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WILLIAM C. PURDY

Abstract This paper describes a language called £N whose structure mir-
rors that of natural language. £N is characterized by absence of variables
and individual constants. Singular predicates assume the role of both indi-
vidual constants and free variables. The role of bound variables is played by
predicate functors called "selection operators". Like natural languages, £N

is implicitly many-sorted. £N does not have an identity relation. Its expres-
sive power lies between the predicate calculus without identity and the predi-
cate calculus with identity. The loss in expressiveness relative to the predicate
calculus with identity however is not significant. Deduction in £N is in-
tended to parallel reasoning in natural language, and therefore is termed "sur-
face reasoning". In contrast to deduction in a disparate underlying logic such
as clausal form, each step of a proof in £N has a direct counterpart in the
surface language. A sound and complete axiomatization is given. Derived
rules, corresponding to monotonicity and conservativity of quantifiers and
to unification and resolution in conventional logic, are presented. Several
problems are worked to illustrate reasoning in £N.

1 Introduction It is a popular view that spoken or written language is a "sur-
face" phenomenon, that its logical structure and meaning reside in an underly-
ing base language, and that complex transformations relate these two levels.
Reasoning takes place at the base level with the surface language providing only
an input/output function. Put into practice, this view would require difficult
transformations from surface to base language and back again. Even more dif-
ficult would be providing an intelligible account in the surface language of rea-
soning performed in the base language.

This paper is motivated by an alternative view (Thomason [18]), viz., that
the surface language directly conveys logical structure and meaning, and that the
base level and transformations are unnecessary. Reasoning conducted in the sur-
face language will be termed "surface reasoning" to distinguish it from deduc-
tion performed in some base language such as clausal form of first-order logic.

The paper describes £N, a logic designed for surface reasoning. £N is char-
acterized by absence of variables and individual constants. Singular predicates
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assume the role of both individual constants and free variables. The role of
bound variables is played by predicate functors called "selection operators". Like
natural languages, £N is implicitly many-sorted. £N does not have an identity
relation.

£N has several links with previous work. The elimination of bound variables
borrows from Quine's Predicate Functor Logic [10]. Specifically, selection op-
erators are variants of Lockwood's superscript sequences [7],[8] and Kuhn's r-
functors [6]. The elimination of the identity relation and the central role of
singular predicates are inspired by Sommers' Term Calculus [11],[12]. Logics sim-
ilar in various aspects to £N have been defined by Suppes [14]-[17], Kuhn [6],
and workers in the Sommers tradition (see Englebretsen [4],[11]). But the prin-
cipal influence is the recent work on generalized quantifiers in natural language
(e.g., Barwise and Cooper [1], van Benthem [2]). This work gave rise to the con-
viction underlying £N, viz., that monotonicity properties constitute a unifying
principle in surface reasoning.

Two claims are made for £N: (i) the language is structurally similar to nat-
ural language in the sense that there exist well-translatable grammars (Culίk [3])
relating £N and natural languages; (ii) the logic is similar to natural language
reasoning in that the monotonicity principle captures an essential and important
element of natural language reasoning.

The paper is organized as follows. First the syntax and semantics of £N are
defined. Next a complete axiomatization is given. Then several theorems estab-
lishing the monotonicity principle are presented. The monotonicity principle is
shown to subsume unification and resolution. To support the claim that £N is
structurally similar to natural language, a fragment of English and its transla-
tion to £N are defined. To support the claim that £N mirrors reasoning in nat-
ural language, several example problems are solved and discussed.

2 Definition of the language The alphabet of £N consists of the following:

1. Predicate symbols (P = S U (U/eω <Rj) where (R, = {/?/: / e ω}, S = {S, :
/ G ω), and S and the (R, are mutually disjoint.

2. Selection operators {{ku..., kn): n G (ω - {0}), kj G (ω - {0}), 1 <
i < n}.

3. Boolean operators Π and ".
4. Parentheses ( and ).

£N is partitioned into sets of Λ-ary expressions for n G ω. These sets are de-
fined to be the smallest satisfying the following conditions:

1. Each Si G S is a unary expression.
2. For all n G ω, each R" G (Rrt is an Λ-ary expression.
3. For each predicate symbol P G (P of arity m9 <k\ , . . . , km)P is an Λ-ary

expression where n = max(A:/)i</<m.
4. If X is an Λ-ary expression then (X) is an Λ-ary expression.
5. If X is an m-ary expression and Y is an /-ary expression then (XΠ Y) is

an Λ-ary expression where n = max(/, m).
6. If A" is a unary expression and Y is an (n + l)-ary expression then (XY)

is an Λ-ary expression.
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In the sequel, superscripts and parentheses are dropped whenever no confu-
sion can result. Metavariables are used as follows: S ranges over S; Rn ranges
over (Rn; P ranges over 9; X, Y, Z, W9 V range over <£^; and Xn,Yn

9Z
n

9W
n,

Vn range over fl-ary expressions of £N. Applying subscripts to these symbols
does not change their ranges.

An interpretation of £N is a pair β = (ΐ),^) where 3D is a nonempty set and
T is a mapping defined on 9 satisfying:

1. For each S, e S, T(S, ) = {(d)} for some (not necessarily unique) rfE 3D.
2. For each Rn E (RΛ, T ( Λ Λ ) c » " .

Note that 3D0 ={<>}, so T(Λ°) must be either {<>} or 0 .
Let a = <dud2,... > E 3Dω (a sequence of individuals). Then ^ E £N is

satisfied by a in β (written β \=a X) iff one of the following holds:

1. XG 9 with arity n and {du...,dn) G T ( I ) .
2. X = <Aτ!,..., km)P where P E (P with arity w and <d / f e l , . . . , dkm) t= P
3. Λf= y a n d t f ¥a Y.
4. X=YΠZ and β\=aY and β Nα Z.
5. ^ = ̂ Z ^ 1 and for some rfE 3D, <rf> h Γ 1 and <rf> t = Z Λ + 1 .

5 ^ ^ is an abbreviation for not(£f Nα ̂ ) and (diι9..., din) 1= ̂  is an abbrevi-

ation for 5 !=«/,.,...9dlH9dltd29...> *•
A sentence of JÊ r is a 0-ary expression. Let X be a sentence of £N. ^ i s ̂ rwe

//i β (written βtX) iff 5ί Nα ̂  (i.e., <> 1=^) for every α E 3)ω . ^Tis valid (writ-
ten MO iff X is true in every interpretation of £N. A set Γ of sentences is satis-
fied in β iff each X E Γ is true in β.

It can be shown that the pure predicate calculus without identity {9(9) is
equivalent to a proper subset of £N, which in turn is equivalent to a proper sub-
set of the pure predicate calculus with identity (@(Pβ). The first inclusion is
shown by defining a recursive translation function r which, given a well-formed
subexpression of (P(P and a binding environment (a string over the set of vari-
ables of (P(P), computes the corresponding subexpression of £N. The transla-
tion of a closed wff φ E 9(9 is then defined to be τ(φ, e). That the inclusion is
proper is proved by a routine application of Padoa's Principle to show that 99
cannot express the property of being a singular predicate. The second inclusion
is shown similarly.

In subsequent sections the following abbreviations are used to improve read-
ability:

1. Rn:=(n9..^,l)Rn.

2. ru Y:= (xnj).
3. X^ Y:=XΠ Y.
4. AΓ= Y:= (X^ Y)Π ( 7 c l ) ,

5. Γ:=(So<=So).
6. XnXn.x X,Y := (Xn(Xn-i (XiY) ).
7. XιY*o y ^ . . . . y? : = ( . . . ( A ^ y ^ ) . . . y?).

8. Λ A ^ ^ A Γ 1 ^ .
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It is easy to see that:

1. β taXU r iff (£J KXoτβ \=a Y).
2. β f=α i c yiff (£ί μα ximplies 5 h, 7) .
3. β K*= Γiff (£1 |=αJΠff 3 l=α 7) .
4. 5 l=α T for every 3 and α.
5. fl ^ A ^ 1 ^ ••••• 7? iff for some tfe 3D, <tf> h ^ 1 and <tf> 1= Γ* <>.. .<>

Y\9 where ° denotes composition of relations in β.
6. e)raAXlY iff for all d G 3D, <rf> 1= ̂ J implies <</> 1= r.

3 Axiomatization of £N The axiom schemas of £N are the following:

BT Every schema that can be obtained from a tautologous Boolean wff by uni-
form substitution of nullary metavariables of £N for sentential variables,
Π for Λ, and " for -i.

Cl Sin S/,<A:i,..., km) P c Sikm S/V P where P is of arity m and n =
max(A7)1<y<m.

C2 S/Λ Sh<ki,... , km)P c S/ytw S,Vi P where P is of arity m and n =
max(/:y)i<y<m.

EG (sxι ns/fl -^sr^ 1 ) cs i n shx
ιγn+ι.

SI SS.
S2 sin s Z l ( s ^ Λ + 1 ) = 5/ r t.. .s^sar11-1-1.
D V •S/jίΛΓTI y ; ) B (S/w - 'ShX

mnSir -ShY
ι) where« = max(/,m).

The inference rules of £ N are the following:

MP From X° and X° c y°, infer y°.
El From (Z° Π SXι Π 5/fi - - 5/t SYn+ι), where 5 does not occur in Xι, F " + 1 ,
or Z°, and is distinct from Siι$..., Sin9 infer (Z°CιSin- ShX

ιYn+ι).

The set T of theorems of £jv is the smallest set containing the axioms and
closed under MP and EL

Observe that by definition of satisfaction, <T(S/,),... ,T(S/π)> 1= Xn iff
<T(S, 2),... ,T(S / Λ )> 1= ShX

n iff- -iff fl 1= S/n - -ShX
n. It follows "easily from

this observation and the definition of validity that the axioms are valid and that
validity is preserved by the inference rules. Hence the axiomatization is sound.

Next, completeness of the axiomatization is shown. Since the proof is a
straightforward Henkin proof (Mates [9]), a sketch will suffice. Let Γ c £N be
a set of sentences. Γ is consistent iff it does not contain Xu . . . ,Xn such that
Xι Π- "Π Xn is in T. Γ is complete iff for every sentence X e £N, either X or
X is in Γ. Γ is saturated iff it is complete, consistent and contains SXι and
Sin - ShSYn+ι for some 5 E S whenever it contains Sin - -S^1 Yn+ι. Γ* is
the set of sentences obtained from Γ by uniform substitution of S2/ for S, in each
XG Γ. Thus only singular predicate symbols with even index occur in Γ*, leav-
ing a denumerably infinite number of "fresh" singular predicate symbols. No-
tice that the axioms do not reference any particular singular predicates. Therefore
any uniform substitution of distinct singular predicates for distinct singular predi-
cates preserves consistency and inconsistency.

Now given a set of sentences Γ £ £N is it shown that if Γ* is consistent it
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can be extended to a saturated set of sentences Γ + £ £N. An interpretation
β = <2D,T> of £N satisfying Γ + can be constructed with 3D = S/~, where S, ~ Sj
iff SjSj G Γ+. β is also a model of Γ*. Thus Γ* is consistent iff it has a model.
Obviously the same holds for Γ. It then follows that ¥X only if X G T.

4 Some useful theorems The main results of this section are two monoto-
nicity theorems. These theorems establish the monotonicity properties of quan-
tifiers (which include the resolution principle). Monotonicity is the foundation
of surface reasoning. In addition, several other properties of quantifiers, includ-
ing conservativity, are proved.

In the proofs of this section it often will be necessary to introduce singular
predicates Siι9...9Sin (n > 1) that are distinct and have no previous occur-
rences in the proof. To avoid unnecessary repetition, this circumstance will be
conveyed by the phrase: Let Siι9..., Sin be fresh. To further reduce unnecessary
repetition, Axiom BT and Rule MP will be used implicitly whenever that use is
clear from the context. Most of the theorems of this section can be succinctly
stated as schemas, i.e., using schematic letters or metavariables. The proof of
such a schema is concerned with an arbitrary instance, or in the case of a refu-
tation, with some particular instance, of the schema. To reduce proliferation of
symbols, the same letters are used in the proof, but with the understanding that
in the proof these letters represent fixed instances.

First, five lemmas are stated. Their proofs are obvious and left to the reader.
The first two facilitate application of Axiom EG. The next two correspond to
universal instantiation and generalization. The last combines Axioms S2 and D.

Lemma 1 (schema) ST.

Lemma 2 (schema) V - -ShX
ιYn+ι £ SX1 Π S,Λ -S^SY"*1.

Lemma 3 (schema) (AT)nXn c Sin ShX
n.

Lemma 4 If Siι9..., Sin G S are distinct and do not occur in Xn

9 then
Sin ShX

n G T implies (ΛT)nXn G T.

Lemma 5 Let φ be obtained from a Boolean wff in sentential variables
pu.. .,Pkby uniform substitution of Π for A and " for -i. Let X"ι,..., X%k G
£N. Letn = m a x ^ , . . . 9nk) andSiχ9... ,Sin G S. Then φ[Sin -S^X?1,...,
S^ S^Xp/pu... 9pk] = SiH--.Sh<l>[Xp,.. .9X£*/pl9... 9pk].

The first theorem generalizes Axiom BT.

Theorem 6 Let Xn be obtained from a Boolean tautology by uniform sub-
stitution of expressions of £>N for sentential variables, Π for A and 'for -ι. Then
(AT)nXn G T.

Proof: Let Siι,..., Sin be fresh members of S. Then Lemma 5 can be followed
by Lemma 4 to yield the desired result.

It follows from definitions given previously that the statements of Lemma
5 and Theorem 6 can be extended to read . . . by uniform substitution of Of or
A, " for -i, U for v, c far ->, and = for <->.

The next theorem is the first of two which establish the monotonicity prop-
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erties of the image operation. These properties play a dominant role in reason-
ing in £N. In the examples of Section 6, invocation of this theorem will be
indicated by the abbreviation MON. First some definitions are needed.

An occurrence of a subexpression Y in an expression W has positive (nega-
tive) polarity if that occurrence of Y lies in the scope of an even (odd) number
of " operations in W. An occurrence_of a subexpression Γw,_where m > 1, is
governed by Xin W\ΐ Wis XYm, XYm, X(Ym Π Zι), or X(Ym Π Zι), or the
complement of one of these expressions. An occurrence of Ym is governed by
Xn Xι in W, where 1 < n < m, if V is governed by Xn in W and that oc-
currence of Ym is governed by Xn-ι X\ in V. An occurrence of Ym in
<*! , . . . ,km)Ym is governed by Xkm • **, ;#t ΪF if <* ! , . . . ,A:w>yw is gov-
erned by Xn AΊ in W, where ft = max (£,)!</<,„.

Theorem 7 (First Monotonicity Theorem) Let Ym occur in W with pos-
itive {respectively, negative) polarity. Let (/\T)m(Ym c Zι) (respectively,
{/\T)m(Zι c y w ) ) , wΛm? l<m.Let W be obtained from Wby: (i) substitut-
ing Zιfor that occurrence of Ym, (ii) substituting {k\,.. .,kf) for selection oper-
ator <fci,... ,km) on Ym, if any, and (iii) eliminating all occurrences of
governing subexpressions that no longer govern after the substitutions in (i) and
(ii). Finally, let TXfor every governing subexpression X with an occurrence of
negative polarity that was eliminated in (iii). Then (ΛT)h(W<Ξ: W), where h is
the arity of W.

Proof: Proof is by induction on the depth of Ym in W. If the depth is zero,
then W= Ym, W = Zι, and ( Λ Γ ) W ( W C W'). For the induction step, let Foc-
cur in W at some arbitrary depth and Ym occur in V at depth one.

Case L V={ku..., km)Ym, where r = max(/r/)i<z<w.
(a) Suppose V occurs in JFwith positive polarity, and therefore Ym has pos-

itive polarity in W. Let Sh,...,Sir be fresh and suppose Sίr SZl<fc l5...,

km)Ym Π S / - . S/1</:1,...,A:/>Z/, where q = maxί*,)^*/. By Axiom Cl,
V ^ S ^ A : ! , . . . , ^ ^ C S ^ . . S ^ y ^ . By Axiom C2, S ^ ^ . S ^ ^ , . . . ,

A:/>Z/ c s/Λ/ -SikZ
ι. Then by Lemma 5, S ^ -S^ ( Γ m Π Z 7). However,

(ΛΓ) w ( r w c Zz) and Lemma 3 yield S ^ Sikχ(Ym Π Z7), leading by Axiom S2
to a contradiction. Therefore by Axioms D and S2, Sir — S/ 1«AΊ,. . . , km)Ym Π

<*! , . . . , Ar^Z'), and by Lemma 4, (ΛΓ) r«*,,.. .,km)Ym S < ^ , . . . , fc7>Z').
The theorem follows by the induction hypothesis.

(b) Suppose V occurs in W with negative polarity, and therefore Ym has
negative polarity in W. Suppose Sir - - £;,<&!,... ,km)Ym Π Siq - -Sh(kx,...,

kι)Zι. Then reasoning similar to the above yields Sikm- S/Λl(F^ Π Z7), while

( Λ Γ Γ ( Z 7 C y«) and Lemma 3 yield S/^ S / y t (Z / n ϊ 7 ^ ) , again leading to a
contradiction. The theorem follows as above.

Case 2. V = YmX, where m = / = 1 and g is the arity of X.
(a) Suppose V occurs in W with positive polarity, and therefore Ym has

positive polarity in W. Let Sh,... ,Sig be fresh and suppose Sig - Si2Y
1X C\

Sig--Si2Z
ιX. By Lemma 2, S^ Si2ShXn ShZ

ι. From ( A Γ M Γ 1 C Z 1 ) and
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Lemma 3 follows Sh(Yl (Ί Z 1 ) , whence by Lemma 5, ShY
ι Π ShZ

ι. Combin-

ing these results, Sig S^X Π ShZ
ι U ShY

ι Γ) ShZ
ι. Using the Boolean

tautology pΛq -+pΛΓV qΛ ~^r, it follows that Sig S^S^XΠ SiιY
1. Now

Rule El yields Sig- S^F 1 ^, which contradicts the assumption. Therefore,

^ • • • ^ ( y ^ Π Z 1 ^ ) , and by Lemma 4, ( A Γ ) * " ^ 1 ^ ZιX). The theo-
rem follows by the induction hypothesis.

(b) Suppose V occurs in W with negative polarity, and therefore Ym has
negative polarity in W. Let Siχ,..., Sig be fresh and suppose Sig Si2Y

ιX Π

S/j Sj2Z
ιX. Reasoning as above, this assumption yields Sig Si2Z

ιX, a con-
tradiction. This leads to the conclusion ( A Γ ) * " 1 ^ 1 * ^ YlX). The theorem
again follows by the induction hypothesis.

Case 3. V = XYm, where m > 1 and / > 0.
(a) Suppose V occurs in W with positive polarity, and therefore Ym

has positive polarity in W. Let 5 / 1 ? . . . , S;m be fresh. Two subcases must be

considered: (i) Let / > 1 and suppose Sim ShXYm Π Sir"Si2XZl, By

Lemma 2, Sit> ~ShShZ
ι Π S^X From (Λ!F)m(Ym c z ' ) and Lemma 3 fol-

lows Sίm -Si2Siι (Ym Π Zι), whence by Boolean tautology -»/? -» -ι (p A q),
sim

m"si2Sii (γm nz1)^ ShX. Combining these results, Sim---Si2Sh(Zι \J

YmΠ Z7) Π ShX, which by Lemma 5 and Axiom BT yields Sim- 5/25/Iϊ
r|fl Π

S f lX By Rule El, Sim~ Si2XYm

9 which contradicts the assumption. There-

fore S/m S/2^r772 Π Sir--Si2XZι, which by Lemmas 5 and 4 leads to

(ΛΓ)m~1(A r7m c A'Z7). The theorem follows by the induction hypothesis,

(ii) Let / = 0 and suppose Sim - Si2XYm Π Z°. By Boolean tautology i p -^

-i (/?Λ(7), Z^nS~^. Reasoning as in subcase (i) again leads to ( Λ Γ Γ " 1 (XYm Q

Z°) and the theorem follows by the induction hypothesis.
(b) Suppose V occurs in W with negative polarity, and therefore Ym has

negative polarity in W. Let 5 7 l , . . . , Sim be fresh and again consider two sub-
cases: (i) Let / > 1 and suppose Sim ShXYm Π Sit- Si2XZι. Reasoning

as above, this assumption yields S/m "Si2Siι(Ym U Z ' Π Ϋ7") Π ShX, which
by Lemma 5 and Axiom BT yields Sir -Si2ShZ

ι Π ShX. Then by Rule El,
57/ Si2XZι

9 contradicting the assumption. As above, the theorem follows
by Lemmas 5 and 4 and the induction hypothesis, (ii) Let / = 0 and suppose
Sim ShXYm Π Z°. Then as in subcase (i), Z°C\ShX. Now by Lemma 1 and
Rule El, Z° Π TX. Since TX is a condition of the theorem, this again contra-
dicts the assumption and the theorem follows as above.

Case 4 (V= Ym) and Case 5 (V= Ym Π X) are straightforward.

From previous definitions, it follows that if the expression ΛYX occurs with pos-
itive (negative) polarity, then the occurrence of Y has negative (positive) polar-
ity while the occurrence of X has positive (negative) polarity; if the expression
y c A"occurs with positive (negative) polarity, then the occurrence of Yhas neg-
ative (positive) polarity while the occurrence of X has positive (negative) polar-
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ity; if the expression YU Xoccurs with positive (negative) polarity, then the
occurrence of Yand the occurrence of X both have positive (negative) polarity;
and if the expression Y = Λf occurs with either positive or negative polarity, then
the occurrence of Y and the occurrence of X both have positive and negative po-
larity. With these provisions, Theorem 7 applies to expressions containing oc-
currences of defined operators. Injthis connection, singular predicates require
special mention. Since ΛSX := SX = SX s SX, any occurrence of a singular
predicate as a governing subexpression can be taken to have either positive or
negative polarity.

Corollary 8 (schema) ((AT)m(Ym^Zι) Π (AT)1(Z1£ Wk)) c ( Λ Γ Γ ( Γ C

Wk) where k<l<m.

The following theorem provides a useful distributive property.

Theorem 9 (schema) (AT)n~k((AXh AX1 Ym Π AX} .- ΛX1 Z7) c AXk

AXX (Ym Π Z1)) where n = max(/, m), and either (i) h = m < k AJ = k < / or
(ii) j = l<kAh = k<mor (iii) h = j = k < n.

Proof: Let S,-,,..., S/fl be fresh. Suppose S/#ι S W l ((AXH Λ ^ F W Π ΛA}

AXXZ
1) Π Λ J Γ • -AXx(Ym Π ZQ). Then by Axiom D, Sim S/Λ+1A

P

Λ j r 1 F ^

and by Axiom S2, Sim - Sih+ιXh XxΫ™. Lemma 2 yields S/m S Z i r
w Π

S/j^! Π Π 5/ΛJTΛ. By a similar argument, Si{ 5/jZ7 ί l S / ^ Π n S^A}.

Using Axiom BT and Rule MP, these two results yield (S/#li S,-, 3"" U 5/V

S / ^ j n S , ^ , Π (Ί SikXk. By Lemma 5,5/w - - - Sh ( F " U Z7) Γί 5fl ^ Π Π

S ^ . By Rule El, ^ . . . S ^ . ^ f Γ U ? ) , or equivalent^, S/#f -
S/Ar+1 Λ Z ^ Λ ^ ! ( y w Γ\Zι). Since this is a contradiction, the theorem follows
by Lemma 4.

Now the second monotonicity theorem can be presented. First a definition is
needed.

A subexpression Ym will be said to occur disjunctively in expression Wiff:
(i) W=ΛXn-> ΆXxY

m U Z where n < m, or (ii) FF= ΛA^ Λ ^ + 1 ( Z ! U Z2)
where 0 < /: < n and 7 w occurs disjunctively in Zx.

Theorem 10 (Second Monotonicity Theorem) Let Ym occur disjunctively
in W, governed by Xk- XX. Let W be obtained from W by replacing that
occurrence of Ym with Zι(l<m) and deleting all occurrences of AXt that no
longer govern a subexpression. Let TXffor every AX( that was deleted. Then
(AT)h((WΓ)AXk- ΆXx(Ym c Z1)) c JV')9 where h is the arity of W.

Proof: Proof is by induction on the depth of Ym in W.

Basis (depth = 1): W=ΛXk- AXX Y
m U V.

(AT)H((W n AXk AXx(Ym s z1)) c (AXk-- AXxγ
m n Λ J ^

A J ^ y " c Z7) U V)) by Theorem 6 and Boolean tautology ((pv q) Ar) -+
(pArvq). Then (AT)h((AXk- ΆXxY

m Π AXk- -AXx(Ym ^ Zι) U F) c
( Λ J ^ Λ ^ ! (Ym Π ( y w c Z')) U V)) by Theorems 9 and 7. By Theorem 6 and
Boolean tautology (p A (p - <?)) - ί, (AT)h+k((Ym Π (Γ772 c Z7)) £ Z7),
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whence by Theorem 7, (AT)h((AXk AXx(Ym Π (Ym Q Z7)) U V) c ( Λ * )
Λ J T I Z ' U F)). Finally, ( Λ Γ ) Λ ( ( ^ Π Λ * * Λ Z 1 ( F / " C Z7)) C W), by Corol-
lary 8.

Induction (depth > 1): W = AXΆ AXq+ι (Zx U Z2) where Ym occurs disjunc-
tively in Zx, governed by Xj Λ^, 0 < j < q, k.

(AT)h((WΠAXk- - . Λ J ^ r " C Z7)) C Λ ^ ΆXg+ι(AXj" ΛXx(Ym C
Z7) Π (Z! U Z2))) by Theorem 9. Then ( A Γ ) ^ 9 ^ ^ . " - A ^ y w c
Zz) Π (Zj U Z2» c (ΛΛ) - Λ ^ ! ( y w c z 7) Π Z! U Z2)) by Theorem 6. By The-
orem 7, (ΛΓ)Λ(ΛjrM. -ΛΛ^+1(ΛΛ)»• -κxx(Ymcz7) n (Z! u z 2 » c Λ ^ . .
AXg+ι(AXj- -ΛXx(Ym c Z7) Π Z! U Z2)). Now by the induction hypothe-
sis, (AT)8((AXJ ΛJTi ( r w c z 7 ) Π Zi) c ZJ) where g is the arity of Zλ and
Z' is obtained from Z as W was obtained from JF. Again by Theorem 7,
(ΛΓ) Λ (Λ^. . .Λ^ + 1 (Λ^ / . Λ ^ 1 ( r / w C Z 7 ) n Z 1 U Z 2 ) C Λ ^ ΛA^+1(ZίU
Z2)), where n' < /i. Finally, (AT)H((WΠ AXk- - -*Xx(Ym c Z7)) c FT'), by
Corollary 8.

It is easy to see (from the equivalence ( Γ c Z ^ f Γ U Z7)) that this
theorem corresponds to the resolution principle in conventional logic. A corol-
lary provides a rule corresponding to unit resolution. It will be referred to as the
Cancellation Rule. In Section 6, its invocation will be indicated by the abbrevi-
ation CANC.

Corollary 11 Let Ym occur disjunctively in W, governed by Xk XX. Let
W be obtained from Wby deleting that occurrence of Ym and all occurrences
of AXJ that no longer govern a subexpression. Let TXjfor every AXJ that was
deleted. Then (AT)h((WΠ AXk -AX^Ϋ7*) C W')9 where h is the arity of W.

The image operation is further characterized by the next theorem. The first
corollary establishes the property of conservativity. The second provides equiv-
alent forms and gives the rules for conversion in the case of unary predicates.

Theorem 12 {schema) Xm - -X2Xγ Ym = Xm X2T( Ym Π Xx).

Proof: Suppose Xm - - X2XxΫ
mn Xm X2T(Ym Π Xx). Let 5,,,...,S im be

fresh. Then by L e m m a 2, Sim Sh Ym Π ShXx Cλ -Ci SimXm. By Axiom D ,

Sim- Sh(Ymnxx) Π ShX2Γ\... Π SimXm and therefore also Sim - -Sil(Ym Π

Xx) Π ShT Π Si2X2 n Π SimXm. Rule El yields Xm - X2T(YmnXx)9

resulting in a contradiction. Conversely, suppose Xm -X2XxY
m Π Xm

X2T(YmΠXx). Let Sh,...,Sim be fresh. Then by Lemma 2, Sim-- Sh(Ym Cι

xx)n S/jΓn s/2jf2 n n s/mArm. By Axiom D , s/m - s / l y
| f l ns / l 7

f ns, 1 j f i n
• Π SimXm and therefore also S/w Sh Y

m (ΛSiιXxCλ- Π S/mJfm. Rule El
yields A"w X2X\ Ym, resulting in a contradiction.

Corollary 13 (Conservativity) (schema) (i) Xm -X2XxY
m = Jfw

^r 2A r

1(rm nΛΓO; ( ϋ ) Λ J W ΆX2^xxγ
m = AXm- ΆX2AXx(Ymn^).

Corollary 14 For w/iύrry expressions X and Y, (i) ^TΓ = T(X Π 7);
(ii) XY = ŷ T; (iii) AJTΓ = AT(X C y); ^rf (iv) Λ^y = Λ ( y ) X
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It is now easy to prove that the image operation defines an identity relation
on S. Indeed if /is the identity relation, then it can be axiomatized by the schema
»j/ JJj 1 == »J/ ύJ .

Theorem 15 (schema) (i) 5/5, ; (ii) 5/5,- s 5,5,; (iii) (5/5, Π SjSk) c 5/S*; (iv)
If Sj occurs in W9 W is obtained from Why substituting Sjfor that occurrence
of Si, and 5/5,, then (ΛT)H(WQ W')9 where h is the arity of W\ (v) From the
schema SiX1 = SjX\ infer SiSj.

Proof: (i) Axiom SI; (ii) Corollary 14; (iii) Corollary 14 and Theorem 7; (iv)
Corollary 14 and Theorem 7; (v) If the schema holds, then SiSj = SJSJ. There-
fore SiSj.

5 £N and natural language structure In this section an English fragment
is offered in support of the claim that £N is structurally similar to natural lan-
guage. The syntax of the fragment and its translation to £N are defined by an
attribute grammar. To make the grammar brief, some inessential simplifications
are adopted. Morphological rules necessary to achieve proper noun and verb
forms are omitted. Only the conjunction and is shown; or can be dealt with sim-
ilarly. The grammar is allowed to be syntactically ambiguous.

To further enhance the presentation, the following "syntactic sugar" is added
t o ϋ ^ :

thing := T
someΛ' 1 y:=Λ' 1 y
MX1Y:=AXXY

noX^i^someX^

The attribute grammar follows, τ is the translation mapping.

S ->SandS τ(Sx) <- r(S2) Π r(S3)
|D CN VP r(S) +- r(D)r(CN)r(VP)
|D CN do not VP τ(S) *- τ(D)τ(CN)r(VP)
JPNVP τ(S)+-τ(PN)τ(VP)
|PN do not VP r(S)«- r(PN)r(VP)
I there be VP τ(S) <- some thing τ(VP)

CN -> A CN rίCNO <r- T(A) Π r(CN2)
|CN that VP r(CN!) •- r(CN2) Π r(VP)
|BCN r(CN)^-r(BCN)

PN ->BPN r(PN)<H-r(BPN)
VP -^VPandVP τ(YP1) <- τ(VP2) Π r(VP3)

I TV D CN r(VP) <- r(D)r(CN)(r(f V))
j TV PN r (VP) <- r (PN) (r (TV))
jbe-en TV by D CN r(VP) <- r(D)r(CN)r(TV)
|be-en TV by PN r(VP) <- r(PN)r(TV)
IIV τ(VP)<-τ(IV)

TV ->donotBTV r(TV)^-r(BTV)
|BTV τ(TV)^-r(BTV)

IV -> do not BIV r (IV) <- T(BIV)
|BIV r(IV)^-τ(BIV).
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A small lexicon is provided.

D: some, all, no, a, every
A: black, spotted
BCN: dog, cat
BPN: Bert, Helen
BIV: run, bark
BTV: like, chase.

a translates to some and every translates to all; otherwise r is the identity
function on the lexicon.

In view of the incomplete understanding of human language, it cannot be
proved that £N has the same structure as natural language; but the above gram-
mar demonstrates that a well-translation [3] can be defined between <£^ and a
simple English fragment.

This grammar is of further interest because of the interpretation of English
it induces. It deviates from Montagovian semantics ([1],[18]) in several respects.
Most significant is the absence of term phrases, which denote (in a purely exten-
sional Montagovian semantics) sets of sets of individuals. In the fragment de-
fined above, determiners are functors that combine directly with two predicates;
a determiner and one predicate do not form a phrase. Determiners thus denote
binary relations on subsets of the universe of individuals. The fragment has no
phrases that denote sets of sets. As a dividend, proper nouns always denote in-
dividuals (or, more precisely, singleton sets) rather than sometimes individuals
and other times sets of sets of individuals [1].

Relative clauses are always unary predicates. Thus for example the sen-
tence every dog that chases a cat barks can be given the de dicto reading every
(dog Π some cat chase)bark. In contrast to this, the de re reading (which inci-
dentally lies outside the above grammar) would be S/cat Π every (dog Π S,
chase)bark.

In a sense, these deviations are in the direction of a simpler semantics. This
will influence the form that reasoning takes in £N. The next section discusses
this further.

6 £N and natural language reasoning Theorem 15 implies that £N has an
expressiveness essentially equivalent to that of (P(Pβ. For example, elementary
group theory can be axiomatized and developed in £N in essentially the same
way as in (P(P£f. This however is not the principal claim made for £N. Rather,
£N is claimed to mirror the structure of natural language and the process of nat-
ural language reasoning. The previous section provided some support for the first
claim; this section will address the second.

The organizing principle of reasoning in £N is that of monotonicity as enun-
ciated by the first and second monotonicity theorems and their corollaries. The
importance of this principle is illustrated below by several examples. In addition,
the examples demonstrate the following: (i) not only the problem statement but
each step in the reasoning process is directly intertranslatable with English; (ii)
the reasoning process is one of incrementally building a model of the world en-
tailed by the problem statement.
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In general only a partial model is needed. If a partial model entailed by the
premises contains the desired conclusion, then a direct proof has been con-
structed. If a model entailed by the premises conjoined with the denial of the con-
clusion does not exist (i.e., the attempt to build such a model fails), then an
indirect proof has been constructed. Each step in building a model adds another
fact about the kinds of individuals in the world entailed by the problem state-
ment, that is, about the subsets of the model universe.

6.1 Exercises from introductory logic These examples are taken from Som-
mers [12]. They are intentionally simple so that the details of each step in the
reasoning process can be given. Each step consists of an £N expression, its jus-
tification, and a direct English equivalent. To make the Boolean character of rea-
soning in £N apparent, "universal closure" is implicit. For example, ΛT{D <Ξ
MF) is abbreviated D g MF.

Example 1 Some horses are faster than some dogs. All dogs are faster than
some men. Therefore, some horses are faster than some men. (Implicit assump-
tion: faster and its converse are transitive relations.)

Proof (direct):

1 some//some/)F P Some horses are faster than some
dogs

2 all£>someMF P All dogs are faster than some men
3 D Q someMF 2,Corl4 All dogs are faster than some men
4 some//some(someMF)F 1,3,MON Some horses are faster than some

things faster than some men
5 some//someM(F°F) 4,Defn Some horses are faster than some

things faster than some men
6 F o F c F P For all pairs of things, the first

being faster than something
faster than the second implies
the first being faster than the
second (converse of faster is
transitive)

7 some//someMF 5,6,MON Some horses are faster than some
men.

This proof can also be presented graphically in the form of a Hasse diagram
(see Figure 1). Each node is labelled with an £N expression. Consider a pair of
nodes with labels X and F, and let n be the greater of their arities. An arc as-
cending from A" to Yrepresents the assertion (a&T)n(X^ Y), which may be ab-
breviated X c Y, A pair of arcs descending from X and Y to a common node
represents the assertion (someT)n(X Π Y), which also may be written (X Π
Y) $£ T. The premises are represented in the diagram by heavy arcs; the lighter
arcs represent inferences. //' denotes a nonempty set. There are two inferences,
both based on the monotonicity principle. The conclusion follows from the cir-
cumstance H Π someMF $έ Γ. The Hasse diagram of the partial model is easy
to grasp intuitively and has a compelling similarity to human reasoning.
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someMF

some(someMF)F

H someDF someMF P

H' D Fop

Figure 1. A partial model for the first exercise.

Example 2 All supporters of Nixon will vote for Reagan. Avery will vote for
none but a friend of Harriman. No friend of Khrushchev has Reagan for a
friend. Harriman is a friend of Khrushchev. Therefore, Avery will not support
Nixon.

Proof (indirect):

1 a\\(NS)RV P All supporters of Nixon will vote for Reagan
2 a\\(A V)HF P All those for whom Avery will vote are

friends of Harriman
3 no(KF)RF P No friend of Khrushchev has Reagan for a

friend
4 HKF P Harriman is a friend of Khrushchev
5 ANS Denial Avery is a supporter of Nixon
6 NS ^ RV 1, Cor 14 All supporters of Nixon will vote for Reagan
1 ARV 5,6,MON Avery will vote for Reagan
8 RA V 7,C1 Reagan is one for whom Avery will vote
9 A V e HF 2,Cor 14 All those for whom Avery will vote are

friends of Harriman
10 RHF 8,9,MON Reagan is a friend of Harriman
11 HRF 10,Cl Harriman has Reagan for a friend
12 H^KF 4,S2,Corl4 Harriman is a friend of Khrushchev
13 no HRF 3,12,MON Harriman does not have Reagan for a friend

(contradicts 11).

Again the proof can be presented graphically. Using the same conventions
as before, the Hasse diagram is shown in Figure 2. In this example, inferences
are based on conversion (Axiom Cl) as well as the monotonicity principle. That
the premises and the denial of the conclusion have no model is seen from the con-
tradictory circumstance RFΠRF£ T. This example illustrates that an indirect
proof can be viewed as a process of model elimination (in contrast to model
building), with the result that all models are finally eliminated.

6.2 Schubert's Steamroller In 1978 Lenhart Schubert formulated the follow-
ing problem as a challenge to automated reasoning systems:
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RV HF RF

I I I
NS AV KF RF

A R H

Figure 2. Model construction fails for the second exercise.

Wolves, foxes, birds, caterpillars, and snails are animals, and there are
some of each of them. Also there are some grains, and grains are plants. Ev-
ery animal either likes to eat all plants or all animals much smaller than it-
self that like to eat some plants. Caterpillars and snails are much smaller than
birds, which are much smaller than foxes, which in turn are much smaller
than wolves. Wolves do not like to eat foxes or grains, while birds like to eat
caterpillars but not snails. Caterpillars and snails like to eat some plants.
Therefore there is an animal that likes to eat a grain-eating animal.

To save space the proof is given without English translations. The transla-
tions are easy. As an example, Step 24 can be translated all wolves either like to
eat all grains or all foxes are either not much smaller than they or do not like to
eat all plants or are liked to be eaten by them. It might be remarked in passing
that MW(MPEU M(A ΠMΠ somePE)E), which may seem more direct than
24, is not a well-formed expression of £N.

Proof (direct): The premises 1-23 are stated first. The conclusion is given by
36-37.

1 MA (allP£ U MA (M U MPE U E))
2-7 MWA MFA allBA MCA MSA all GP
8-13 TW TF TB TC TS TG
14-17 MWMFM allFall^M MBMCM alltfallSM
18-21 MWMFE allJFallG^ all5allC£ MBMSE
22-23 allCsomeP£allSsomeP£
24 all^(allG^U allF(M U allP£ U E)) 1,2,3,7,MON
25 MWMF(MUMPE U E) 19,24,CANC
26 all JFallFiallP£ U E) 14,25,CANC
27 allFallP^ _ _ 18,26,CANC
28 allF(allPEU all£(MU allPi?U E)) 1,3,4,MON
29 allFall£(M U all Pi? U E) 27,28,CANC
30 MFMB(MPEUE)^ _ 15,29,CANC
31 MB(MPEU MS(MUMPEU E)) 1,4,6,MON
32 allff(allPg U allS(allP£ U E)) 17,31,CANC

33 allSallP^ 23,Defn
34 all£(allP£ U MSE) 32,33,CANC
35 alltfallPE 21,34,CANC
36 MFMBE 3O,35,CANC
37 all£allG£ 35,MON.
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Because of its larger size, the partial model for Schubert's Steamroller will
not be presented as a Hasse diagram. The first "lemma" (steps 24-27) can be
so presented however (see Figure 3). The heavy arcs represent the inferences
from Step 24 tq^Step 27. For example, the inference from 25_to 26 is: if WQ
allF(MU MPE U E) and WQ allFM, then FFc allF(allP£ U £).

Notice that MFaUPE is nullary, in contrast to the other expressions, which
are unar^. To interpret this, observe that_allΓ(WK c MFMPE) = (TW c
aΆFaΆPE). Since TW, the result έΆFύΆPE follows.

Schubert's Steamroller remained a challenge to automated reasoning systems
for a number of years because of its potentially enormous search space. See
Stickel [13] for a good review. It finally yielded to reasoning systems employing
many-sorted logic. £N is implicitly a many-sorted logic. Indeed, as with all nat-
ural languages, reasoning with sorts is intrinsic to £N. It is remarkable that the
restriction imposed by sorts and the Cancellation Rule strategy together reduce
the total search space for Schubert's Steamroller to 30 expressions. Remarkable
also is the use of the First Monotonicity Theorem to accomplish unification with-
out complexities such as the "occur-check".

6.3 Discussion Although psychological theories of human reasoning
abound, it can be said with confidence that human reasoning is not well enough
understood to permit anything to be proved about it. Consequently, the claim
that £N mirrors natural language reasoning must be argued on intuitive
grounds.

It is clear from the examples that reasoning in £N is concerned with describ-
ing a world or model in terms of classes of individuals and the ways in which they
are related. Specifically it is concerned with inclusion, exclusion, and overlap as
represented by expressions of the forms I ς Y9Xc γ9 and XΠ Y£f. These
are precisely the relations conveyed by the categorical statements (A, E, and /,
respectively) of syllogistic. Syllogistic is often proposed, by psychologists and phi-

MPE U MF(M U a\\P£ U E)

MPE MF(M U MPέ U E)

*ΆF(M U sΛ\Pέ) allF(M U E) allF(allP^ U E)

allFM MFMPβ MFE

W

Figure 3. A fragment of the model for Schubert's Streamroller.
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losophers alike, as a model of human reasoning competence. Its survival for
twenty-three centuries is testimony to the fundamental importance of these re-
lations in human reasoning.

The monotonicity properties of the Boolean connectives can be viewed as ba-
sic to reasoning in propositional logic. Adding the monotonicity properties of
quantifiers, syllogistic extends this mode of reasoning to monadic logic. By gen-
eralization of these monotonicity properties as enunciated by the two monoto-
nicity theorems and their corollaries, £N extends this mode of reasoning to
polyadic logic.

As a consequence, reasoning in £N is essentially building models of the
world entailed by the set of premises. While similar to building semantic trees
or model (Hintikka) sets, reasoning in £N differs because of the Boolean char-
acter of the relations which constrain the classes of individuals that may exist in
the world.

7 Conclusion The claims that £N mirrors natural language structure and
natural language reasoning have been argued on intuitive grounds using exam-
ples. The state of knowledge in cognitive science does not permit more. Addi-
tional evidence will be presented in subsequent papers on £N. This will take the
form of extending the language to additional constructs of natural language, and
further analysis of reasoning in £N to establish further connections with natu-
ral language reasoning.

In the first direction, £N will be extended to include generalized quantifiers
of natural language. The cardinal quantifiers at least k can be axiomatized much
the same as some, requiring the addition of two axiom schemas and a rule of in-
ference, exactly k and less than k can then be introduced by definition. The
second-order quantifier most can also be axiomatized, but here completeness re-
quires restriction of model size to not exceed some fixed limit N. Monotonicity
properties and conversion rules can then be derived. This can be accomplished
by definition in first-order logic with identity; the axiomatization in £N is equiv-
alent.

In the second direction, reasoning in £N will be investigated in relation to
Hintikka's notion of surface information [5]. Hintikka has suggested that nat-
ural language meaning and understanding are best understood in terms of sur-
face information, that is, the results of deduction in which depth does not exceed
that of the premises. Here depth is defined as the maximum number of nested
quantifiers or the maximum number of individuals simultaneously considered.
When depth is allowed to increase beyond that of the premises, depth informa-
tion is produced. This seems to closely match the intuitive notion of reasoning
involved in natural language understanding. The reasoning in the examples of
the previous section illustrate this. The distinction is not only a philosophical one,
it also promises to shed light on the kinds of reasoning that characterize natu-
ral language understanding.
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