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Almost Hugeness and a Related Notion
JULIUS BARBANEL*

Abstract We consider a natural weakening of hugeness. In contrast to the
supercompact situation, this notion fits into a nice hierarchy with almost
hugeness, hugeness, and n-hugeness.

Preliminaries We work in ZFC. Our set theoretic notation is standard. V de-
notes the universe of all sets. Greek letters « and 3 denote ordinals, while v, 6,
7, 0, k, N, and o are reserved for cardinals. By the term “inner model”, we shall
always mean a transitive class which satisfies ZFC. If M is an inner model, and
A is an infinite cardinal, we say that M is closed under A-sequences if and only
if for any x € M, if | x| < N\ then x € M. M is closed under < A\-sequences if and
only if M is closed under y-sequences for each vy < A. ¥, denotes the collection
of all sets of rank less than «, and H,, denotes the collection of all sets hereditar-
ily of cardinal less than y. \* denotes sup,<,(\").

We shall always use the term “inaccessible” to mean “strongly inaccessible”.
A cardinal \ is Mahlo if and only if the inaccessibles below A form a stationary
subset of A.

For k = N\, P,(\) = {x € \:|x| <k}, and, for k < N\, P_,(N\) = {x © \:
| x| = k}. Then « is N-supercompact if and only if there is a normal, fine, x-com-
plete ultrafilter on P, (M), and « is huge with target A if and only if there is a nor-
mal, fine, k-complete ultrafilter on P_,(\). In either case, we shall refer to such
ultrafilters simply as normal ultrafilters. We say that « is < A\-supercompact if
and only if « is y-supercompact for unboundedly many v < A.

Supercompactness and hugeness can also be characterized by embedding
properties. k is A-supercompact if and only if there is an elementary embedding
i: V- M, where M is an inner model closed under A-sequences, « is the critical
point of i, and i(x) > N. « is huge with target N if and only if there exists an ele-
mentary embedding i: V' — M as above, except that i(x) = . For the basic facts
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and methods involving supercompact and huge cardinals, the reader is referred
to Solovay, Reinhardt, and Kanamari [11].

If U is a normal ultrafilter on P,(\), M, denotes the transitive collapse of
the ultrapower IIV/U. We note that M, is closed under A-sequences. We let
w, : IIV/U - M,, denote the collapsing isomorphism, and i, : V' — M, denote the
canonical elementary embedding. Standard methods (see, €.g. Barbanel [1], p.
85) show that 2" < i, (k) < (2°)*. Generally, we shall abuse notation slightly,
and consider the domain of w, to consist of functions from P,(\) into V instead
of equivalence classes of such functions.

Suppose k <y < §, U, is a normal ultrafilter on P,(y), and U is a normal
ultrafilter on P,(8). We say that U, is a restriction of U; to v, and write U, =
Us I v if and only if for every A € P, (), A € U, if and only if {x € P,(3):
x N~y € A} € U;. For A a limit cardinal, we say that (U, :« <y < \) is a coher-
ent sequence of normal ultrafilters (CSNU) if and only if for each y with « <
v <\, U, is a normal ultrafilter on P,(vy) and, whenever k =y <6<\, U, =
Us I v. When dealing with such a coherent sequence, we shall simplify notation
by writing M, 7, and i, instead of M,,, 7, and i,,, respectively.

There are natural elementary embeddings between the inner models associ-
ated with a CSNU. Suppose (U, :k <y <A)isa CSNU, and k <y < < \. De-
fine L5 : IIV/U, — IIV/Uj as follows:

For f: P, () = V, L,5(f) : P.(8) — Vis defined by (/,5(f)(x) =f(xN4), for
each x € P,(6).

It is straightforward to check that / ; is elementary. Then, we can define
kys:M,— Msby ks =msel,50m, !, It should be noted that we are again abus-
ing notation slightly in considering the domain and range of / ; to consist of cer-
tain functions, instead of equivalence classes of such functions. If the specific
CSNU that we are using is not clear by context, we shall write k.f’a to mean the
ks defined as above, using the CSNU B.

We will need the following facts on these embeddings. All can be proved in
a straightforward manner (see also Barbanel [2]).

Suppose k =y <8< n<A.

Fact 1 &k, = ks, kys.
Fact 2 is = k,yg ° i,y.
Fact 3 For a <v, kys5(a) = a.

The following construction has been used in [2] and [11]. Assume that A is
a limit cardinal, and (U, : k <y < \) is a CSNU. Then, using Fact 1, it follows
that {(M,,, k,5) : k <y < & < \) is a directed system.

Assume, for the remainder of this section, that the direct limit of this sys-
tem is well-founded. It is not hard to see that this follows if cf(\) > R,. How-
ever, as we shall see in the next section, we may still have a well-founded direct
limit with cf(A\) = Ry.

Let M be the transitive collapse of this well-founded direct limit. For any vy
with k <y <\, let j, : M, > M be the canonical elementary embedding. By Fact
3, fora =¥, j,(a) =a. Definei:V—>Mbyi=j, -i,. It follows from Fact 2
that the definition of / is independent of the choice of v.
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For any x € M, if x € range j,, we define x () =j7'1(x). Let m(x) be the
least v such that x(+) is defined. Then, for any x € M, m(x) is always defined,
and x(vy) is defined if and only if m(x) =y <A\.

The proof of the following lemma is straightforward.

Closure Lemma M is closed under < cf(\)-sequences.

k is almost huge with target A if and only if there is an elementary embed-
ding i: V- M, where M is an inner model closed under < A-sequences, « is the
critical point of i, and i(x) = A\. Almost hugeness is a natural weakening of huge-
ness. It was studied in [11] and has found important applications (see, for ex-
ample, Section 17 of Kanamori and Madigor [8]).

Almost hugeness cannot (to our knowledge) be characterized by the existence
of a single normal ultrafilter. However, we can characterize almost hugeness
using CSNUs. First, we must introduce the following technical condition:

A CSNU has property EC if and only if whenever k =y <Aandy=<o<
i, (k), there is a 6 such that y < 6 < \ and k,;5(0) = 6.

The intuition here is that, with y and ¢ as above, if we look at ¢ in M, and
follow through its images in our directed system, these images are eventually con-
stant (Fact 3 is used here). “EC” is meant to denote “eventually constant”.

Lemma ([11]) k is almost huge with target \ if and only if \ is inacessible and
there exists a CSNU (U, : k <y < \) satisfying EC.

Much of this paper involves considering what happens if there exists a CSNU
(U, :k <y <N\) satisfying EC, but where X is not assumed to be inaccessible.
We note that a different technical condition associated with CSNUs and giving
an equivalence with almost hugeness was used in Barbanel [4].

1 The main lemma In this section, we state and prove a lemma that will be
used repeatedly in future sections. We adopt the notation developed for CSNUs
and the associated directed systems of inner models and elementary embeddings.

Main Lemma Let (U, :k < v < \) be a CSNU satisfying EC. In addition,
assume that cf(N) > Rg. Then {n < N:q is a limit cardinal, and the CSNU
(U, :k = v < n) satisfies EC} is a closed and unbounded subset of \.

We will need the fact that if there exists a CSNU (U, : k <y < \) satisfying
EC, then A is a strong limit cardinal. To see this, suppose that (U, :x <y < \)
is a CSNU satisfying EC, and suppose, by way of contradiction, that for some
v with k <y <\, 27 = \. Then, since 2” < i, («) (as noted in the preliminaries),
we have A < i, (). By EC, this implies that for some 6 with y < <\, we have
k,s(N) = . Thus, k,5(N\) < \. This is a contradiction, since k. s is an elementary
embedding.

Next, we introduce some notation. Assume (U, :x <y < \) is a CSNU
satisfying EC. Fix v and ¢ with k <y <X and y < ¢ < i, (x). Let ec(o, y) be the
cardinal satisfying the condition given by EC. That is, v < ec(a,v) < A, and
k. ec(o,y) (0) = €c(a, 7). It follows from Fact 3 that ec(o, v) is well-defined and

”
that if v < 0y < 05 < i, (), then ec(o1,7v) < ec(02,7).
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Proof: Assume that (U, :kx <y < \) is a CSNU satisfying EC. Let C = {n <
A :7is a limit cardinal and the CSNU (U, : k < y < ) satisfies EC}.

The proof that Cis closed is straightforward. To show that C is unbounded,
fix yo with « < y9 < A. For all n < w, define v, as follows:

Yn+1 = sup{ec(o,va) 1 vn < 0 < iy, (x)}.

We must establish that this definition makes sense, by showing that if
Yn < N, then y,.; < \. As noted in the preliminaries, i, (k) < (277)*. Hence,
|i,, (k)| < 2"* < \. Since \ is a strong limit cardinal, 27¢ < \. Pick 5 with
27 < < N\. M, E i,k is inaccessible. Since M, is closed under n-sequences, it
follows that (in V), cf(i,(x)) > 9. Let B = {k, ,(0) :v, < 0 <i, («)}. Clearly,
Bciy(x),and |B| = |i,(x)| = 2"* <y < cf(i,(«)). Hence, B is not unbounded
in Z, (). Pick 0 such that § > sup(B), 6 > 7, and 6 < i, («). Then clearly for each
o with v, < 0 < i, (), ec(o,v,) < ec(6,n). Hence, v,.1 < ec(d,n) <A.

Let v* = sup{y,:n < w}. Since cf(N\) > 8y, v* < \. It follows easily that
v* € C. Since v* = v, this establishes that C is unbounded.

As an immediate application of the main lemma, we will study the large
cardinal strength of the targets of almost huge cardinals. Before doing so, we
note the analogous, but easier, result for huge cardinals. If x is huge with tar-
get \, then « is measurable but, if \ is the least target for , then A is not 2*-
supercompact. The proof is straightforward.

Let us now suppose that « is almost huge with target A, and that this is wit-
nessed by i: ¥V — M. Since « is inaccessible, M F \ is inaccessible. It is straight-
forward to check that the fact that M is closed under < A-sequences is enough
to guarantee that A really is (in V') inaccessible. Similarly, A is hyper-inaccessi-
ble, hyper-hyperinaccessible, etc. (see Drake [7] for definitions). However, \ is
not, in general, Mahlo.

Theorem 1 If k is almost huge with target \ and \ is Mahlo, then {n < \:«
is almost huge with target v} is a stationary subset of \.

Proof: Immediate from the main lemma.

Corollary If k is almost huge with \ its first target, then \ is not Mahlo.

Proof: Immediate from the theorem.

2 A natural weakening of almost hugeness Although most large cardinal
properties fit into a nice hierarchy, it is well-known that the relationship between
hugeness and supercompactness is not so nice (for a discussion of this relation-
ship, see [3]). Taking either the elementary embedding or the normal ultrafilter
definitions, it is clear that supercompactness is the right generalization of meas-
urability. The importance of the exact target of a huge cardinal makes hugeness
a very different type of notion than that of supercompactness or measurability.
In this section, we wish to consider a huge-type hierarchy that runs alongside,
but is not precisely compatible with, the usual large cardinal hierarchy.

We say that « is R(A)-huge (“R” for “range”) if and only if there is an in-
ner model M, and an elementary embedding i : ¥ — M such that « is the critical
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point of i, i(x) = N, and, given any x < range { with [x| < \, we have x € M.
k is R-huge if and only if « is R(\)-huge for some A. Note that if « is almost huge
with target A, then « is R(\)-huge. We shall soon show that the converse is true
if and only if A is inaccessible.

We will soon establish that there are inner models associated with R-hugeness
which possess nice closure properties in addition to those given in the definition,
and in the next section, we shall study a natural hierarchy involving R-huge cardi-
nals. R(N)-hugeness can be characterized by the existence of a certain CSNU,
as long as cf(\) > 8.

Theorem 2

(@) If k is R(N)-huge, then there exists a CSNU (U, : k <y < \) satisfying EC.

(b) If cf(N) > R and there exists a CSNU (U, : k < y < \) satisfying EC, then
k is R(N)-huge.

Proof: The proof of Part a is essentially the same as the analogous proof for
almost hugeness in [11].

For Part b, assume that cf(N\) > Ry, (U, :x <y <\) is a CSNU satisfying
EC, and {(M,,k,s) : k <y < \) is the corresponding directed system of inner
models and elementary embeddings. Let i: ¥V = M be the inner model and
elementary embedding obtained from this system. We note the fact that cf(\) >
R, is used here to establish that this system is well-founded and hence that M ex-
ists. We must show that i: V — M witnesses that « is R(\)-huge.

It follows easily that « is the critical point of i. The proof that i(k) = A is
again as in the analogous proof for almost hugeness in [11]. Suppose then that
x S range i and |x| < . We must show that x € M. Fix some y with xk <y <\
and v > |x|. Clearly, for each a € x, j.,"l(a) is defined, since a € range i. Let
y= {j.,“l(a) :a€x}. Theny S M, and |y| = |x| <~. Hence, since M, is closed
under y-sequences, we have y € M,,.. Then, using Fact 3, it follows that x =
Jy(¥). Hence, x € M.

Corollary k is almost huge with target \ if and only if « is R(\)-huge and \
is inaccessible.

Proof: This is immediate from the theorem and the characterization of almost
hugeness given by the lemma in the Preliminaries.

Corollary If k is R(\)-huge, then \ is a strong limit cardinal.

Proof: This is immediate from the theorem and the comments following the
statement of the Main Lemma.

We do not know whether our assumption that cf(\) > &, is necessary in
Part b of Theorem 2. In general, we may ask the following:

Open question If cf(N) =Rpand (U, : k <y < \) is a CSNU, must the as-
sociated direct limit be well-founded?

The following theorem answers this question for the special case where the
CSNU comes from an elementary embedding witnessing that x is R(\)-huge.

Theorem 3 Suppose i: V — M witnesses that k is R(\)-huge, and (U, :«k =
v < \) is the CSNU induced by i. Then, the direct limit of the associated directed
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system of inner models and elementary embeddings is well-founded. Hence, the
existence of such a CSNU witnesses the R(\)-hugeness of «.

Proof: Leti:V—Mand (U, :k <~y <\) be as in the statement of the theorem,
and let {(M,, k,s) : k <y < 8 < \) be the directed system corresponding to (U, :
K<y <N\).

For each y with k <y <\, define h,: M, > M by h,(x) = (i('/rk,‘1 (£9))1¢16%))
for all x € M,. It is straightforward to verify that each 4, is an elementary
embedding, and that for k <y < & <\, A5 k,s = h,. Hence the A,’s yield an
elementary embedding from the direct limit of the system {((M,,k,s): k <y <
6 < A\)) into the well-founded model M. It follows that the direct limit is well-
founded.

To see that (U, :k < v < N\) witnesses the R(\)-hugeness of «, let N be
the transitive collapse of the (well-founded) direct limit of (M, k,;5) 1k <y <
d < A) and let j: V- N be the canonical embedding. That j: V' — N witnesses
the R(\)-hugeness of k follows precisely as in the proof of Theorem 2b.

The characterization of R-hugeness given by Theorem 2 tells us that if « is
R(N\)-huge, then there are large cardinals unbounded below A. For example, we
have the following result:

Theorem 4 Suppose k is R(\)-huge. Then, {vy < \:+ is measurable} is an un-
bounded subset of \.

Proof: Assume k is R(\)-huge and i: V' — M is an elementary embedding and
inner model which witnesses that « is R(\)-huge, and which is obtained from a
CSNU (U, : k = v < \) and corresponding directed system of inner models and
elementary embeddings {(M,, k) : k <y < § < \), as in the proof of Theorem
2 (if cf(N) > Rg) or Theorem 3 (regardless of the value of cf(\)).

Fix any cardinal y < . We claim that v is measurable if and only if M Fy
is measurable. By the second corollary of Theorem 2, \ is a strong limit cardi-
nal. Hence, 27 < A. Fix any cardinal 6 with max{2?, x} < é < A. Then, by clo-
sure considerations, v is measurable if and only if M; F v is measurable. By the
elementarity of j;: My — M, and the fact that j;(vy) = v (by Fact 3), we have that
M; E v is measurable if and only if M F v is measurable. Hence, we have shown
that v is measurable if and only if M F v is measurable.

Clearly, k is 2*-supercompact. Therefore, {vy < «: vy is measurable} is an un-
bounded subset of k. By the elementarity of i: V—> M, M E {y < \:v is mea-
surable} is an unbounded subset of A\. Then, by the argument in the preceding
paragraph, we conclude that {y < A\ :v is measurable} is an unbounded subset
of \.

We note that Theorem 4 is very much in the spirit of hugeness, and very
much not in the spirit of supercompactness.
Next we study some additional closure properties associated with R-hugeness.

Theorem 5 Suppose « is R(\)-huge. Then, there exists i: V— M witnessing
that k is R(\)-huge and satisfying the following:
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(@) M is closed under < cf(\)-sequences.

(b) WEMand V, € M.

(c) Foranyz< M, if cf(\) <cf|z| and |z| < \, then there exists y € z such that
|y| =|z| and y € M.

Proof: Assume that « is R(\)-huge. As in the proof of Theorem 4, let i: V —
M be an elementary embedding and inner model witnessing that « is R(\)-huge,
which is obtained from a CSNU (U, : x <y < \) and corresponding directed
system of inner models and elementary embeddings {((M,,k,5) :k <y <6 < N).

Part a is our Closure Lemma from the preliminaries.

For Part b, we first note that by Theorem 4, there are measurable, and hence
inaccessible, cardinals unbounded below A. Fix any inaccessible v with k < y <
\. By closure considerations, and a straightforward induction, we see that
H, < M,. By Fact 3, for a < v, j,(a) = . Then, another straightforward in-
duction tells us that for any x € H,, j, (x) = x. Hence H, S M. Since v is inac-
cessible, V,, = H,, and we have V, © M. Then, using the fact that y was an
arbitrary inaccessible with k < y < \, and the fact that the inaccessibles are un-
bounded below N\, we have VA = U{V,:k <y < \ and v is inaccessible} S M.

Clearly (V\)ar € Wi. On the other hand, if x € ¥, then, since , € M, x €
M. Then certainly M F x € V4, and we have shown that Vy S (V). This es-
tablishes that V) = (¥3)um, and that therefore ¥, € M.

For Part c, fix any z € M with cf(\) < cf|z]| and |z| < A. Let f:cf(N) = A
be a cofinal mapping. Then, z = Ug<csony (¥ € 2: m(x) < f(B)}. Since cf(N\) <
cf|z|, it follows that for some fixed 8 < cf(N), |[{x € z:m(x) = f(B)}| = |z|-
Fix any y with y = max{f(8),|z|}. Then |{x € z: m(x) < v}| = |z| <. Let
w={x(y):x € zand m(x) < y}. Then w € M, and |w| = |z| < v. Hence
weEM,. Let y = j, (w). It follows, using Fact 3, that y € zand | y| = |z|.

We close this section by pointing out why two “<’s” in the theorem cannot
be changed to “<’s”. In Part a, “< cf(\)-sequences” cannot be strengthened to
cf(\)-sequences”. Suppose, for example, that « is the first R-huge cardinal, and
\ is the first R-huge target for «. (It is not hard to show that the first R-huge
cardinal in fact has precisely one target.) By Theorem 3, let (U, :k <y < \) be
a CSNU witnessing that « is R(\)-huge, and let i : V' — M be the corresponding
elementary embedding and inner model. Fix x S \ such that x is unbounded
in A, and order-type (x) = cf(N\). Let z = {U,:y € x}. Thenz S M and |z| =
| x| = cf(N). Assume by way of contradiction that z € M. Then, by taking all
restrictions of elements of z, it follows that (U, :x <y < A) € M. Hence M F «
is R(N\)-huge. But, by elementarity, M F i(«x) is the least R-huge cardinal. This
is a contradiction, since i(k) > «.

A similar argument shows that in Part ¢, “cf(\) < cf|z|” cannot be strength-
ened to “cf(A\) < cf|z|”. Let k, A, (U,:k <y < \), i, M, x and z be as above.
Since |x| = cf(\), | x| is regular. Hence, we have cf|z| = cf|x| = |x| = cf(N).
Suppose by way of contradiction that there exists y S z with |y| = |z| and y €
M. The fact that | y| = |z|, together with the fact that order-type (x) = cf(\),
tells us that the elements of y are unbounded in the sequence (U, : k <y < ).
Hence, since y € M, it follows, by taking all restrictions of elements of y, that
(U,:k = v < \) € M. We then proceed exactly as above to obtain a con-
tradiction.
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3 The hierarchy The n-huge cardinals result from natural strengthenings of
hugeness. They fit into a nice hierarchy in the following two ways, where we as-
sume m < n < w, and i: V- M witnesses that « is n-huge (see [11] for relevant
definitions and techniques):

a. {y <«k:vyis m-huge} € U, where U is the normal ultrafilter on « induced
by i.

b. Call A =i(«k) the first target for k. Then, {5 < \: 9 is a first target for «
by some elementary embedding witnessing that « is m-huge} € W, where
W is a normal ultrafilter on X\ which is induced by i in a natural way. Sim-
ilar results hold for the second target, third target, etc.

In this section, we shall show that R-hugeness yields an analogous hierarchy
below hugeness. We first note that standard methods show that hugeness and al-
most hugeness are related in the above manner. That is, if « is huge with target
X, then almost every v < « is almost huge, and for almost every n < A, « is al-
most huge with target 7.

Theorem 6 Suppose «k is R(N)-huge, where cf(\) > Ry. Let i:V - M be
the elementary embedding and inner model obtained from some CSNU (U, :
k <vy < \), and let U be the associated normal ultrafilter on k. Then,
@) i. {y<«k:{n<«k:yis R(n)-huge} contains a closed and unbounded sub-
set of k} € U.
il. {y<«k:{n<N\:vyisR(n)-huge} contains a closed and unbounded sub-
set of \} € U.
(b) {9 < \:«is R(n)-huge} contains a closed and unbounded subset of \.

Proof: Let i:V —» M, (U,:x =y <\), and U be as in the statement of the
theorem.

We prove Part b first. Let C = {5 < A:% is a limit cardinal and (U, :
k < v < n) satisfies EC}. By the Main Lemma, C is closed and unbounded.

It suffices to show that if n € C, then « is R(n)-huge. Fix some n € C. Then
(U,:k = v <n)isa CSNU satisfying EC. If cf(n) > R, then, by Theorem 2,
k is R(n)-huge. If cf(n) = 8y, then we must show that the direct limit of the
system of inner models and elementary embeddings associated with (U, :
k < v < p) is well-founded. This is straightforward, since this direct limit embeds
in a natural way into the well-founded model, M, . Hence, the canonical elemen-
tary embedding from V into the transitive collapse of this direct limit witnesses
that « is R(n)-huge. This established b.

For Part a, we first note that if y < A, then it follows immediately from The-
orem 2 and Theorem 5b that « is R(n)-huge if and only if M E k is R(n)-huge.
Thus, Part b implies that M F {n < N\:« is R(n)-huge} contains a closed and
unbounded subset of \. Hence, {y < «: {5 < «: v is R(n)-huge} contains a closed
and unbounded subset of x} € U. This establishes a.i.

Let A € U be the set given by a.i. Fix for some v € A. Then, {n < k:vy
is R(n)-huge} contains a closed and unbounded subset of «. It follows that
M E {n < N:v is R(n)-huge} contains a closed and unbounded subset of \.
Again using Theorem 2 and Theorem 5b, this implies that (in V), {n < AX:vyis
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R(n)-huge} contains a closed and unbounded subset of \. Since this is true for
every v € A, and since A € U, a.ii follows.

We close this section by pointing out that the relationship between R-hugeness
and supercompactness is very similar to the relationship between hugeness and
supercompactness. If « is R(\)-huge, then it follows immediately that « is < \-
supercompact. On the other hand, no amount of supercompactness implies any
R-hugeness. To see this, suppose « is the first R-huge cardinal, \ is the first R-
huge target for k, and i: ¥V — M witnesses that « is R(\)-huge. Since M E \ is
inaccessible, (V3)as E ZFC + « is supercompact + there are no R-huge cardi-
nals. This tells us that full supercompactness does not imply any R-hugeness.

Again as in the case of hugeness, if an R-huge cardinal exists, then there must
be an R-huge cardinal below any supercompact cardinal. In fact, if there is a
cardinal which is R-huge and is above some supercompact cardinal, then un-
boundedly many cardinals below this supercompact cardinal are R-huge. The
techniques here are the same as those involving hugeness and supercompactness

(see [3]).

4 < R-hugeness Let us say that « is < R(\)-huge if and only if {n < \:«
is R(n)-huge} is an unbounded subset of A, and that « is < R-huge if and only
if k is < R(\)-huge for some A. Theorem 6a.ii implies that if « is R(\)-huge and
cf(N) > 8y, then almost every v < k is < R(A)-huge. Hence, < R-hugeness fits
into our hierarchy in a nice way.

The main result of this section is that the < R(\)-hugeness of «, plus an
appropriate large cardinal assumption on A\, implies that « is R(A)-huge. This
is analogous to the following result on supercompactness (see, for example,
DiPrisco [6]): If k is < A-supercompact, and A is measurable, then « is A-super-
compact.

Before stating our theorem, we must first discuss the notion of weak ineffa-
bility. Given any cardinal A, we define the weakly ineffable ideal 7 on A\, by spec-
ifying I'*, the collection of sets of positive measure (that is, those sets not in /)
as follows: For A € \, A € I'" if and only if, given any sequence (A,:a € A)
such that A, € o for each o € A4, there exists B € A with B an unbounded sub-
set of A, satisfying that if o, 8 € B with o < 8, then A, = Ag N «. A is said to
be weakly ineffable if and only if the weakly ineffable ideal on A is nontrivial
(that is, if and only if N € I'").

Weakly ineffable cardinals and their associated ideals were studied by Baum-
gartner in [5], where these cardinals are the 1-almost ineffable cardinals. We shall
need the following result, which is easily proved using the methods of [5]: If A
is weakly ineffable, then A is inaccessible and, if I is the weakly ineffable ideal
on \, then {n < \:7 is inaccessible} € I*, where I'* is the collection of all sets
of measure one (that is, all sets whose complements are in 7).

Theorem 7 Suppose « is < R(N\)-huge, \ is weakly ineffable, and I is the
weakly ineffable ideal on \. If {n < N:«k is R(n)-huge} € I, then « is
R(\)-huge.

Before beginning the proof, we state and prove a lemma involving trees. Re-
call that a N-tree is a tree of height N, with each level having cardinality less than
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. We differ slightly from standard usage by considering a branch to be any (not
necessarily maximal) linearly ordered subset of the tree which is closed down-
ward (we picture trees as growing upward). For v < \, a y-branch of a A-tree is
a branch of length v in the tree (which may be an initial segment of a longer
branch).

Lemma Suppose \ is weakly ineffable, I is the weakly ineffable ideal on \,
and T is a \-tree. In addition, suppose that for some A € I't, we are given an y-
branch B, for each n € A. Then, there is a \-branch B in T such that {n < \: B,
is an initial segment of B} is an unbounded subset of \.

Proof: Let A\, I, T, A and the B,’s be as in the statement of the lemma. Since A
is weakly ineffable, A is inaccessible. Hence, T has A many nodes and we may
assume that the nodes are named by elements of A. In particular, we may assume
that the tree ordering is a subordering of the usual ordering of the ordinals. Thus,
if «, 8 < N\ and « is below 3 in the tree ordering, then o < .

Let D = {9 < \:q is inaccessible}. Then D € I'*. Hence A N D € I'*. For
n € D, the first n many levels of T consist precisely of the elements of . Hence,
for each n € A N D, B, < . It follows from the definition of 7+ that for some
E c A N D, with E unbounded in A\, we have that v, yn € E with y < 5 implies
that B, = B, N v. In terms of T, this says that B, is an initial segment of B, . Let
B =U,ck B,. Then B is a branch through T. Since E is unbounded in A, Bis a
A-branch. For each n € E, B, is an initial segment of B, and we have established
the lemma.

Proof (of Theorem 7): Assume that k is < R(\)-huge, \ is weakly ineffable, and
I is the weakly ineffable ideal on \. Let A = {5 < A :« is R(n)-huge), and assume
that A € I't. We must show that « is R(\)-huge.

Let T be the tree consisting of all normal ultrafilters on P,(n) for every 5
such that k < » < A, with the restriction ordering. In other words, if k < vy <
n <\, and U, and U, are normal ultrafilters on P,(vy) and P, () respectively,
then U, is below U, in T'if and only if U, = U, I v. Then, a branch in T is pre-
cisely the same as a CSNU.

Since A is inaccessible, there are A many cardinals n with k < 5 < \. Hence,
T has height A. Also, since for any such 5, the number of normal ultrafilters on
P, (n) is 22" (see Corollary 3.9 of [11]), it follows that every level of T has less
than A many nodes and hence T is a A-tree.

We note that a level of T consists of all normal ultrafilters on P,(n) for
some fixed 5. This does not necessarily correspond with the nth level of 7. For
example, the third level of T consists of all normal ultrafilters on P, («k*+).
However, if k < 7 < A and 7 is inaccessible, then it follows that the nth level of
T consists of all normal ultrafilters on P,(n). Let D = {n:x <9 < A and 7 is in-
accessible}. We shall work with A N D instead of A. Since DeI*, ANDeI".

For each n € A, k is R(n)-huge. Then, by Theorem 2a, we may fix a CSNU
B, = (U] :k < v <) satisfying EC. Each such B,isa branchin T. If y € A N
D then B, is an n-branch in T. Since 4 N D € I'*, the lemma tells us that there
exists a A\-branch B in T such that if E = {n < \: B, is an initial segment of B},
then E is an unbounded subset of A.



ALMOST HUGENESS 265

For k = v < A\, let B(y) be the node of B which is a normal ultrafilter on
P,(v). Note that B(y) need not be the node of B on level ¥.

B is certainly a CSNU. To establish that « is R(\)-huge, it suffices to show
that B satisfies EC. Fix y and o with k <y <X and v < 0 < ig(,) (k). We must
find a & such that v < & < X and k5;(0) = 6.

Since E is an unbounded subset of A, we can pick some n € E with > .
Then, since B, is a CSNU satisfying EC, there is a é such that v < 6 < » and
kfg’(a) = 6. But, since B, is an initial segment of B, kfg’ = k,s. Hence, we have
found a 6 with y = 6 < N and kf(;(o) = 4. This establishes that B satisfies EC,
and hence that x is R(\)-huge.
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