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Finite Axiomαtizαbility and Theories

with Trivial Algebraic Closure

DUGALD MACPHERSON*

Abstract It is shown that every quasi-finitely axiomatized complete theory
with trivial algebraic closure has the strict order property or is the theory of
an indiscernible set, and conjectured that every finitely axiomatized ω-cate-
gorical theory with infinite models has the strict order property. It is also
shown that complete theories with trivial algebraic closure and (for example)
no quantifier-free unstable formulas are rather limited.

1 Introduction The purpose of this note is to present a conjecture about
finitely axiomatized ω-categorical theories, and to prove a related theorem as ev-
idence for the conjecture. A complete theory Γis said to have the strict order
property (Shelah [12]; ch. 2, Section 4]) if there is n E ω\ {0}, some cM N T,
and an L(M)-formula φ(x,y) with l(x) = l(y) = n, such that, if we write x <
y whenever x,y E Mn and cM t= φ(x9y), then < is a partial ordering on Mn with
an infinite totally ordered subset. Clearly any theory with the strict order property
is unstable.

Conjecture 1.1 Every finitely axiomatized ω-categorical theory with infinite
models has the strict order property.

The motivation for this conjecture is threefold. First, if true it would gen-
eralize the theorem of ZiΓber [13] that a totally categorical theory cannot be
finitely axiomatized. Note here that the result of ZiΓber was generalized (in [5],
Section 7.4) to all ω-categorical ω-stable theories. Second, there are two obvious
ways to say in a finite number of first-order sentences that a structure is infinite.
One is to say that there is a dense linear ordering somewhere in the structure; this
yields the strict order property. The other is to say that there is a definable in-
jective function/ such that range(/)ϋ domain(/); this is not compatible with
ω-categoricity.

I thank Jim Schmerl and Frank Wagner for several helpful conversations. I also thank
the referee for pointing out that results on normalization shorten the proof of Propo-
sition 1.3.
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The third reason for the conjecture is that it is supported by a variety of ex-
amples. The most obvious example is the countable dense linear ordering; but
the countable atomless Boolean algebra, the countable dense local order (see [3]),
and the countable universal homogeneous poset (see [2]) all have ω-categorical
finitely axiomatized theories with the strict order property. Further examples of
interesting ω-categorical structures with finitely axiomatized theories are (in the
terminology of [6]) the countable 2-homogeneous trees with finite ramification
order. Other structures related to trees, including some of those in Cameron [4]
and Adeleke and Neumann [1], also have finitely axiomatized theories. There are
also relevant results on ω-categorical posets in [10] and [11].

If cM is a structure and AQM, let acl(v4) denote the algebraic closure of A
in cM in the usual model-theoretic sense (the structure cM will be clear from the
context). A theory Γis said to have trivial algebraic closure if, whenever cM 1=
Γand y lcM,we have acl(v4) = A. Note that any theory with trivial algebraic
closure will have infinite models. Next, a theory is said to be quasi-finitely ax-
iomatizable if it is axiomatized by a finite set of sentences together with, for each
k < ω, a sentence asserting that there are at least k elements. Our main theorem
is the following.

Theorem 1.2 If T is a complete quasi-finitely axiomatized theory with trivial
algebraic closure, then either T has the strict order property or every model of
T is an indiscernible set.

Note that from this it follows that every finitely axiomatized complete theory
with trivial algebraic closure has the strict order property; also, that every ω-cat-
egorical quasi-finitely axiomatized theory with trivial algebraic closure, apart
from the theory of an indiscernible set, is finitely axiomatized.

The assumption of trivial algebraic closure in Theorem 1.2 is very restrictive.
In particular, the following proposition suggests that there are no interesting sta-
ble theories with trivial algebraic closure.

Proposition 1.3 Let Tbea complete theory with trivial algebraic closure, and
suppose that some stable formula defines an infinite coinfinite subset of some
model of T. Then there is a parameter-free formula φ(x,y) which defines a non-
trivial equivalence relation on the domain of each model of T.

Structures will generally be denoted by cM or d\[, with domains M,N respec-
tively. If P is a property of certain theories, we say a structure cM has P if Th(cM)
has P If x is a tuple, then l(x) denotes the number of entries of x, and rng(x)
denotes the set of entries.

2 Proofs of the results The following lemma is easy, and we omit the proof.

Lemma 2.1 Let Tbea complete theory with trivial algebraic closure, and sup-
pose there is cM t= T such that no quantifier-free formula defines an infinite
coinfinite subset ofM. Then every model of T is an indiscernible set.

Proof of Theorem 1.2: Let Γbe a complete quasi-finitely axiomatized theory
with trivial algebraic closure. We may assume the language of T is finite rela-
tional. For each k < ω let τk be the sentence asserting that there are at least k el-
ements, and let T be axiomatized by [σι9...,σn] U {τk: k G ω).



190 DUGALD MACPHERSON

Claim We may assume each of σ\,..., σn is universal or of the form
Vxlyφ(x9y)9 where φ(x9y) is quantifier-free (andpossibly l(x) = 0).

Proof of Claim: If σ is an axiom in {σx,..., σn} of the form Vx3yχ (x9 y) where
χ(x,y) is not quantifier-free (and possibly l(x) = 0), introduce a relation sym-
bol R of arity l(x) + 1, and replace σ by the axioms VxlyRxy and VxVy(Rxy ++
x(*> y))' By repeating this procedure we expand Γto a complete quasi-finitely
axiomatized theory with trivial algebraic closure T* over a finite relational lan-
guage L*9 with axioms of the appropriate form. Clearly both or neither of T9 T*
have the strict order property.

Given the claim, we may assume that for some m G ( 1 , . . . 9n] each of
{σx,..., σn} \ {σx,..., σm} is universal, and that if 1 < / < m then σz is of the
form VxβyΦi(Xi,y) and Φi(xi9y) is quantifier-free, and /(jt, ) = /,- (possibly zero).

Fix a countable cM N 71 If φ(x9y) is an L-formula and a G M / ( * \ then
Φ(a9y) will denote {.y .cM t= Φ(a,y)}9 even if there are models other than c/Vl
around. By Lemma 2.1 we may suppose that there is an atomic formula ψ(x9 y)
and b G Ml{5t) such that ψ(b9y) is an infinite coinfinite subset of M.

We shall construct simultaneously

(a) a chain cM0$ cMi $ . . .$ cΛΛ, $ . . . of substructures of cM,
(b) a sequence (n(i):i G ω) of natural numbers, with 1 < « ( / ) < m for all

i s ω,
(c) a sequence (<zz: / G ω) where, for each / G ω, ά,- is an lnU)-tuple of ele-

ments of M, .

We shall arrange things so that for each / G ω,

(d) cM, h -i(*y)Φnv)(άhy)9 and

(e) ΦΛ(/)(fl, ,^)?ΦΛ(/+i)(β/+i,^).

Part (e) will ensure that T has the strict order property.
For the 0th step, choose cMo to be the substructure of cM with domain

rng(5) U φ(b,y) U [z] for some zeM\ (mg(b) U φ(b9y)). Then because T
has trivial algebraic closure and z is algebraic in cM0 over b, cM0 ^ 71 Clearly
cMo 1= τ"A: for each k G ω, so as universal axioms of Γhold in cM0, cM0 1= ̂ ^ ( o
for some 1 < n{0) < m. Hence there is a (possibly empty) ln(0)-tuple ά0 in M o

such that φ Λ ( 0 ) (<W) £ M\M0.
After / steps we will have chosen structures cM 0 , . . . ,cM/, natural numbers

n(0),... ,n(i)9 and tuples άθ9... ,5/ satisfying the obvious restrictions of
(a)-(e). At the (/ + \)th step, choose cM/+i to contain M\φn{i)(ai9y) together
with a single point of φn{i)(cii9y). Then, as T has trivial algebraic closure,
cM/+i (̂  71 Hence one of ox,...,σm9 say σΛ ( / + 1 ), is violated in cM/+i. Thus there
is an /Λ ( / + 1 )-tuple ai+ι in Mi+ι such that cM/+1 1= i ( 3 j ) φ / ί ( / + 1 ) ( α / + 1 , j ) . So
0/1(0 («/»J;)? 0n(i+i)(«ι+i>;y)> and the construction goes through.

Since m is finite, there is an infinite constant subsequence of (n(i): i G ω).
To ease notation we shall suppose that nt = 1 for all / G ω. Put / := lγ. Now de-
fine a poset on Mι by the rule: if b9 c G M7, then 5 < c holds if and only if b =
c or φ i ί έ , ^ ) ^ 0i(c, j ) . Clearly < is a partial ordering on Mι. Since άi+ι < άi
for all / G ω, the partial ordering has infinite chains, so Γhas the strict order
property.
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Remark 1 The above argument does not use the full strength of the assump-
tion that Γhas trivial algebraic closure. We merely used the fact that for each
/ E ( 1 , . . . ,m] and each lrtuple a in M, Φi(a,y) is infinite or contained in
rng(a).

2 Theorem 1.2 is a long way from yielding Conjecture 1.1. However, as
noted in the proof of Theorem 1.2, it suffices to consider Conjecture 1.1 for
model-complete theories in a finite relational language. Unfortunately, the con-
jecture seems difficult even for theories which have quantifier-elimination in a
finite relational language. Note that, if such a theory were a counterexample to
the conjecture, then it would have the independence property. For by [9] and [5]
(Section 7.4), such a theory would be unstable, and by Shelah ([12], ch. 2, Sec-
tion 4.7]) an unstable theory without the strict order property must have the in-
dependence property. Note too that there are unstable ω-categorical quasi-finitely
axiomatized theories without the strict order property. An example is the the-
ory of an infinite dimensional vector space, endowed with a symplectic form,
over a finite field [8].

Proof of Proposition 1.3: Let Γbe a theory satisfying the hypotheses of the the-
orem, and let cM be an ω-saturated model of T. We again identify formulas with
the subsets of M they define. Let φ(x,y) be a stable formula defining an infi-
nite coinfinite subset of M. By [12] (ch. 2, Section 2), there are c E Ml{9) and
a formula ψ(x,z) which is a Boolean combination of formulas of the form
Φix.ΰ), such that, if

Δ = [φ(x9y)9 x = y], then R(φ(x9c)9A9ω) = Mt(ψ(x9c)9A9ω) = 1.

From Theorem 9.3 of Harnik and Harrington [7], there is a formula χ (x, d) (a
positive Boolean combination of conjugates of ψ (JC, C)) such that

(i) the symmetric differences of φ{x,c) and χ(x,d) is finite, and
(ii) any two conjugates of χ(x,d) which are distinct as sets have finite in-

tersection.

(Here, χ(x,a) is a conjugate ofχ(x,b) if tp(α/0) = tp(5/0).) By compactness
there is a natural number k and a formula ρ{ y) E tp(ί7) such that if

cM ¥p(Cχ) Λp(C2)

then x(Λ:,C{) = χ(x, c2) or | χ(x, cx) Π χ(x, c2)\ < k. Thus the set χ(x,d) is de-
finable from any k of its members. By the triviality of algebraic closure, if
cM \=p(c{) Λ p(c2) and χ(x,Cι) Ψ χ(x,c2), then χ(x,cx) Π χ(x,c2) = 0 . It fol-
lows that there is a nontrivial O-definable equivalence relation E on M, defined
by the formula

VxV^(£>ζy^V2(p(z)-^(χ(x,2)^χ(^,z)))).

Remark By Lemma 2.1, the conclusion of Proposition 1.3 holds if we know
that all quantifier-free formulas are stable and T is not the theory of an indis-
cernible set. It might be possible to prove stronger results, either by considering
the way different equivalence classes can be related, or by weakening the hypoth-
esis on algebraic closure to: acl(^4) = U (acl(#): a E A) for all A cMI=Γ.
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