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Abstract This paper pursues two aims, a general one and a more specific
one. The general aim is to introduce and illustrate the use of Boolean ma-
trices in representing the logical properties of one- and (mainly) two-place
predicates over small finite universes, and hence of providing matrix char-
acterizations of finite models for sets of axioms containing such predicates.
This method is treated only to the extent required to pursue the more specific
aim, which is to consider axiomatic systems involving the part-whole rela-
tion together with a relation of foundation employed by Husserl.

1 Husserl structures We present an axiom system which is a first-order for-
malization of the theory of part-whole-foundation relations suggested by Husserl
([111, [12]: Third Investigation). Our axiom system employs two primitive predi-
cates ‘<’ and ‘T’ which denote the part and foundation relations. Subsequent to
Husserl’s own work, the part, but not the foundation relation, was studied in-
dependently by Stanislaw Le$niewski ([16]; [17]; [18]; [19]) and his student Alfred
Tarski ([28], pp. 24-29; [29], pp. 161-172), and later by Henry Leonard and Nel-
son Goodman ([14]; [15]; [7]; [8]). Quine has also contributed to this develop-
ment [24], and the whole topic has been studied extensively by Rolf Eberle [5].
Several part-whole concepts developed within the Le$niewski-Tarski-Leonard-
Goodman tradition® are involved in the present study.

*We would like to thank Dr. Curtis Herink, Department of Mathematics, Mercer Uni-
versity, Macon, Georgia, for help in coming up with Example 2 and Axioms A12, A13,
and Al4. Thanks to Robert McFadden at Northern Illinois University for help in im-
plementing Axiom A9 in Prolog. We would especially like to thank the referee of this
paper for careful reading and many valuable suggestions for improving the original ver-
sion, as well as the splendid phrasing of the abstract.
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We begin with the following definitions:

Definition 1

(Proper Part) x < y means (x<y & x # ).
(Nonatomic whole) x is nonatomic means 3y y < x.
(Overlap) Oxy means Ju(u < x & u <y).

We say x overlaps y iff Oxy.

Definition 2 The Part Axioms

Al = is reflexive.

A2 < is antisymmetric.

A3 = is transitive.

A4 (Overlap axiom) Vyvz[Vx(x <y D Oxz) Dy =Zz].

Our part axioms A1-A4 are equivalent to an axiomatization offered by David
Bostock ([3], p. 113; viz. axiom P1 and definition D2). The converse of the an-
tisymmetry of the part relation (A2) follows from the reflexivity of the part re-
lation (A1), and so we have as a theorem Bostock’s definition D2 that two wholes
are identical if and only if they are parts of each other. Together with transitivity,
we obtain as a further theorem the principle of individuation of our part-whole
system (cf. [S], p. 37; 2.3.1 and 2.3.2). Two wholes are identical just in case they
share all parts. The system is not atomistic in that no axiom requires that every
whole contain a part which itself has no proper part. However, both atomistic
and finitistic limitations are intrinsic to our method of matrix representation for
computer implementation. All models of the system calculable by the methods
studied below will have finite, atomistic universes.

Definition 3 The Foundation Axioms

AS vxvy[x =<y D Fyx]
A6 F is transitive.

A7 & is not symmetric.

A8 & is not antisymmetric.

The second primitive predicate ‘F’ of our system is a reflexive, transitive,
nonsymmetric and nonantisymmetric relation. This primitive, the raison d’étre
of the present system, is a formalization of a relation intrinsic to Locke’s con-
cept that “In some of our ideas there are certain relations, habitudes, and con-
nexions, so visibly included in the nature of the ideas themselves, that we cannot
conceive them separable from them by any power whatsoever” ([20], 11, pp. 221-
222). As examples of this necessary connection of ideas, Locke provides:

It is true, solidity cannot exist without extension, neither can scarlet colour exist
without extension, but this hinders not, but that they are distinct ideas. Many
ideas require others, as necessary to their existence or conception, which yet are
very distinct ideas. Motion can neither be, nor be conceived, without space; and
yet motion is not space, nor space motion; space can exist without it, and they
are very distinct ideas. . . . ([20], I, p. 226)

Locke contrasts a second (contingent) type of “connexion of ideas wholly ow-
ing to chance or custom” ([20], I, p. 529). As examples, Locke mentions the con-
nection between nausea and honey for a person who had once made himself sick
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eating honey, and the connection between goblins, spirits, and darkness for a
child who has been frightened by horror stories ([20], I, p. 531).

The foundation relation taken as primitive in the present study is the first
type of connection mentioned by Locke but ignored by Hume and more recent
empiricist philosophers.? This relation has been systematically examined in con-
nection with the part relation only in recent studies® of Husserl’s thought, which
involved a notion of necessary connection amongst parts and wholes ([11], [12]:
Investigation III; [21], pp. 126-142):

A content of the species A is founded upon a content of the species B, if an A
can by its essence (i.e. legally, in virtue of its specific nature) not exist, unless
a B also exists: this leaves open whether the coexistence of a C, a D etc. is
needed or not. . . . ([12], p. 475)

The intuitive (extrasystemic) idea of the foundation relation is just this idea that
x is founded upon y just in case x cannot exist in the absence of y.

The axioms for the primitive ‘F’ follow directly from this extrasystemic idea.
The (implied) reflexivity and transitivity of & are clear. & is not symmetric (A7)
because there are cases of unilateral foundation such as Locke’s example above
of space and motion. JF is not antisymmetric (A8) because there are cases of bi-
lateral foundation. For example, any two of the three qualities of tone — pitch,
loudness, and timbre —are mutually founding. The foundation of a whole on
each of its parts (A5) is motivated by our principle of individuation in connec-
tion with the intuitive idea of foundation guiding our choice of axioms. If the
identity of a whole is determined by all of its parts, then the whole must cease
to exist if and only if some of its parts cease to exist.

Definition 4 Let U be a set and let < and F be binary relations on U. A Hus-
serl H-structure is a triple (U,=<,%) which satisfies each member of the set Z.g
of eight axioms A1-AS8.

We call models of these eight axioms Husserl structures (for short, H-
structures) because Husserl’s six theorems ([12], pp. 463-465) concerning depen-
dent and independent part relations are provable from these axioms [22]. While
we also have intuitive reasons for the assumption of A12 and A13, given below
in Section 9, the formulation of these axioms depends on a choice of one of the
sum axioms included in this study. The need to decide amongst these several sum
axioms was part of the reason for undertaking the work reported on below.
A1-AS8 thus comprise a common basis of several more complete systems, distin-
guished by different sum axioms and commensurate formulations of A12 and
Al3.

We now present two infinite Husserl structures, one in number theory, the
other from set theory. These are followed by a finite model, a central example
used throughout this paper.

Example 1 Let U = Z*, the set of positive integers. Define x < y* to be the
relation (1) x =y or (2) x and y are squarefreet integers greater than 1 and x di-

*The predicate ‘<’ always denotes the part relation, never the arithmetic ‘less than or
equal’ relation, which we shall always denote by the predicate ‘=’.
TA positive integer >1 is squarefree iff it is a product of distinct primes.
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vides y. Define Fxy to mean y divides a power of x. One can check that (U,<,F)
is an H-structure. To see that & is not symmetric, note that (6,2) € F but
(2,6) & F. To see that F is not antisymmetric, observe that (2,4) € § and
(4,2) € F, but 2 # 4. For this model Oxy has the interpretations (1) x = y or (2)
x and y are squarefree and not relatively prime to each other.

Example 2 Interpretations of the primitive predicates of <-F in set theory:
Let U be the iterated hierarchy of sets and define x < y to be x € y and Fxy to
be y < the transitive closure of x. Here z is the transitive closure of x means that
(i) z contains all members of x and (ii) for each y € z, u € y implies u € z. Note
that Oxy means that x and y are not disjoint sets.

Example 3 Let U = {1,2,3,4}, = = {(1,1),(2,2),(3,3),(4,4),(2,1),(3,1),
(4,1)} and § = {(1,1),(2,2),(3,3),(4,4),(2,1),(3,1),(4,1),(2,4),(4,2)}. Then
(U,=,%) is a 4 member H-structure. In fact, =< and § are just the predicates of
Example 1 restricted to the set U = {1,2,3,4} C Z™.

2 Instantiation and dependence We now define two types of wholes of in-
terest in <-F contexts of the sort Goodman termed “realistic” ([7], p. 142); spe-
cifically, contexts in which concrete individuals are considered sums of qualities
(cf. [1], pp. 7-10, 76-84). We share a major goal of Goodman ([7]: VII) in es-
tablishing a distinction between abstract and concrete individuals. Under the in-
tended interpretation, a whole is abstract if it satisfies the predicate ‘D’ (‘is
dependent’, intended as Husserl’s “unselbstdndig”) defined below, and is con-
crete otherwise. The dependence of qualities is a strictly extrasystemic assump-
tion in systems in which the part predicate is the only primitive, but it can be
defined systemically if the foundation predicate is available. Husser!’s idea was
that dependent wholes (which he also called “moments”) “only exist (if at all) as
parts of more inclusive wholes” ([12], p. 447). The central idea is that being
founded on anything other than its own parts makes a whole dependent.

Definition 5 (Dependent whole) Ox means 3y (~O0yx & Fxy).

We say x is a dependent whole if Dx; otherwise, x is an independent whole.* For
example, the pitch, loudness, and timbre of a tone are mutually founding atomic
moments of the tone. Thus, the tone is independent, so long as further founda-
tion relations are ignored, while each of the three mutually founding parts sat-
isfies the predicate ‘D’.

Goodman has been criticized ([5], p. 40; [7], pp. 149, 155-156) for his prin-
ciple that an individual “need not have personal integration” ([8], p. 156), a prin-
ciple which has led to objections to his sum axiom as too strong ([S], pp. 40-41,
62, 90-91, 97-98, 138-139, 192). According to this principle, the sum of “Plato,
this sheet of paper, and the Taj Mahal” ([8], p. 155) is as much an individual as
is a quality of Plato, or Plato himself. As with dependence for qualities, the in-
tegration felt necessary for individuals, whether abstract or concrete, by Good-
man’s critics can be defined systematically in <-§ primitive systems.

To do this, Husserl introduces his pregnant concept of whole (die priagnante
Begriff des Ganzen): “a range of contents which are all covered by a single foun-
dation without the help of further contents . . . singleness of the foundation im-
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plies that every [part] is foundationally connected . . . with every [part]” ([12],
p. 475). His definition can be interpreted as the criterion that each two parts be
reciprocally founded moments ([26], p. 141).

Definition 6 (Instance®)  9x means Vyvz[(y <x & z<x) D Fyz].b

The sum of discrete (nonoverlapping) independent instances cannot be an in-
stance. Insofar as Plato, this piece of paper, and the Taj Mahal are considered
to be independent instances, their mereological sum is independent, but not an
instance, because it lacks the necessary integration required by Definition 6. By
our axioms A1-A8,

Proposition 1 If x is an instance, then every proper part of x is a dependent
instance.

Proof: Suppose y is a proper part of x. By antisymmetry, x £ y. By the con-
trapositive of the overlap axiom, there exists a z such that z < x and ~Ozy. In
other words, y and z are nonoverlapping parts of x. Since x is an instance, we
have Fyz, and thus y is dependent. It is easy to see from Definition 6 and A3 that
y is an instance. (For a detailed discussion of instance and dependence, see
[221.7) ’

Example 4 We return to the number theory model in Example 1. If x€ Z*
is not squarefree then y < x if and only if y = x. If x is a squarefree composite
integer, let p and q be distinct prime factors of x. Then p < x and g < Xx, but nei-
ther p nor q is founded on each other. Hence 9x holds if and only if (1) x is not
squarefree or (2) x is prime. To interpret Dx, note that if x = 2 then y = x? sat-
isfies Fxy but not Oxy (since y is not squarefree). Thus all integers =2 are de-
pendent with 1 being the only independent whole.

3 Boolean matrices and relations The interest of the matrix method devel-
oped in this paper is two-fold. Our main application is the computer implemen-
tation of modelhood. A second objective is to prove theorems about finite
models using matrix calculations (cf. Proposition 27).

We say that an n X n matrix A = [a;;] is a boolean matrix iff a; € (0,1} for
each i,j, 1 =i, j = n. On occasion we shall be dealing with matrices whose en-
tries are integers other than 0 or 1. To distinguish these from boolean matrices,
we shall refer to them as integral matrices.

We define the boolean operations v and - on the set {0,1} to be the standard
logical connectives of disjunction and conjunction, respectively, when we inter-
pret 1 as true and 0 as false. As in algebra, we often denote - by adjacency of
symbols, e.g. ab = a-b. We also define the negation predicate X as x = 1 — x.

The definitions of v and - for the boolean values 0 and 1 coincide with the
usual arithmetic + and - operations for the integers 0 and 1, with the single ex-
ception that in the boolean case, 1 v 1 =1, not 2. In this same spirit we define
the comparison relations =, <, =, >, and = between the boolean elements 0 and
1 as in arithmetic, where 0 and 1 are thought of as integers.

We extend these comparisons to matrices as follows. For the rest of this sec-
tion let A = [a;;] and B = [b;;] be two n X n boolean matrices. We say that a
comparison relation (=,<,=,>,2) between A and B holds if and only if the com-
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parison holds between every pair of entries a;; and b;;. For example, 4 < B
means a;; < b;; for every i,j, 1 =i, j = n. As in arithmetic, we denote the nega-
tion of each comparison relation by a slash: 4 £ B means it is false that A < B.
In manipulating “matrix inequalities”, care must be exercised, because not all
standard properties of the comparison relations for integers hold in the matrix
case. For example, for matrices, A = B and B = A4 together imply that 4 = B,
just as in the familiar arithmetic rule. On the other hand, trichotomy fails in the
matrix case. For instance, if A = (3 ¢) and B = () ), then neither A =< B nor
A Z Bis true. In particular, A £ B does not imply 4 =Z B.

We now define the following operations on A and B. The transpose of A,
denoted by A’, is obtained by interchanging the rows and columns of A, i.e.
A' = [a;;]" = [a;;]. The matrix join A v B and the entrywise product A x B are
defined by A v B = [a;; v b;;] and A X B = [a;;b;;]. In contrast, the (relative)
matrix product AB is defined by AB = [c;;] if and only if

n
(1) Cij = le aikbkj, 1= l,j =n.
where V j_; Xx = X; VX, V- - -V X,,. We define the matrix negation A = [ay]. Ob-
serve that the join, negation, and both products of boolean matrices are again
boolean matrices. We will also need the standard identity matrix 1, with 1’s on
the main diagonal and 0’s elsewhere, as well as the full matrix J whose entries
are all 1’s.

Now fix n, a positive integer, and let U = {1,...,n}. We associate with the
binary relation R on U the n X n boolean matrix A = [a;;], where

1, if Rij
a; =
Y 0, otherwise.

A is called the incidence matrix of R.}
It is easy to see how to describe standard properties of R in terms of condi-
tions on A.

Proposition 2
(i) R is reflexive if and only if A = I.
(i) R is symmetric if and only if A' = A.
(iii) R is antisymmetric if and only if A X A' = L
(iv) R is transitive if and only if A2 = A.

In general we do not have A% = A for a transitive relation. For example,
suppose A = (‘1’ 9). Since (2,1) is the only pair in the relation, R is clearly tran-
sitive, but 4% = (8 8) . If R is reflexive, however, we can strengthen the above
result to
Proposition 3  If R is reflexive, then R is transitive if and only if A2 = A.°

We now explore the interplay between two relations on the same universe U.
In addition to the relation R, with incidence matrix A, assume that S is another
binary relation on U and let B be the incidence matrix of S. The next proposition
shows that implications between R and S can be expressed in terms of 4 and B.

Proposition 4 VxVyRxy D Sxy if and only if A = B.
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4 Matrix representation of Husserl structures For this section assume that
U={1,...,n}. Let < and F be binary relations on U, with incidence matrices
P and F, respectively. We call the incidence matrix of the overlap relation O the
overlap matrix O = [o;]. It is easy to prove

Proposition 5 O=P'P.

Proposition 6 O is symmetric.
Proof: O' = (P'P)' = P'(P")'=P'P=0.

The next theorem shows how to translate the eight axioms of a finite Hus-
serl structure in terms of the incidence matrices P, F, and O.

Theorem 7
(i) Al is equivalent to I = P.
(ii) A2 is equivalent to P x P' = I.
(ili) A3 is equivalent to P> = P.
(iv) A4 is equivalent to Pv P'O = J.
(v) AS is equivalent to P’ = F.
(vi) A6 is equivalent to F* = F.
(vii) A7 is equivalent to F*' # F.
(viii) A8 is equivalent to F x F' £ 1.

Proof: Every statement except (iv) is immediate from Propositions 2 and 4. To
prove (iv), let A = [a;] = P* = [p;], B = [b;] = O = [0;], and C = [¢;] =
AB. Then the overlap axiom A4 holds

eVyvz[vx(x<yD0xz) Dy=<z]l=Vyvz[y<zorix(x=<yand ~0xz)]

n
= Vyvz[p,, =1 or 3x(a, =1and by, = 1)] @Vsz[pyz =1lor V ayb,= 1]

x=1

SVYYVZ[pyve,=11ePvC=J

Example 5 Let (U,<,5) be the 4-dimensional model of Example 3 above.
Then

1 0 00 1 111
1100 0101
P= and F = .
1 010 0 010
1 0 01 01 01
Testing axioms A1-A3 and A5-AS8 is purely mechanical. By Proposition 5, we
have that
1 11 1]{1 0 0 O 1 111
01 0 0f(1 1 0 0 1 100
O = PtP = =
0 01 0[|1 01O 1 010
0 0 0 1)1 0 01 1 0 01
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Further calculation shows

PO =

S O

O = =
I

S O O

1
0
1

S
==
S © O
—_— e O O
—_ O = O
O = = o
— O =
— O ek s
[ S N =

00

(=)
(=
(=}

Thus, Pv PO = J, verif_ying the overlag axiom for this model. Notice how per-
fect the fit is here, i.e. P is exactly P’O.

5 Vector representation of instance and dependence So far we have dealt
exclusively with binary relations. Assume now that R is a unary relation on

U=1{1,2,...,n}. Then the incidence vector associated with R is
X1
. 1, if Ri
X=| ‘| definedby x; =] ’
: Y Xi {O, otherwise.

Xn

As in Section 3, a vector X whose entries are 0 or 1 is called a boolean vector.
Let A = [a;;] be an n X n boolean matrix. Then the product AX is the boolean
vector

b,

satisfying
n

(2) b,‘ = V aijbj, I=si=n.

j=1
We say that A4 is a diagonal matrix if ;; =0 forall i # j, 1 =4, j = n, and we
define diag(X) to be the diagonal matrix consisting of the elements xy,...,x,
along the main diagonal. It is clear that diag is a bijection from the set of all
n-dimensional boolean vectors onto the set of all » X n boolean diagonal ma-
trices. Going backwards, if A = [a;;] is any n X n matrix, then we will write

apn

3) diag™'(4) = | 2

ann

As in Section 3, we define the relations =, <, =, >, and = between boolean vec-
tors by requiring that these relations hold entrywise.

Now let 7 and D be the incidence vectors associated respectively with 9 and
. As usual, P, F, and O are the incidence matrices of <, &, and O, respectively.
Then
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Proposition 8 [ = diag~![P'FP].

Proof: Let A = [a;] =F, B=[b;] =P',C=[c;] = AP, D = [d;;] = BC. We
have

9x = Vyvz[(y < x and z < x) D Fyz] = Vyvz(f,, =1 or p,, =0 or p,, = 0)
n n n
= V Dyx V yzDex = 0= V bxycyx =0=d, =0.
y=1 z=1 y=1

Note: Since multiplication of boolean matriges is associative, the triple product
in Proposition 8 may be parenthesized P*(FP) or (P'F)P.

Proposition 9 D = diag~! (FO).
Proof: Let A = [a;;] = O and B = [b;;] = FA. We have

Dxe=3y(~0yx & Fxy) =3y(oy,=0and fy, = 1) o by = \ fya, =1
y=1

Example 6 For the finite model of Example 5 above, we compute

0

D = diag~!(FO) = diag™!

— -
— O =
L T R
—_ O = O

0

Thus 1 and 3 are independent wholes, while 2 and 4 are dependent. To determine
the instances for this model, a routine calculation gives

1 1 11
_ 1 010
B=P{F)P= .
1 1 0 1
1 010
Hence
0
. _ 1
I=diag"'B = nE
1

so every element except 1 is an instance.

6 Sum axioms We begin with the least upper bound notion. We say that u
is an upper bound of (all wholes satisfying) a formula ¢ iff every whole satis-
fying ¢ is part of u. We say that y is the least upper bound (LUB) of ¢ iff (i) y
itself is an upper bound of ¢ and (ii) y is a part of any other upper bound of ¢.
The motivation for the other two sum concepts originates from the set theory
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model of Example 2, where U is a collection of sets and the part relation is the
ordinary subset relation. We want to define the ‘sum’ of two sets x and y to co-
incide with the set theoretical union of x and y. Of course this definition must
be solely in terms of < itself (or the defined predicate O). So we search for an
abstract condition which characterizes x U y. Observe that if z = x U y, then z
has the property that any set which intersects z must intersect either x or y, and
conversely. This property is the basis of the Goodman-Leonard binary sum. We
extend this concept by defining the Goodman-Leonard sum y of all wholes satis-
fying a formula ¢ to mean anything overlaps y just in case it overlaps some whole
which satisfies ¢. We present an alternative sum formulation originating from
the work of Lesniewski and Tarski, !° which requires that every whole satisfying
¢ is a part of the sum y and no part of y is disjoint from such wholes.

Definition 7 (Summation) Let ¢ be a metalinguistic variable ranging over for-
mulas of the standard first-order language of X_g.

y=LUB¢ means Vz(¢z2 D z=<y) & Vu[Vz(¢zDz=<u) Dy =<u]

¥ = Gsum ¢ means Vz[Ozy = Ix(¢x & Ozx)]

y=Lsum¢ means Vz(¢z Dz <y) & Yw[w =<y D 3z(¢z & Owz)].
Remark If y = LUB ¢ exists, then it is unique. For suppose that y’ is another
LUB of S, then we have y < y’ and y’ < y. By antisymmetry, y = y’. Similarly,
the other sum concepts are well-defined.

The existence axioms A9-A11 assert that every nonempty formula has a sum.

Definition 8 (Summation Existence Axioms)

A9 3x¢x D 3Iy(y =LUBO).
A10 3Ixox D Ay(y = Gsum ¢).
All 3x¢x D 3Iy(y = Lsum¢).

7 Sum axioms for a finite universe From now on, U= {1,2,...,n}, where
n is a fixed positive integer, and (U,=<,5F) is a Husserl structure. Let xq,...,X;
be a sequence of (not necessarily distinct) elements of U. By LUB({x,,...,X:})

we mean LUB ¢ where ¢ is the formula
X=XIVX=XpV: -V X=X;.
Similarly for Gsum and Lsum.!!

Definition 9 (Binary Summation)'?

(LUB) z=x@®ymeansx<=z&y=z& Vul[(x=u & y<u)Dz=<ul
(G-L) z=x+ y means Yu[Ouz = (OQux v Ouy)]
AL-T) z=x+rymeansx <=z &y=z& VYwlw=2zD (Owxv Owy)].

As expected, all sums (for a finite universe) may be constructed from binary
sums.
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Lemma 10

O Ifx @®x, @---® x,=ytheny =LUB({x,...,x]}).
(i) If xy +---+ x; =y, theny = Gsum({x,,...,x}).
(iii) If x; +L - +L X, =, then y = Lsum({xy, . ..,x:}).

Proof of (iii): (The same induction scheme applies to prove (i) and (ii). The de-
tails are straightforward.) By induction on ¢. The lemma clearly holds if ¢ = 1
by reflexivity. Assume for some fixed ¢ = 1 that the statement of the lemma holds
for each #-tuple. Let Xy, . . ., X, | be elements of U, not necessarily distinct, and
assume that the sum x; 4+ - - -+ x4 exists, say x; +-- -+ X;+; = 2. Then
Z =Y +L X;+1, Where y = x; +1 -- -+ x;. By the induction hypothesis, y =
Lsum({x,...,x;}), which implies

“) xp<y forl=k=t
and
) vwiw=yD (Owx; v-:-v Owx,)].

The equation z = y + X, implies

(6) Y=2, X152
and
N vwlw =<zD (Owyv Owx,,)].

Using (4), (6), and transitivity, we have that x; < z for 1 = kK =¢ + 1. It remains
to show that

) vwiw=<2z2D (Owx; v---v Owx,4)].

Let w € U and assume w < z. We will prove Owx; v---v Owx,, . For con-
sider any v € U which satisfies v < w. By transitivity, v < z. Hence by (7),
Ovy or Ouvx,;,. If Oux,,, then we have Owx,, {, since v < w, and we are done.
Suppose, on the other hand, that Ouvx;. fails to hold for every v such that v <
w. Then Ouvy holds whenever v < w. Applying A4 gives w < y. By (5) we have
Owx; v---v Owx;. Thus the lemma is true for 7 + 1.

As an easy consequence of Lemma 10, we have

Theorem 11

(1) A9 holds if and only if vxVyaz(x ® y =z)
(ii) A10 holds if and only if vxV¥y3az(x + y = 2).
(iii) A1l holds if and only if vxVy3az(x +L ¥y = 2).

Corollary 12 If A9 holds then (U,®) is an abelian semigroup.

Proof: Theorem 11(i) guarantees that any elements x and y have an LUB sum,
which by Lemma 10(i) equals LUB({x, y}). Since the LUB is unique, it follows
that @ is a binary operation. Moreover, @ is commutative since x @ y =
LUB({x,y}) = LUB({ y,x}) =y @ x. To see that @ is associative, we use the fact
that both (x ® y) @ zand x ® (y @ z) are equal to LUB({x, ,2}).
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We now wish to show that the Goodman-Leonard sum is as strong as the
LUB sum. This result follows from four easy lemmas.

Lemma 13 vxvy[x <=y D Oxy].
Proof: Immediate from reflexivity.
Lemma 14 vxVvy[x <y D Yu(Qux D Ouy)].

Proof: Assume x < y. Let u € U and suppose Oux. By the definition of over-
lap, there exists a w such that w < ¥ and w < x. By transitivity, w < x and x <
y implies w < y. From w < u and w < y we conclude Ouy. Thus, Vu(Oux O Ouy),
as was to be shown.

Lemma 15 If y = Gsum ¢ and ¢x, then x < y.

Proof: Assume y = Gsum ¢ and ¢x. Let ¥ € U. By Lemma 13, u < x implies
Oux, which in turn implies Ouy by the definition of Gsum. We have thus shown
Vulu < x D Ouy]. By the Overlap axiom, x < y.

As a special case of Lemma 15, we state
Lemma 16 vxVyvz[(x+y=2)D(x<z &y <2)].
Theorem 17 Ifx+y=zthenx®y=z.

Proof: Assume x + y = z. Immediately from Lemma 16 we have x < zand y <
z. In order to show that x @ y = z, it remains to establish that Vo[(x = v &
y=<v)Dz=<v].Solet ve Uand assume that x < v and y < v. We must show
that z < v. We claim that Vu[u < z D Ouv]. To see this, let ¥ € U and assume
u < z. Then Ouz by Lemma 13. Hence Oux or Ouy by the definition of +. Since
X < v, Qux implies Ouv by Lemma 14. Similarly, Ouy implies Ouv. In either case,
we have Ouv, which proves the claim. Applying axiom A4 to the claim yields
Z < v, as required.

Corollary 18 A10 implies A9.

Corollary 19 If A10 holds, then (U,+) is an abelian semigroup.

In comparing the G-L and L-T binary sums, we have the following result.
Theorem 20 x+yy=zifandonlyifx+y=z.

Proof: (“if”) Assume x + y = z. By Lemma 16, x < z and y < z. It follows from
Lemma 13 and the equivalence Owz = (Owx v Owy) that w <z D (Owx v Owy).
This proves x +p y = z.

(“only if”) Assume x +1, ¥y = 2. Then (i) x<zand y < zand (ii) V/[t <z D
(Otx v Oty)]. Let w € U. We must show that Owz = (Owx v Owy). To do this,
we prove that each side of this equivalence implies the other side.
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To see: Owz implies (Owx v Owy). Assume Owz. Then there exists a ¢ such
that ¢ < w and ¢ < z. By (ii), Otx or Oty. Now Otx implies Owx since ¢ < w. Sim-
ilarly, Oty implies Owy. Hence, Owx v Owy.

To see: (Owx v Owy) implies Owz. Assume Owx v Owy. Then Owx implies
Owz since x < z from (i), while Owy also implies Owz since y < z. Therefore, Owz.

Corollary 21 A10 is equivalent fo All.

8 Matrix representation of sum axioms Let P = [ p;;] be the incidence ma-
trix of <. Our goal is to transform A9 and A10 into matrix conditions on P. We
begin with a necessary condition.

Proposition 22 If A9 holds, then one column of P contains all 1’s.

Proof: Take S = U in Proposition 8. Then there exists a y such that for all x €
U, x < y. Thus, the y'" column of P will contain all 1’s.

By Corollary 18, the necessary condition above holds for the G-L sum
axiom.

Proposition 23 If A10 holds, then one column of P contains all 1’s.

In order to obtain a necessary and sufficient condition for the LUB axiom
in terms of the binary operator @, we need the following intermediate result,
whose derivation is left to the reader.

Proposition 24 x@y=zifandonly ifVvul(x<u & y<u)=z<u].

We now return to matrices. We need a matrix function which multiplies the
i™ row of a matrix by 2/,

Definition 10 The binary power function B is defined as follows: if A =
[a;lisann X n boolpan matrix, then B(A) is the n X n integral matrix B =
[b,j] where bij = a,'jZ"l.

Proposition 25 AB(AY) is symmetric.

Proof: PutB=[b;] =B(A")=[a;2"""]. Then X7_, auby;= X7_; agaj 2k =
2k=1%bpi-

Definition 11 We say the matrix A = [a;;] is diagonally closed if the set of
all entries of A4 is a subset of the entries along the main diagonal, i.e. if {a;;:
1=i,j=n}c{apm:1=m=nj}.

We use Theorem 11(i) to obtain a necessary and sufficient condition for the
LUB axiom in terms of the matrix P.
Theorem 26 The LUB axiom holds if and only if PB(P") is diagonally
closed.

Proof: Put A = [a;;] = P!, B = [b;] =B(A), and C = [¢;;] = PB. By Theo-
rem 11(i), (U,<) satisfies the LUB axiom
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s Vivjiam(i ® j = m)
eVviviimvk((i=sk & j<k)=m=<k] [by Prop. 24]
e VIVjAmVk[(pupix = 1) = (D = 1)]
= VIVjamVk(pypjx = Pix) [since pu = piil

n n
S Vivjam D) pxari2¥ " = D) Pk @rm 257}
k=1 k=1

[by the uniqueness of binary representation of integers]
n n
o VlVﬂme Picbi; = 23 Dmnicbiom
=1 k=1

© Vivjamc; = Cpym
< C is diagonally closed.

As an application of Theorem 26, we have

Proposition 27 For U={1,2,...,n}, define == {(x,x): x€ U} U {(x,1):

x € U}. Then (U,<) satisfies the LUB axiom.
Proof: We calculate

(1 0 o0 (1 1 1 )
11 0 0 2 0 0
PB(P)= (1 0 1 - 1lo o 4

. oll: 0
1 0 0 )0 0o 2!
(1 1 1 1)
1 3 1 1

=1 1 5 : ,
. . 1
(1 .- 1 2" '+ 1)

the matrix whose entries off the main diagonal are all 1’s, and whose diagonal
entries g; = 1 + 2~1, Clearly PB(P?) is diagonally closed. Thus (U,<) satisfies

A9 by Theorem 26.

Remark In applying Theorem 26, we need only check, according to Prop-
osition 25, that the entries below (or above) the main diagonal of PB(P’) lie on

the diagonal.

We derive a result for the G-L sum axiom analogous to Theorem 26 for the

LUB axiom.

Theorem 28  A10 holds if and only if OB(O) is diagonally closed.
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Proof: Let A = [a;] = O, B=[b;] =B(A), and C = [c;;] = AB. By Theorem
11(ii), (U,=<) satisfies the sum axiom A10

e Vivjaim(i + j = m)

= Vivjamvk[(Okiv Okj) = Okm]

= Vivjamvk(agay = agy,)

= \v‘i\o'jalmki]1 apay 28! = kﬁ;l Qe Ay 2571

[A = O is symmetric, since O is]
n n
= Vivjim 2 @by = Z Qi b

e ViVjam c; = Cpum

< C is diagonally closed.

Example 7 Consider the < predicate defined by the part matrix

(1 0 0 0 0)

~
Il
P ek e

00
0 0f.
1 0
01

O = e
S O = O

- J

One can check that < satisfies axioms A1-A4. To see that < satisfies A9, we
compute

(1t oooo0)ft 111 1) (t111 1)
1 1.0 0 0|10 2 2 2 O 1 3 3 3 1
PB(P)=|1 11 0 0[|0 0 4 0 O|=1|13 7 3 1],
1101 0/1]0 0 0 8 O 1 3 3 11 1
(1 000 1j{0 000 16/ (1 1 1 1 17/
which is diagonally closed. To test axiom A10, we find
(0 0 0 00)fo 0o 0o 00 (00 0 0o o)
0 0 0 0 11]0 0 O 0 2 0 16 16 16 O
OB(O)=|{0 0 0 1 1({|{0 0 O 4 4|=]|0 16 24 16 8|,
0 01 0 1110 0 8 0 8 0 16 16 20 4
0 1 1 1 0j{0o 16 16 16 0) |0 0 8 4 14

which is not diagonally closed since 4 and 8 do not occur on the main diagonal.
This gives us an example where A9 holds, but not A10.
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Example 9 Let n = 7 and consider the < predicate determined by the part
predicate

(1 0000 0 0
1100000
1010000
P=|1001 0 0 ol.
1110100
1101010
(1 01100 1
(000 0 0 0 o0 o)
064 0 0 64 64 0
00 32 0 32 0 32
ThenOB(O)=|0 0 0 16 0 16 16/,
0 64 32 0 104 64 32
0 64 0 16 64 84 16
0 0 32 16 32 16 50

which is diagonally closed. Thus < satisfies A10. One can verify that (U,<) is
actually the model from boolean algebra of cardinality 2° — 1 = 7 obtained by
taking U = {a,b,c}, A = {a}, B= {b}, C = {c}, D = {a,b}, E = {a,c}, and
F = {b,c}, where < is the set theoretical subset predicate.

Remarks 1. Since O is symmetric, we have that OB(O) = OB(O"). By
Proposition 25, OB (O) is symmetric. Thus, in applying Theorem 28, we need
only check that the entries below (or above) the main diagonal of OB (O) lie on
the diagonal.

2. Let A = [a;;] = OB(O) and define the boolean matrix S = [s;;] by

1, ifag;€lar:1=k=n
(9) SU={ ij {k,k }

0, otherwise.

Then Theorem 28 says that A10 holds if and only if S = J. One can verify that
s;; = 1 if and only if the Goodman sum i + j exists in U.

9 Additional axioms involving the foundation predicate
Definition 12 (Additional =-F axioms)
A12 (Independence Axiom)

wi{vz[Ozy=Iw(w =y & ~Dw & Ozw)] D ~Dy}
A13 (Transitive Closure over Arbitrary L-Summation)

vxVy{[y = Lsum ¢ & Vu(édu O Fxu)] D Fxy}
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A14 (F-Restricted Sum Axiom)
vw{ax(¢ox & Fwx) D Iyvz[O0zy = Ix(dx & Fwx & Ozx)]}.

The independence axiom A12 ensures that the sum of independent wholes
is independent, just as in ([7], VII) sums of two or more concrete wholes are con-
crete ([7], p. 249). A12 is adopted in order to exclude the counterintuitive pos-
sibility that one might be able to create a dependent (i.e., abstract) object simply
by heaping many independent (i.e., concrete) objects together. !>

The transitive closure axiom A13 asserts that any whole x is founded on the
sum of wholes on which it is founded. Since all models of the system computable
by the present methods are atomistic, we provide the following extrasystemic sup-
port for the adoption of A13: Let S = S(x) be the sum of all y on which x is
founded. If S fails to exist, then in the spirit of our principle of individuation,
some atomic part of S fails to exist. Since every atomic part of S is an atomic
part of some y on which x is founded, that y fails to exist, and hence x fails to
exist. While this extrasystemic argument becomes less persuasive if the adjective
“atomic” is eliminated throughout, the assumption of A13 constrains all mod-
els (atomistic or not) to conform to the intuition expressed in it.

Finally, the restriction of summation by the foundation relation (A14) (con-
sidered as one of four possible sum axioms in this study) is of interest in relation
to the feeling ([5], pp. 40-41, 62, 90-91, 97-98, 138-139, 192) that unrestricted
sum axioms are too strong. Al4 ensures that the sums on which a whole is
founded by A13 exist, and is a weaker sum axiom compatible with the intuitions
involved in the incorporation of the relation of foundation into the system.

10 The independence axiom The intent of the independence axiom is that
the sum of independent wholes is independent.

Definition 13 y is a sum of independent wholes means
vz[0zy =aw(w=<y & ~Dw & Ozw)].

We wish to translate the independence axiom into matrix language using the
incidence vector D associated with O, translated in Proposition 8. To do this,
we introduce some new notation. Let ‘+’ denote the ‘exclusive or’ boolean op-
eration. (Number theorists can substitute ‘(mod 2) addition’.) We extend + to ma-
trices in the usual way by defining [a;;] + [b;] = [a;; + by].

Our main result is

Theorem 29 The independence axiom holds if and only if

1
D = (O + Odiag(D)P)"
1

Proof: Let A = [a;] = diag(D), B = [b;] = OAP, C = [c;] = (O + B)' and
X = C[1---1]". Then the independence axiom holds
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s vy(vz[0zy=Iw(w=y & ~Dw & Ozw)] D ~Dy}

@Vy{VZ[(Ozy = 1) = < \n/ Ozwawwpwy = 1)] ) (d)’ = 0)}

w=1
@Vy[Vz(oU = zy) o (dy = 0)}
e Vy{vz(o, + by, =0) D (d, = 0)}

~=>Vy1<v Czy=o) D(dy=0)}
z=1
=vylx,=0Dd,=0}=D=X.

Example 9 We return to the finite model of Example 5. Using the vector D
calculated in Example 6, we find

1 0 0 0 Of]1 0
_ 1 1 1 0 01 1
(O + Odiag(D)P)’ = = = D.
1 0 0 0 Of|1 0
1 1 0 0 1)]1 1

Hence the independence axiom holds for this model.

11 Transitive closure of foundation over summation The transitive clo-
sure axiom asserts that for every x and y, if y is the sum of wholes on which x
is founded, then x is founded on y.

Definition 14 y is an Lsum of wholes on which x is founded means
(10) vwlw <y D 3z(Owz & Fx7)].

It is possible to omit the metalinquistic variable ‘¢’ in the formulation of A13
as follows:

Theorem 30 A13 holds if and only if
(11) vxvy{vwlw =<y D 3z(Owz & Fxz)] D Fxy}.

Proof: Fix x and y.
(“if”) Assume (11). Let ¢ be any nonempty formula of £_5 and suppose
y =Lsum¢ and Vu(ou D Fxu). By the definition of Lsum, Vw[w <y D 3z(¢2
& Owz)], which implies vw[w < y D 3z(0Owz & Fxz)]. By (11), Fxy follows.
(“only if”) Assume A13 and suppose the hypothesis of (11) holds, that is, as-
sume (10). Define the formula ¢ by ¢z means z < y and Fxz. We first show that
y = Lsum¢. It is immediate that z < y for every z satisfying ¢. It remains to prove

(12) vwlw =<y D u(éu & Owu)].

So pick w € U and assume w < y. By (10), there exists a z satisfying Owz and
Fxz. Using the definition of overlap, there exists a # such that u = wand u <
z. Now u < z implies Fzu. Using the transitivity axioms for ¥ and <, Fxz and
Fzu imply Fxu, while u < w and w < y imply u < y. Thus u satisfies ¢. More-
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over, ¥ < w implies Owu. This proves (12). It follows that y = Lsumé¢. The above
argument also shows that since y < y, there exists some u satisfying ¢, i.e. ¢ is
nonempty. Finally, the definition of ¢ gives that vz(#z O Fxz). Thus, the prem-
ise of A13 is satisfied, from which we conclude Fxy.

Theorem 31 The transitive closure of § over L-Summation (or G-Summa-
tion) holds if and only if Fv (FO)P = J.
Proof: Let A = [a;] = FO, B=[b;] = A, and C = [¢;;] = BP. Then the tran-
sitive closure of & over L-Summation holds

e VxVy{vwlw=<yDz(Owz & Fxz)] D Fxy}

n

= VXYY [Vw(w <=yDV [0 = 1) D Sny] [since 0y, = 0y;]

z=1

S VXVY[VW(py, =1Day, =1) D (fiy, =1)]

= VxVy[fy, =1or 3w(by, =1 and p,, = 1)]

n
«:VxVy[fxy =1or V bywDuy = 1]

w=1

e Vvxvy[f,=1lorc,=1]esFvC=J

Example 10 For the finite model of Example 5, we compute

1 111 1 1 11 0 0 0O
1 1 01 — 01 0 1 1 010

FO = and Fv (FO)P = Y =J
1 01 0 0010 1 1 0 1
1 1 01 01 01 1 010

Thus A13 holds for this model.

Since in a finite universe Gsum ¢ = Lsum ¢,
Proposition 32 A13 is equivalent to
A13/ vxVvy{[y = Gsum ¢ & Vu(du D Fxu)] D Fxy}.1*

12 F-Restricted sum axiom In restricting the Goodman-Leonard sum ax-
iom by the relation &, our intent is that for any whole w, the sum of all wholes
on which w is founded exists. As with the regular sum axioms, we would like to
express Al4 in terms of the binary G-L sum +. This requires the transitive clo-
sure axiom of & over + (or equivalently +), in order to make the induction
work properly.

Proposition 33 Assume A13 holds. Then A14 holds if and only if
vwvxVvy[(Fwx & Fwy) D 3z(x +y =2)].

We translate this binary condition in terms of matrices.
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Theorem 34 Assume A13 holds. Define the n X n boolean matrix S = [s;;]
by

(13) sy=1 iff 3k(i+j=k), 1=ij=n.
Then A14 holds if and only if F'F < S.
Proof: Let A = [ay] = F'and B = [b;;] = AF. Then A14 holds
= VYwvxvy[(Fwx & Fwy) D 3z(x + y = 2)]
= VXVYYW[(axwfuy = 1) D (85 = 1)]

= VXVY [VW(ayxy fuy = 0) or 5,y = 1]

n
o VxVy[ V axwfuwy =0o0rs,, = 1]

w=1
= Vxvy[b,y =sy,] =B=S.
Remark S is the matrix in the second remark following Theorem 28.

Example 11 Let n = 4 and define < and & by the incidence matrices

1 0 00O 1 110 1 110

1 1 00 1 110 11 00
P= and F= ,WithO=P'P = .

1 010 0 010 1 010

0 0 01 0 0 01 0 0 01

It is routine to check that (U,<,%) is a Husserl structure. Using (9) to compute
the matrix S = [s;;] of Theorem 34, we have

8 8 8 0 1110
- 8 12 8 4 1 110
A = [a;] = OB(0) = ,and so S = .
8 8 10 2 1 110
0 4 2 7 0 0 0 1

Since S # J, the G-L Sum axiom fails (as does the LUB axiom). In order to apply
Theorem 34, we first verify that F v FOP = J, so A13 holds by Theorem 31.
Since F'F = S, we have an example where G-L Summation fails to exist in gen-
eral, but the F-restricted sum axiom holds.

13 Summary We summarize the matrix criteria for the axioms A1l through
Al4. P = incidence matrix of s, F = incidence matrix of &, O = overlap ma-
trix = PP, and D = diag~! (FO).
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Axiom Definition Matrix Condition
Al < is reflexive I=P
A2 < is antisymmetric PxP' =]
A3 < is transitive P*=P
A4 Overlap vyvz{vx[x <y D Oxz] Dy =<z} PvPO=J
AS vxVy(x <y D Syx) P'=SF
A6 F is transitive F*=F
A7 § is not symmetric F'£F
A8 F is not antisymmetric FxF'£1
A9 Least Upper Bound P@® (P?) is diag. closed
VS #+ Day(vz(z€SDz=<y) &Vulvz(z€SDz<u)Dy=<u]}
A10 Goodman-Leonard Sum Existence O®(0) is diag. closed

vS # DAy[Ozy = Ix(x € S & Ozx)]

A11 Le$niewski-Tarski Sum Existence Same as for A10
VS #+ Pay{vz(z€SDz=<y) &Vvwlw=yD3z(z€ S & Owz)]}

A12 Independence D = (O + Odiag(D)P)’

vy{vz[Ozy =aw(w <y & ~Dw & Ozw)] D ~Dy}

A13 Transitive Closure over L-Summation Fv (FO)P=1J
vxvy{vwlw <y D 3z(Owz & Fxz)] D Fxy}

A13’ Transitive Closure over G-Summation Same as for A13
vxVy{vz[Ozy =3u(u <y & Ozu & Fxu)] O Fxy}

t
Al14 F-Restricted Summation {F F = S where

S is defined in (9)
vw{ax(x € S & Fwx) D Iyvz[Ozy = Ix(x € S & Fwx & Ozx)]}

14 Computer implementation A computer program named Husser! was
written on the IBM PC AT to implement the above matrix criteria for n X n in-
cidence matrices P and F. The program displays those axioms among A1-A14
which P and F satisfy. We write Husser! in the language Pascal in order to em-
ploy a modular program structure. !> The entries of the boolean matrices are de-
clared in the program to be of type integer, even though they take on only the
values 0 or 1. In several places, such as computing the matrix join A v B, it
would have been convenient to use boolean values instead. (Perhaps a language
such as C, in which a variable can be treated simultaneously as integer and
boolean, is ideally suited to this implementation.) Husser! uses several simple pro-
cedures which compute the transpose and negation of a single matrix, and the
join, product, entrywise product, and sum of two matrices. Boolean functions
compute the truth value of the matrix comparisons ‘=’ and ‘=’, and also deter-
mine whether an integral matrix is diagonally closed. Once these matrix subrou-
tines were developed, writing procedures to test the various axioms A1-A14 was
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completely straightforward. We also developed a recursive algorithm for deter-
mining all part matrices P (up to isomorphism) which satisfy the first four ax-
ioms. This method is effectively computable for small dimensions, i.e. n = 15.
Source code is available from the first author.

NOTES

1. Le$niewski used both proper part ([16]; [17]; [19], p. 25) and part (ingredient) ([18];
[191, p. 39; [13]) as primitive. Tarski used the part relation as primitive in [28], as
does Bostock in [3]. The Leonard-Goodman system uses discreteness (the negation
of our overlap predicate ‘O’) as primitive, and defines part in terms of it, but in [7],
Goodman used the overlap predicate as primitive, and in [24], Quine and Goodman
used the part predicate as primitive.

2. Hume considered the impressions comprising the parts of a substance to be together
in the same sense that the impressions of honey and nausea are together for Locke’s
unfortunate glutton. Hume’s analysis of, and denial of, necessity in the causality
connection between perceptions ([10], pp. 155-172) reduces it to a special case of
resemblance and contiguity ([10], p. 170). So for Hume, the principles of associa-
tion ([10], pp. 10-11) are conceived as a relation which, like resemblance and con-
tiguity, is symmetrical and nontransitive. A part-whole system with a second,
symmetrical and nontransitive primitive dyadic predicate ‘W’ has been studied by
Nelson Goodman ([7]: Ch. VII), whose mention of Hume ([7], p. 137) is an impor-
tant historical reference. For a discussion of the historical context within which we
intentionally depart from Goodman’s reliance on Hume’s empiricism, see [9]. For
Descartes’ use of the concept of foundation (which is a common primitive of ration-
alist philosophy), see Rule XII ([4], p. 42).

3. Peter Simons used a modal language in the first published attempt ([26], pp. 113-
159) to axiomatize Husserl’s version of the Brentano school part-whole-foundation
theory. Kit Fine has undertaken the task [6] of a first-order axiomatization of Hus-
serl’s notion of foundation and Null has published ([22], pp. 463-483) a set of ax-
ioms formulated in first-order predicate logic. The eight axioms chosen for
translation into matrix theory in this paper are a variation of Null’s earlier axioms.

4. See the extended treatment of dependence in Chapter 8 of [27], which appeared af-
ter the work in this essay was done.

5. This reading is in partial conformity with Husserl’s theory of essence [23], since all
(abstract and concrete) pregnant wholes of the first type are instances of essences
for Husserl. The conformity is partial because we have left Husser!’s second type
of pregnant whole ([12], p. 475) out of account.

6. In [22] a weaker definition of the predicate ‘7(x)’ is employed, viz. Vyvz[(y < x and
z=<x) D (Fyz v Fzy)]. Either definition serves to establish a degree of “personal in-
tegration” sufficient to satisfy the criticisms of Goodman’s concept of individual (cf.
[5], pp. 185-186). However, neither permits the use of Goodman’s time qualia (or
the position-time qualia which he rejected ([7], p. 197)) as atoms in <-F realist sys-
tems, because they are independent by Definition 5.

7. The =-F dyadic predicate ‘D’ is analogous to Goodman’s dyadic predicate ‘W’ in
[7]. His complex ([7], pp- 210, 227) is a whole, each two discrete parts of which have
the relation W, while a <-F instance is a whole, each two discrete parts of which
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have the relation D. Similarly, it is possible to define a predicate ‘S’ (‘is a substance’:
Sx iff (9x & ~Dx)) in place of Goodman’s defined predicate ‘c’ (‘is a concretum’).
(See [22] for further defined predicates of our system (B-N).) A Goodman concre-
tum is a complex which has the togetherness relation W with no individual ([7], pp.
211, 230). A B-N independent instance is founded only on its own parts, and thus
on no instance which is discrete from it. Hence, a B-N independent instance is de-
pendent on (i.e. bears the relation D to) nothing, just as a Goodman concretum is
together with (i.e. bears the relation W to) nothing.

. Ernst Schroder [25] anticipates a great deal of the usage of boolean matrices, viz.

the ideas of incidence matrix, the full matrix J as well as the diagonal unit 7, ma-
trix join, relative product, entrywise product, and negation, along with the matrix
characterizations of reflexivity, symmetry, and transitivity in Prop. 2. Schréder even
predicts and hopes for a mechanical means of calculation ([25], p. 42). See [2] for
a modern discussion of lattices and boolean algebras.

. This gives a method for obtaining the incidence matrix for the transitive closure of

a relation. For example, suppose we have a Hasse diagram of a partial order ®. We
can easily compute from the diagram the incidence matrix 4 of the dyadic predi-
cate ‘below’ where ‘below(x, y)’ means ‘x is an immediate predecessor of y in the di-
agram’. Then the incidence matrix of ® is (A4 v I)%.

In 1916 ([16], p. 12; [18], pp. 25, 49) Le$niewski defined the sum of all m’s to mean
(1) every m is an ingredient (part) of p, and (2) if x is an ingredient of p, then some
ingredient of x is an ingredient of some m. Le$niewski claimed to have also used this
sum concept in 1918 ([19], p. 38) and in 1920 ([19], p. 39). In 1927 Tarski ([28], p.
25) defined an individual X to be a sum of all elements of a class @ of individuals
if every element of a is a part of X and if no part of X is disjoint from all elements
of a. All nit picking aside, it seems that these all mean the same thing, viz. just what
we call their sum definition. And Le$niewski said it first. But in view of Tarski’s use
of the disjoint predicate (which means not overlapping), we shall call their axiom
the Le$niewski-Tarski sum concept.

Thus we could translate the LUB axiom for finite models into set theoretic language.
In all the axioms we could replace ‘¢x’ by ‘x € S°, where S is a nonempty subset of
U. Set theoretical versions of all the axioms are given in the summary.

One can easily check that these operations are well-defined. See the remark follow-
ing Definition 7.

The adoption of A12 is necessary to give a correct proof of Theorem 67 in [22].
For transitive closure over G-L sums we define y is a Gsum of wholes on which x

is founded to mean Vz[Ozy = 3u(u <y & Ozu & Fxu)]. Analogous to Theorem 30
we can prove

Theorem A13’ holds if and only if

(14) vxVy{vz[Ozy = u(u <y & Ozu & Fxu)] D Fxy}.

For the reader wondering why we chose L-T summation instead of G-L. summation
for the transitive closure axiom (A13), it turns out that it is easier to express con-
dition (11) than condition (14) in terms of matrices. In fact, we were unable to trans-
late (14) into a concise matrix form. In contrast, the G-L sum existence axiom (A10)
translated easily, but not All.



110 RICHARD BLECKSMITH and GILBERT NULL

15. All of the axioms A1-A14 can be formulated directly, without the use of matrices,
in the computer language Prolog. We have specifically done this for the LUB ax-
iom, by defining Prolog predicates for upper bound, least upper bound, and finally
axiom A9 itself. The Prolog procedure is very slow for » = 10 since it must run
through all 2" possible subsets of U.
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