an M-ring if for all a E N and
all b E Mthere i scEMsuch that a = c(modb).

Clearly if a model of Open Induction N is an end extension of M then N is
an M-ring.

For any domain R we let Rcl denote the real closure of R.

Definition Suppose M C TV. If a G 7VcI we say that a is M-bounded if there
is a β G M such that | a \ < β. We say that a is M-infinitesimal if 0 < | a \ < 1/β
for all β > 0 in M.

We say that N is a harmless extension of M if for all a E 7Vcl, if a is M-
bounded then there is β E M such that | a - β \ < 1.
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By Theorem 1.1 it is clear that if N is a model of Open Induction end-extend-
ing M, then TV is a harmless extension of M.

If N is an end extension of M we write M Ce N. We can now prove the gen-
eralization of Lemma 1.2 that we need.

Lemma 2.1 Suppose M Ce N9 \N\ = $0, N is an M-ring and N is a harm-
less extension of M. Let K D N be an 8 rsaturated real closed field. Suppose
aENclandforallnEN9 \a-n\ > 1. Then there is b E K such that \b-a\ < 1
and for all nonconstant polynomials p(X) E N[X] ,p(b) is not M-bounded, and
N[b] is a harmless extension of M.

Proof: Let [pn: n E ω) list all nonconstant polynomials in N[X]. Let {fn-nE ω)
list all definable partial functions on Ncl. We will build sequences c0 < cγ <
. . . cn < . . . < dn < . . . < d\ < d0 in Ncl such that for all n:

(i) c0 = a and d0 = a + 1.
(ii) pn(x) is not M-bounded for any x E (cn+Ϊ9dn+i).

(iii) Either: (a)/Λ is undefined on (cn+i, dn+x) or (b)fn (x) is not M-bounded
for any xE (cn+ι9dn+ϊ) or (c) there ism EMsuch that \m-fn(x)\ < 1
for all xE (cn+udn+i).

(iv) There is m E M such that dn — cn> 1/m.

If we build such sequences then the desired b will be chosen so that for all
n, cn<b <dn. This is possible since K is **!-saturated. Clearly for all noncon-
stant p(X) E N[X], p(b) is not M-bounded and for all definable functions/
on JVcl such that/(ό) is defined, either/(b) is not M-bounded oτf(b) is within
distance one of an element of M. Since every element of N[b]cl is of the form
f(b) for some N-definable function/ (as real closed fields have definable Sko-
lem functions), N[b] is a harmless extension of M. Thus we need only build these
sequences.

We begin with c0 = a and do = a + 1.

State n + 1:
We are given c = cn and d = dn. We first must see how to shrink this inter-

val to (c', d') so that p(x) =pn(x) is not M-bounded on (c', d') and d' - c' is
not M-infinitesimal.

Let s be the degree of /?. We can find a EN and θ i , . . . , θs in the algebraic
closure of iV such that p (X) = a (X - θx)... (X - θs). We choose cf and d' so
that <f - c' is not M-infinitesimal and no x E (c', d') is M-infinitesimally close
to any 0, .

Suppose Λ: E (c\d') and, for some m E M9 m > 0 and |/?(JC)| < m. Since
none of the | JC — 0, | is M-infinitesimal, each is M-bounded. Also a is M-
bounded and hence in M (since N is an end extension of M). Let / E M be such
that Σ I x - 0/| < /. Note that Σ 0, = OL\/OL where c^ E TV (as ax is the X s " 1 co-
efficient of p(X)).

Now:

OL\ χr\ X — θ[ 1 v-π , Λ , /
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Since TV is an M-ring, there are 6 E TV and rEM such that aγ < sab + r. But
then:

OL\ r I r
\x-b\ = x L + — < - + — .

Sa sa s sa

So I JC - b\ is M-bounded. Since N is harmless there is y E M such that
\x — b — y\ < 1. But b + y G N, contradicting our assumptions about #.

We now must show how to meet Condition (iii). Suppose we have an inter-
val (c, d) such that d — c is not M-infinitesimal and an Ncl-definable partial
function/. We begin by breaking up the dom(/) Π (c, d) into a finite union of
points and intervals. If all of these intervals are of M-infinitesimal length then
we can find a subinterval (c', d') of non-M-infinitesimal length such that/ is un-
defined everywhere on this interval.

Thus, without loss of generality we may assume that/ is total on (c,d). We
can decompose (c, d) into a finite number of points and intervals such that on
each interval/ is differentiable and both/ and/' are monotonic on that inter-
val (see for example Pillay and Steinhorn [5]). One of these intervals will have
non-M-infinitesimal length, and thus without loss of generality we may assume
that/ and/7 are monotonic on (c, d). For definiteness we will assume that both
are strictly increasing, all other cases are similar.

Subcase 1: f(c) and/(rf) are M-bounded.
By the Mean Value Theorem, there is ξ E (c, d) such that/'(£) = [/(</) -

f(c)]/(d-c). Since/' is increasing on (c, d), ξ - c> d - ξ. In particular ξ -c
is not M-infinitesimal. Since/(rf) and/(rf) are M-bounded and d - c is not
M-infinitesimal, there is an /EMsuch that |/ '(£) | < /and ξ - c> 1//. But then
fora l lxE [c,c+ (1/2/)], 0 <f(x) -f(c) < \x - c\f'(g)< \. Since TV is a
harmless extension of M, there is an m E Msuch that \m — f(c)\ < \. Thus,
for all x E [c,c+ (1/2/)], \f{x)-m\ < 1.

Subcase 2: f(c) <f(d) < M or M</(c) <f(d).
In either case/ is not M-bounded on (c, d).

Subcase 3: f(c) < Mand/(rf) is M-bounded.
Let e = (c + d)/2. lίf(e) < M, then (c,e) is as in Subcase 2. Otherwise

(e, d) is as in Subcase 1.

Subcase 4: f(c) is M-bounded and/(rf) > M.
Similar to Case 3.

Subcase5: f(c) <M<f(d).

Let e be as above. One of the previous cases applied to (c, e) or to (e,d).

This completes the proof of Lemma 2.1

We need one more lemma for the proof.
Lemma 2.2 Suppose NDMisa normal, discretely ordered M-ring, K is an
ordered field extending N, and βGKis such that for all nonconstant polynomials
p(X) E N[X] ,p(β) is not M-bounded. Let
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Then R is a normal, discretely ordered M-ring. Moreover, ifN is an end exten-
sion ofM, then so is R.

Proof: Suppose 0<p(β/m)) < 1, where

and d > 0. Let

q(X) = Σ md-nanX\
n=0

Then q(β) <md, contradicting the fact that q(β) is not M-bounded. A similar
argument shows that if N is an end extension so is R.

Suppose p(X) is a monic polynomial in R[X]. Then for some m E M,
/?(JQ E N[β/m] [X]. But N[β/m] is a simple transcendental extension of N.
Thus since Λfis normal, N[β/m] is normal (see for example Jacobson [2]). R and
N[β/m] have the same fraction field. Hence if p(X) has a zero in the fraction
field of R9 it already has a zero in N[β/m]. Thus i? is normal.

If p{X) E iV[JΠ has constant term a0, then for all bGM, p(β/m) is con-
gruent to a0 (mod b). Thus since ΛΓ is an M-ring, R is also an M-ring.

We can now prove Theorem 1.3.
Let Mbe a countable, normal model of Open Induction. Let A'DMbean

Nrsaturated real closed field. Our entire construction will take place inside K.
LetaGK such that, for all m E M, m < a. Then for all x E M c l , x < a.

Thus for all nonconstant p(X) E M[X] ,p(a)is not M-bounded. In general,
if E is a real closed field and F is obtained from E by adding an infinite element
and taking the real closure, then every 2?-bounded element of Fis infinitesimally
close to an element of E (this is easy to check for real closed fields and is proved
in a general setting in Marker [4]). Thus M[a] is a harmless extension of M.

Let

A^o= U Λ f Γ - 1 .

By Lemma 2.2, TVQ is a normal, discretely ordered M-ring. We now iterate the
constructions from Lemma 2.1 and Lemma 2.2 to build MceNa. normal, dis-
cretely ordered M-ring such that every element of TVcl is within distance one of
an element of N. By Shepherdson's Theorem, AT is a model of Open Induction.

3 Open Questions Two obvious questions come to mind.

Question 1 Does every uncountable normal model of Open Induction have
a normal end extension?
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Definition A model M of Open Induction is said to be Bezout if any two el-
ements a,b GMhave a greatest common divisor dand there are λ and μ in M
such that λa + μb = d.

Question 2 Does every (countable) Bezout model of Open Induction have a
Bezout end extension?

In [7] Smith gives several constructions of pathological Bezout models of
Open Induction but his constructions do not seem amenable to starting with an
arbitrary Bezout model as the base.
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