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Abstract In a previous paper ("On the interpreted sense calculus S(%") the
author constructed an interpreted modal sense language S££, in which a
certain logical calculus is valid, in order to deal with, e.g., iterated belief sen-
tences whose sense orders are smaller than the (possibly transfinite) ordinal
a. It contains descriptions, modal operators, nonlogical operators, and wfe's
having both types (of all finite levels) and (arbitrary) sense orders <α.

In the semantics of §<£« properties are represented by sets of QS's
(quasi-senses), and paradoxes are avoided by considering any belief relation
Bβ sensitive only up to the sense order β (0 < β < a). $£v

a differs from the
languages considered by Church, Parsons, and Quine in that, for example,
the notions of possible world or the sense (QS)of. . . need not be primitive
in S£*.

The present work concentrates on the extensional (but hyper-inten-
sional) part £a of S££ deprived of nonlogical operators. By two successive
changes in £α ' s semantics (and ontology) the interpreted extensional sense
languages £'a and <£« respectively arise. In these the hyper-intensionality ax-
i o m ^ g= (Vxι,...,xn).f(xu...,xn) = £(*!,...,x r t)(ll-r = tf=. r^q)
[the instantiation axiom (Vx)F(x) .D F(A) (x free for Δ in F(x))] is valid
for more and more [for more] general choices of the sense orders for the
wfe's/, g, and xλ to xn [x, Δ, and F(Δ)]. In £« these choices are the most
general ones for which, according to the present point of view, it is conve-
nient to render these axioms valid.
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Λ7 Introduction This paper concerns the theory of sense logic developed in
Bonotto and Bressan [4] on synonymy for extensional languages, in its extension
(Bonotto [3]) to the modal language MI/ presented in Bressan [7], in the mem-
oir of Bonotto and Bressan [5] on generalized synonymy notions and quasi-senses
for such a modal language, and especially in Bressan [10] where a general inter-
preted sense language S£p

a is introduced in order to treat, e.g., iterated belief
sentences, whose sense orders may be transfinite but smaller than the ordinal a.
Furthermore S<££ contains, among other things, descriptions, modal operators,
nonlogical operators, and wfe's (well-formed expressions) having both types of
all finite levels, and sense orders represented by all ordinals <α. Incidentally,
S£p

a thus embodies all generalized versions of the modal language MI/ based
on type systems —see e.g., Bressan [9] and Bressan and Zanardo [14].

Note that, unlike what generally happens with sense languages whose wfe's
have sense orders, the well-formedness of every wfe of S<£« is invariant under
the replacement of any wfe occurring in it with any other wfe that has the same
type but any sense order. This feature of §<££ may be very useful in the con-
struction of an orderless version of S<££, possibly based on the same type sys-
tem τv as S££.

The semantics for §>£v

a has, so to speak, a set theoretical character; e.g.,
a property is represented in it by a set of QS's (quasi senses), i.e., objects rep-
resenting senses. In connection with this, roughly speaking, the semantics for
§<££ (various versions of which are being constructed) is based on the relations
between, e.g., hyper-intensional attributes and the senses (or QS's) of the enti-
ties for which they hold; and thus this semantics provides an insight into those
relations, and in particular it gives a precise picture of a way in which senses can
be constructed.

Furthermore, in order to avoid paradoxes in any possible situation, S<££'s
semantics complies with, so to speak, the segmentation of languages developed
by Tarski to avoid truth paradoxes. In connection with this, every belief relation
Bβ to be considered in S£p

a is sensitive only up to a certain fixed sense order
β (0 < β < a). Through its segments, §<££ affords a general example of how a
natural language can be completed and consistently interpreted, as far as every-
day or scientific talk involving belief sentences is concerned. Furthermore, using
Bβ (0 < a < β) instead of a single belief relation B has the advantage that the
use of each Bβ is clear and presents no problems, whereas problems arise when
B is iterated.

The differences between S<££ and some other hyper-intensional languages
are briefly discussed in Bressan [10]. Here let us only emphasize that the seman-
tics proposed for S£p

a directly in [10], or indirectly here (by considering a cer-
tain extensional but hyper-intensional part £a of S££), aims at providing a
contribution to Fregean semantics, and in particular hopes to perform a com-
plete formalization of the parts of natural languages being treated; in fact no
semantical notion such as possible world or the sense of. . . needs to be primi-
tive in £a or §<£«. In this respect the semantics for S£p

a differs from that in,
e.g., Church's and Parson's works (see [17], [18] and [21]). To some extent the
interpreted languages in these papers stand to S£p

a as Bressan's (unusual) exten-
sional language, proposed (and employed) in [6], stands to Bressan's modal lan-
guage MI/ constructed in [7]. It can be said that the former language also has
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some advantages, e.g., of a didactical nature, due to its simplicity. However, the
latter attains much more general and deeper results.1

In Bressan [11] an axiom system valid in S££ is presented, for which no
completeness claim is made. Let me add that, in my opinion, S£v

a has strong ex-
pression powers, yet certain axioms valid in ordinary extensional calculi and in,
e.g., the modal calculus MC" set up in [7] hold in S£v

a only in case the sense
orders of certain wfe's occurring in them are equal or satisfy certain simple re-
lations. In some cases this is natural and even mandatory; in others these restric-
tions (justifiable by the ontology underlying S£«'s semantics) seem to be
avoidable by means of suitable changes in this semantics (and ontology). There-
fore I have considered the possibility of such changes, in order to improve the
general theory presented in [10] and [11].

Since the aforementioned problem concerns (sense) orders, in order to con-
centrate on it better it is convenient to consider the extensional part of S£v

a

deprived of nonlogical operators. Let us call £a the sense language thus ob-
tained.

The main aim of this paper is to present two successive changes in £a's
semantics, which correspond to certain changes in £a's ontology (see Sections
Ni l and N12). In the interpreted extensional sense languages £κ

a and ££ that
thus (successively) arise, the hyper-intensionality axiom is logically valid in more
and more general forms. Briefly, under customary assumptions this axiom
(scheme) reads2

(1.1) f=g= (VXi,...,xn).f(Xu...,xn) = g(xu...,xn)

(\\-P = q=.p = q),

where / and g are functors or relators of orders not greater than that of xr

( Γ = 1 , . . . , Λ ) .

In more detail, both the D-part of (1.1) and its converse are valid in £a

only in case/ and g have the same sense order (see N10). This also holds for
<£«, as far as the above converse is concerned (see Nil); but the D-part of (1.1)
is valid in £"a9 no matter which orders (<a) f and g have (see Nil) . In addi-
tion, the whole wff (well-formed formula) (1.1) is valid in <££ in this general
way (see N13).

Furthermore, the instantiation axiom

(1.2) {Vx)F(x) .3 F(Δ), where A is free for x in F(x),

is valid in £'a and <£« whenever the order of x is larger than that of Δ, and in
other cases too (see N14). But the validity of (1.2) in S£p

a (which induces the va-
lidity in £a) holds only under much more restrictive conditions (see A4.4 in

[Π])
A brief synopsis of the present work is as follows. First, the semantics of

£a is presented and discussed; then a few changes on it that turn £a into £"a

are considered and discussed; £„ is also introduced in a similar way. This is
done for two reasons. First, the semantics of £a, £«, and <£« have increasing
complexity and the discussion of them allows us to justify the use of <££. Sec-
ond, the way chosen to introduce <£« —viz. by defining the semantics of £κ

a

(£a) in terms of the one for £a (<£«) —seems to me technically efficient and



50 ALDO BRESSAN

certainly convenient, at least for the first time one considers extensional or modal
languages such as these.

We now describe the content of the present work in more detail. In N2 the
subject studied here is technically specified. In N3 the formation rules for the ex-
tensional sense language £a are given. In N4-N9 the semantics for £a is pre-
sented gradually, starting with some general preliminaries (in N4). Among other
things, in N4 some reasons are given for the identification of the extension F of
the false proposition with the nonexisting object, which is regarded as denoted
by the descriptions that don't satisfy the condition of exact uniqueness.

The λ-th segment <£λ of £a, formed with £a's wfe's of orders <λ is con-
sidered (0 < λ < a), £1 is treated as an ordinary (nonintensional) extensional
language, and a QE (quasi-extension) as well as a QS (quasi-sense) is assigned
to every wfe of £χ, in N5 and N6.

More generally, in this work every wfe Δ of £χ is regarded as having an
HQE (hyper-QE or order-endowed QE) and a (hyper-) QS (at any c-valuation
β and ^-valuation V). More precisely, if Δ is a wfe^ (wfe of order β), then Δ has
a QEβ and a QS^ (a QE and a QS of orders </?), which represent Δ's extension
and (hyper-) sense, respectively (β < λ < α).

Rules (Λi_g) and (ei_8) assign Δ one HQE, A = deSc,«y(Δ), and one QS,
Δ = sensc,v(A), at any β and V for £ λ . This is done for λ = 1 in N5 and N6 (as
was said), for λ = 2 in N7 and N8, and for any λ (0 < λ < a) in N9. These tech-
nical presentations are preceded by some intuitive considerations on the senses
of £ι, in N6, and about the general semantics for <£λ, especially in the case
λ = 2, in N7. Incidentally, it is explicitly shown that for every type / and ordi-
nal β < a, we can construct a (new) HQE of type t and order β, different from
all HQE's of orders <β, if and only if t is a function or an attribute-type (see
(A) and (B) in N7).

In N10 some examples show the aforementioned limited validity in £a of
both parts of (1.1). It is concluded that in <£α's ontology, so to speak, (i) an at-
tribute or function φ is determined by its set theoretical part and (ii) φ's predi-
cation or application depends on the order of the wfe that denotes φ.

In Nl 1 it is seen how φ can determine its own rule of predication or appli-
cation. On the basis of this ontological change—which is somehow similar to the
one connected with the notions of function used by analysts and topologists —
the semantics for £y

a is briefly set up and discussed. In N12, by a second onto-
logical and semantic change, £^ is turned into a language ££ in which a
general version of (1.1) is valid; furthermore, this ontological change is compared
with a present situation in mathematics connected with real or complex numbers.
The aforementioned general version of (1.1) is proved in N13 to be valid, and
the analogue for (1.2) is done in N14, together with some discussions. In addi-
tion, Theorem 13.2 states a maximality property of the semantics for <££ by
which, so to speak, proper general interpretations are excluded.

N2 On how "sense" is meant in this work In the assertion "Charles is a dor-
mouse" of ordinary language, "dormouse" is used in a figurative sense. In its
proper sense "dormouse" expresses a kind of animal. One can therefore speak
of an ambiguity in the use of "dormouse"; in different contexts it denotes dif-
ferent entities, and according to logicians it has different extensions. Therefore
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one might say that "dormouse" has various ambiguity-senses or extensional-
senses, in contraposition with hyper-intensional senses (see below).

The theory of senses considered here is not concerned with ambiguities, but
with, e.g., the (hyper-intensional) senses of expressions (such as "3", "Ig28", and
"6/2") that denote the same object. This theory deals with situations of the fol-
lowing type, where "α H 6" is to be read as "α and b are synonymous":

(2.1.1) D[3 = lg28(or6/2)],

(2.1.2) ~[3Hlg 2 8(or6/2)].

Now, in spite of (2.1.1), by (2.1.2) it may occur that

(a) Pete knows that 5 = 2 + 3, but

(b) Pete does not know that 5 = 2 + Ig28 (or 2 + 6/2).
Hence, as is well known, the substitution of expressions of necessarily iden-

tical entities in some assertions changes the truth values of these, i.e., their ex-
tensions. Such contexts are connected with belief sentences, i.e., with sentences
such as B(9Π,/?) and K(9ll,/?), where we write

(2.2) B(3ϊl,/7) for "the man ΐf\l believes that p (holds)"

and

(2.3) K(3H,/?) for "OH knows that p (holds)".

Incidentally, remember that there is a large variety of hyper-intensional no-
tions which can be used in ordinary or scientific speech, and to which the pres-
ent theory applies (see N7), and that one often accepts the definition3

(2.4) K(ΐHl,p)=defB(<Xl,p)Λp.

Unlike (2.2)-(2.3) the intuitive belief sentences α 2 , α 3 , . . . below are
iterated

(2.5) a0 =def 2 + lg 28 = 5 or a0 =def 2 + 6/2 = 5,
(2.6) an=defB(°Xίn,0Ln_x) for H E N * ( = N - { 0 ) ) .

More precisely, let us say that an has sense order n (/iGN) and iteration
order n - 1 (n G N*).

Due to the nested characters of the above sentences, from a rigorous point
of view it appears incorrect to use the same belief predicate for all of them. Thus
it appears convenient to replace (2.6) with

(2.7) an =def B 7 1 ^ , ^ ! ) for n E N*,

where Bn(ΐfϊί,p) means that ΐftl believes thatp {holds), at a sense order <n. Of
course, for « G N*, we can use the same BΛ in all the sentences

(2.8) Bn(ΐfϊi,ar) for r = 0 , . . . , / ! - 1 (see (γ) and the considerations following
it in N7).

N3 Formation rules for the extensional analogue £a of the interpreted modal
sense language S£« deprived ofnonlogical operators Both S<££ and <£α are
based on the individual types 1 to v, the propositional type 0, and more gener-
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ally on the type system rv defined as the least set τv for which the following
hold:

(i) |0 y ) c τ , ,
(ii) If ί0, . . . , / „ G τv9 then the (n + l)-tuple (tx,..., tn, t0) G τv.

For t0 Φ 0, (t\,... ,tn,t0) is used as a function type, viz. the type of the
functions that carry objects of the respective types t\ to tn into objects of type
t0. For to = O the same (n + 1)-tuple is used as a relation type, viz. the one for
relations holding for ^-tuples of objects of the respective types t\ to tn.

In order to conform with Carnap's notations, I set

(3.1) ( * ! , . . . , * „ ) = <f i , . . . , f Λ ,O>; (tu...,tn\to) = {tu...,tn9t0)toτtQΦθ.

The symbols of £ α are the variables v(*n and constants ct

β

μ of order β, type

t, and index n or μ respectively, for 0 < β < a, t G τV9 n G N*, and 0 < μ <
β + ω, where ω is the first transfinite ordinal;4 furthermore left and right paren-
theses, the identity sign = , the connectives ~ and D, the all sign V, the sym-
bol Ί for descriptions, and λ for λ-expressions. This last symbol, denoted by λ p

in e.g. Bressan [10], has to be regarded as primitive. (In [10] λ is used for λ-
expressions defined in terms of i; here λD can be used for this metalinguistic
purpose.)

The class E, of the wfe's of £ α having the type t is defined recursively for
/ G τv by the rules (^i_s) below, where 0 < β < a, n G N*, and t,tOi... ,tnG
τv; the recursion concerns the lengths of wfe's.

(<Pι) cfμ9 υfn GEt(0<μ<β + ω).
(φ2) If Δ, G E,. (ι = l , . . . ,Λ) and Δ o G E < ί l t . . . t W o > , then Δ 0 ( Δ i , . . . ,

ΔΛ) G E / o.
(φ3) If Δ l f Δ 2 G Etl, then Ax = Δ 2 G E o .
(<P4-i) Ifp,q G E o , then ~p, pDg, (Vι;frt) p G E o and (w£n) p G E,.
(φs) If Δ o G E / o and X\ to xn are n (distinct) variables with Xj G E .̂ (/ =

1,. . . ,n), then (λxu . . . ,xn)A0 G E α i > . . . f / / i f / o > .

Definition 3.1 I say that β is the OAϊfer of the wfe Δ, β = Δ o r d , if β is the
maximum of the orders of the variables and constants occurring in Δ.

For every class Qβ depending on the ordinal β, I set

(3.2) a<β = u aδ, a*β = (J αδ, α « = α^ - α ^ .
δ<β δ</8

For / G τ , I also set

(3.3) Ef = {Δ G E, |Δ o r d < /?}; wfe^ = | J Eξ* (β < a),
t€Ξτv

so that the wfe^'s are the wfe's of order β (β < α ) .

Convention 3.1 By x,y,z,X\,..., by p,q,r9ru . . . , and by Δ , Δ 1 ? . . . arbi-
trary variables, wff's (well-formed formulas), and wfe's of <£α will be denoted
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respectively; xβ

9... ip
13,..., and Δ^Δf,... will denote any wfe^'s of the re-

spective kinds above.

Convention 3.2 Every expression of £a used in the sequel is assumed to be
well-formed, except where otherwise noted.

One can consider a theory 3 belonging to <£α. From the semiotic point of
view, i.e., as far as formation rules are concerned, this means that: (i) 3's sym-
bols are those of £a except for some constants (perhaps none or all) and pos-
sibly some variables, e.g. those whose orders are outside some set Σ of ordinals
(<α), and (ii) 3's wfe's are those of <£α formed with 3's symbols or even only
a certain subset of these. I say that 3 is based on £a if (i) as well as the first al-
ternative in (ii) hold. Thus a theory based on £a belongs to <£α and may coin-
cide with £a.

N4 On the nonexisting object av and the truth value F in the semantics for S£«
or £a to £«. On the translation in £a of some general locutions. On Heal-
er's work [1], Hints at a typeless version of £a. A comparison with projective
geometry In extensional logical theories including descriptions, such as
Rosser's (see [23]), all descriptions that fail to fulfill their conditions of exact
uniqueness can be proved to coincide. Then, following Frege, it is natural to con-
sider a common denotatum for them: the nonexisting object. This entity has for
objects the analogue of the role played by zero for numbers or by the empty set
for sets. Thus, (i) this object appears to be unique.

Consider now the man m* (or horse A*) that jumps (or can jump) over 100
meters, formally

(4.1) m* =def(ix).xeMAJ(x), h* =def{-)X).x GU AJ{X) (j(x) =def x
jumps over 100 meters).

Sometimes the property M* (H*) of being a nonexisting man (horse) is used in
assertions such as m* G M*, i.e. m* is an M*, and h* £ M* (h* E H* and m* φ.
H*). In conformity with (i) and in the light of hyper-intensional languages such
as S£a9 it is natural (ii) to regard predicates such as M* and H* as hyper-
intensional.

In the semantics for typed logical theories (see, e.g., [7] where ML" is pre-
sented) it is technically convenient to introduce (a representative of) the nonex-
isting object av = av

t of type t. However, it is not necessary for av

t to depend on
/. Since the objects of type t (ϊ) can be men (horses), the example above forces
us to assume that a* = av

t> (but this is not strictly essential by the representative
character of a*).

Recalling the extension of MI/ to the typeless modal language ML00 (see
[8]),

(E) the semantics for the languages S£v

a and £a to <£« are also viewed here
as steps towards the constructions of typeless (and possibly orderless or mo-
dal) analogues of them.

So, in spite of its above representative character, av

t has to be chosen inde-
pendent of t.



54 ALDO BRESSAN

As well as a modal language considered in [9], §<££ is also expected to deal
with probability functions (as in [13]), whose domains involve events, hence
propositions. Therefore (and by criteria of uniformity and generality) S£« is
based on the type system τv9 symmetric with respect to the types 0 and 1 to v\
and the same holds for £ α to £ £ .

In the semantics for §<£?, or e.g. <£α to <££, the identities

(4.2.1) F = a" (tGτv)9

(4.2.2) a¥ = a! (tSτv)

hold. The second of them has been justified above. In connection with (4.2.1)
let us first consider

Case Cl For uniformity reasons, e.g., one is willing to use any description
y =def (nχ)p where x is a propositional variable.

For the sake of simplicity, also assume that X J G E Q (see (3.3)). As a con-
sequence, if for i = 1 to 7 p is the ith of the wff's

(4.3) x, x v. q Λ ~q, x = q, x Ξ . q v ~q9 x =. q Λ ~q, r Λ (Λ: = r) .v. ~r Λ

(x = ~r) , r A (x= ~r) .v. ~r Λ (X = r),

then no problem arises, since the condition of exact uniqueness is satisfied. More-
over, y's QE, j>, coincides with the one of the /th of the wff's

(4.4) x, x,q,q\ι ~q, q Λ ~q9 q v ~q, q Λ -(7.

However, if p is, e.g., any of the first (last) two wffs

(4.5) x Λ ~x, x Λq Λ ~q\ x v ~JC, x\ι q\ι ~q9

then the existence (uniqueness) condition for the description y fails to hold, so
that y = ctQ. Therefore, if aζ is required not to be a truth value, then one is in
effect concerned with at least a three-valued propositional logic. In spite of some
interesting features of this logic, for reasons of simplicity it is important not to
be compelled to use it. Hence it is better to assume that aft E {T,F}, where T is
the truth value true; yet at this time several people are inclined to choose the al-
ternative that αo = F (see the second part of this section).

Conclusion Cl In the case Q the compliance with two-valued propositional
logic forces us to choose aft = F and hence, whenever we prefer av

t not to depend
on t, to assume (4.2).

Case C2 One prefers not to use descriptions of type zero. In this case, com-
plementary to Ci, the identities of (4.2) are still very convenient when the exten-
sion plan (E) is taken into account.

In fact, in a typeless version <££° of £a any variable x ranges over individ-
uals, sets (i.e., attributes), and propositions. Incidentally, this is in accordance
with, e.g., the possibility of George's liking objects, properties, and facts. The
aforementioned range of the variables of £ ^ practically forces us to regard av

t
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as independent of / and as defined for t = 0, i.e. to accept (4.2.2). Then the ac-
ceptance of (4.2.1) is practically required, for the same reasons as were consid-
ered in case Cl.5

The above motivations for accepting (4.2) may be sufficient for some peo-
ple. However, some other people may require more detailed and technical rea-
sons for preferring the alternative aζ = F to aζ = T. Therefore the
considerations below are added.

First note that, following Frege's views, in S<££ or any typed language the
nonexisting object of type t ( e τv) can be defined (metalinguistically, since a*
is not a constant of S££) by

(4.6) a? =,& (w?i)v?x Φ υ?ι (t G τv)

and for every Δ G E,, Δ = a* (Δ Φ a*) is equivalent to: A fails to exist (A
exists). In particular, Δ = a* holds for every description Δ that fails to meet its
conditions of exact uniqueness.

Note that, e.g., Carnap regards T and F as the extensions of propositions,
so that there are only two propositions. Furthermore, Russell seems to think that
there is no difference between facts and true propositions —as Jon Barwise as-
serts on the basis of what is said on p. 223 in his work "Situations, facts, and
true propositions," in preparation.

Russell's view can certainly be shared in connection with a propositional
logic <?<£, that includes descriptions with propositional variables and is en-
dowed with a two-valued interpretation. In it, for every proposition/?, we can
regard the description

(4.7) y=d<if(ix)(x = p./\p) (p = q-=P = q)

as denoting the fact that/7 (holds). The requirements (a) to (β) below must be
satisfied, as Russell's view above suggests.

(a) the proposition p is false iff the fact y that p holds fails to exist, or
(α') the assertion (p9 is false iff the term y is nondenoting; and
(β) if p is true, then y = p is also true.

Let us now show that requirements (a) and (β) imply the validity of (4.2.1)
/or<P£,.

Indeed, letting £ (y) bep's (y's) QE, we can render (ϊ)p = T true. Then,
by 03), (ii) y =p; and by (α), y Φ aζ. Hence T Φ a& by (i) to (ii). Furthermore
aξ G {T,F} by (P£/s definition. Hence aξ = F.

The above proof of the identity (4.2.1) for (P£, renders it natural to re-
gard it as holding in connection with £a too.

It is also natural to try to deduce (4.2.1) for £a directly; furthermore, it is
worthwhile to consider this problem explicitly, because this allows us to speak
briefly of other interesting topics, such as certain views about properties —e.g.
Bealer's. Therefore we now, only for the sake of brevity, regard English as sup-
plemented with variables — how to avoid them being obvious — and we set



56 ALDO BRESSAN

(4.8.1) p =def George was born in Rome,
(4.8.2) y =def the fact that /?,
(4.8.3) z —def the proposition (that) p.

Then, even if/? is false, z certainly exists, unlike j>. Therefore, remembering that
propositions (and facts) are generally said to be very many, it is natural to iden-
tify z with/?'s sense. Hence, according to general criteria used, e.g., in [7] in con-
nection with MI/, z can be defined to be the hyper-intensional singleton [p}h

of p (see (4.9) below).6 Of course, here a certain definition of the proposition
that... is presupposed, of the same kind as Dedekind's definition of real num-
bers; in fact it identifies that intuitive notion with a certain set theoretical struc-
ture (which can be, and sometimes is replaced with, other such structures).

Note that the sense of /?, or better [p]h, is used above as an explicatum (in
Carnap's sense) for the explicandum z. Therefore it is not strange that it may ap-
pear different from the intuitive notion of the proposition that p.

In connection with a second explicandum for z to be considered below
(4.10), let us remember that the explicatum for a given explicandum 8 may have
several (possible) versions. Among these, roughly speaking, the most useful and
simple has to be chosen (see [16], p. 7). Of course this choice may depend on the
situation and the purposes for which S is used. In particular (see [16], p. 26),
within mechanics linear momentum and kinetic energy are both important ex-
plicata for the intuitive notion of living force.

The above considerations also show that when a field is studied (scientifi-
cally), then the senses in which a term related with it is used can change; and their
number can increase. This is a way in which ambiguities may arise.

Note that the above first explicatum [p]h for z is also different from/?.
Correspondingly, in accordance with Russell's views above, we can identify y
with [p}h in case/? holds; and we can use (a) otherwise.

The preceding considerations can be rendered more precise by: (i) using
£a, (ii) considering/? (see (4.8.1)) as a wfe of £a9 and (iii) regarding/?, y, and
z as metalinguistic variables, in contrast with their use above. Then by (4.8.1)
we can turn (4.8.2)-(4.8.3) into (4.9.1)-(4.9.2), respectively:

(4.9.1) y=def(ix)lx=[p]h*p],

(4.9.2) z=def[p}h({A}h=def{x\xXA}),

where

(4.10) ΔXΔj =def (VG). G(Δ) = G(AX) (G o r d = 1 + max{Δord,Δfd}).
Thus y and z are hyper-intensional properties of type (0) (instead of propo-

sitions) and the proof of (4.2.1) for <?<£, cannot be repeated for £a.
The analogue for properties of the above explicatum is useful in the follow-

ing considerations. Within plane geometry let σ be the segment of end points A
and B(Φ A) and set F(x) =def x belongs to σ's axis (which is the perpendicu-
lar to σ through σ's middle point) and G(x) =def ΛΓ'S distances from A and B
coincide. Then, by a well-known theorem, F = G (and even D (F = G)). How-
ever, as Bealer in effect emphasizes, (generally) one says that

(γ) the properties F and G do not coincide.
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Therefore, in connection with the explicata above, (7) can be translated in
£a (or §>£v

a) by {F}h Φ{G}h. Likewise, the translation in, e.g., £a of the as-
sertion

(δ) F\ to Fn are n (distinct) properties

can be

(4.11) [Fl9... , F Λ } < Λ > G /i, w h e r e [Fu... ,Fn}^ =def [Fx }
h U . . . U [Fn}

h.

Let us add that within scientific contexts it is natural to consider

(e) the probability of the event δ in the situation Σ ("δ","Σ" € Eo)

as an intensional function pr(Σ,δ) of δ (see [9], [13]). On the other hand, to con-
struct for (e) a modal analogue of the explicatum (4.11) for the intuitive notion
(7) —in which explicatum " . . . e n" is extensional—we can consider the exten-
sional function Pr determined by the condition

(4.12) pr(Σ,δ) = Pr(Σ,{δ}<) ({Δ}' =def [x\ Π(x = A)})

and can use Pr(Σ,{δ}'), instead of pr(Σ,δ), as an explicatum for the intuitive
notion (e).

Note that, conversely, (4.12) can be used as a definition of pr in terms of
Pr. This suggests that we consider the hyper-intensional analogue of (this con-
verse) pr for every relation R(..., σ i , . . . , σn) that is extensional in the propo-
sitional or relational arguments σ\ to σn:

(4.13) *<*>( . . . , $ ! , . . . Λn) =defR( Λtl}\ ΛUH).

Then all assertions on {ξι }h to {ξn}
h can be turned into assertions (directly) on

ξι to ξn. Thus the following explicata appear useful for the notions y, z, and
R{...9σl9...,σn) (see (4.8.2)-(4.8.3) and (4.13)):

(4.14.1) y =def (ψ)(χ=p .Λp),
(4.14.2) z=defP,

(4.14.3) Rw or something equivalent.

For instance, we can translate (7) (in £a) into

(4.15) ~ ( F X G ) (see (4.10)).

That is, instead of = we can use synonymy; and (δ) can be translated directly into
the wff (4.11), regarded as a condition on Fλ to Fn. Note that the use of the first
explicata does not compel us to change the relation R involved in (δ) into /? ( Λ ).

By (4.14.1), y E Eo. Hence the above proof of (4.2.1) for δ>£η also works
for£a (orS£"a).

Conditions (4.2) concern a relation between assertions and terms, such as
(4.8.2), that can be considered to be of type 0 according to the second way given
above of formalizing, e.g., (7). Hence it is natural to suggest the possibility of
extending the considerations above to terms such as 'George's birth in Rome',
which in some situations are equivalent and perhaps synonymous with terms such
as (4.8.2) —remember Carnap's principle of tolerance.7

Bealer accords great importance to assertions such as (7); he likes to trans-
late, e.g., (7) in formal languages with as few formal changes as possible as
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F= G (see [1] and (4.15)). Thus identity must in effect work, in his formal lan-
guages, the way synonymy does in £ α , unlike what happens for £a, S££, MI/,
and most intensional languages including Carnap's (see e.g. [15]).

I strongly prefer the latter languages for the following reasons:

(i) there is no need of introducing (contingent) identity as an additional
(possibly nonlogical) primitive;

(ii) the power of set theory is available directly (e.g., F = 0 = (VG) F ί Ί
G = Fistrue), and

(iii) number theory is treatable at least as well as in [1], Chapter 6 (where =
is used in effect as a synonymy relation).

If I have understood [1] sufficiently, an aim attained there (in Chapter 6)
is that by a certain hyper-intensional explicatum NN (for natural number) all of
Peano's axioms follow from laws of logic. Hence they are logically valid, includ-
ing the 4th axiom, which is often regarded as a law on nature; and e.g. for the
individuals of type 1 in a given interpretation of £a (or S££ or MI/) this ax-
iom is true iff the set Dx of the above individuals is at least denumerable.

The above aim of [1] is also attained in, e.g., the set theory presented in
Monk [20] which, as well as Bealer's logic, is typeless (and orderless).

Unlike Bealer I regard sets as properties, and hence set theory as a part of
logic. Therefore I am not very interested in the above aim in itself—i.e., as con-
sidered in typeless logical languages.

However, Chapter 6 in [1] also has a positive value from my point of view,
in that it suggests the considerations below on the natural numbers for the above
individuals, in case (£?) Dγ is finite and v — 1:

Assume (3). Then, since for a > 1 £ α has hyper-intensional properties, the
properties of type (1) are denumerably many. Hence, briefly speaking, if we de-
fine the set N(D of natural numbers for objects of type (1) in the usual way,
N(i) renders all of Peano's axioms logically valid. Therefore, in particular the
4th axiom can be rendered a theorem in some suitable logical calculus valid in
£ α . Even if it is left as an axiom, it is no longer an axiom of nature, i.e. on Dx.

Roughly speaking, if n €ϊ N ( ί l ) and tγ £ τv, then by "the set Fof type (t\)
has n elements" or "the F's are n" it is natural to mean that there is a one-to-one
correspondence between F and the above numbers <n — or, in case t\ = 1, that
{{x]\x G F] G n if preferred.

In case (SF), the ordinary extensional language £ i has only finitely many
objects of type / for all t Gτv. Hence no analogue IN, of the above explicatum
N ( 1) for the set of natural numbers exists for £ t (unlike what happens in a
typeless theory of sets based on D{).

In my opinion the above difference between Bealer's view and mine about
sets is strongly connected with this: the primitive logical relation of identity used
by Bealer [me] is in effect hyper-intensional identity, i.e. synonymy [contingent
identity (which in connection with, e.g., attributes is meant, roughly speaking,
as the contingent validity for the same hyper-intensional entities)].

I prefer to use the latter identity as a logical primitive, because it is simpler
than the former; and in fact it is widely used. Furthermore, in modal logic Δ X
Δ' implies D(Δ = Δ'), i.e. transworld identity; and this identity is widely un-
known in even some important cases. In addition the (natural) synonymy rela-
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tion is not uniquely determined, as it already appears from Carnap [15];
moreover it is widely subjective.

Above we made some remarks concerning C2, where the extension (E) (be-
low (4.1)) is taken into account; among them, identities (4.2) were in effect shown
to hold, because <£« 's variables range over individuals, sets, and propositions.
Now it is conversely shown that (4.2.1)-(4.2.2) practically allow us to give this
range to those variables: there is a device compatible with (4.2)— see (D) below—
that enables us to interpret, e.g., Δ Λ/? when Δ denotes something different from
truth values.

(D) Roughly speaking, interpret Cn(Au... ,ΔΠ), where Cn is an rt-ary connec-
tive, as follows. Cn holds for the n propositions: Δ, is a true proposition
(/ = 1,...,«). Furthermore, interpret (possibly nonlogical) quantifiers sim-
ilarly.8

The interpretation above is equivalent to the ordinary one, when it is used
for the (ordinary) LPC (lower predicate calculus); and it also applies to the ex-
tended LPC, i.e., to the expressions obtained from LPC's wff's by replacing
some wff's in them with terms. Furthermore it is easy to check that, if (only) ~,
D, and ( VJC) for every variable x are used as primitive connectives or quantifiers
and condition (D) is satisfied (see Note 8), then (D) holds for all connectives
and logical operators of the extended LPC. In addition, all theorems and meta-
theorems of the ordinary LPC hold for the extended LPC.

In the contexts referred to above a term Δ has the role of a false assertion,
and this complies perfectly with condition (4.2) when Δ denotes av.

The use of (4.2) can induce, so to speak, the identification of the truth value
false with the nonexisting object; and this may appear strange. However remem-
ber that, similarly, for certain technical reasons of uniformity and simplicity, in
projective geometry (non-oriented) directions are said to be points; hence they
are regarded as similar to ordinary points and one could say that, together with
these, those directions constitute the projective points (instead of the points).
Thus the new (actual) way of speaking —besides the one of thinking—contrasts
with the old one.

To exhibit an analogue of projective point for the identifications (4.2), note
that: (i) any truth value can naturally be regarded as a property (of propositions),
(ii) following Frege and Russell the same holds for zero, and (iii) likewise the
nonexisting object could be meant as the property of being nonexistent. Hence
the use of (4.2) practically amounts to regarding F as

0?) [ (η')] the property of being either a false assertion (false proposition),
or a nondenoting term (the nonexisting object),

the disjunction being exclusive, if terms of type 0 are excluded, and inclusive in
the general case, which was shown to be compatible with (4.2).

Thus the use of (4.2) does not require us to identify (or confuse) notions,
viz. F with (η) or (η'); it only induces an ambiguity in the use of 'F', similar to
using 'point' sometimes in its ordinary sense and sometimes for 'projective point'.

Likewise, for certain technical reasons, ostensive QS's for £a (S£«) are
identified with QE's (quasi-intensions) (see N6 and N5 in [10]). This may induce
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the identification of ostensive senses with extensions (intensions). But in fact the
above identification at most induces us to use 'sense' in a special way, e.g. as
'technical sense' (see the end of N2 in [12]).

N5 Some preliminaries for the semantics of£a and designation rules for its or-
dinary extensional segment Let £a be given; and for 0 < λ < a regard £λ

as the λ-th segment of £a9 i.e. the part of £a formed with wfe's of orders <λ.
The least among these segments, £u has to be regarded as an ordinary exten-
sional (interpreted) language.

Remembering (4.2), it is natural to regard as proper individual domains for
£a any sets X)! to 3D,, such that

(5.1) F £ 3D5, £>s Φ 0 (s = 1, ...,*>) (F is elementless).

Furthermore, let us set

(5.2) » o = | T ) , f l ; = 3);U{F) (y = 0,...,*>).

Hence Do is the set of truth values and Dj is the set of the possibly nonexisting
individuals of type i (i = 1,..., v).

The domain (counterdomain) of any function/ is denoted by 3)/(63)/);
and for any classes A and B we set

(5.3) V^B

B =tfe/{/I/is a function, B J ^ , e % c ϋ ) ,

so that A tr> B can be called the set of partial functions from A to B.
One wants to define gradually the class QEf of the HQE's (hyper-quasi-

extensions or ordered QE's) of (sense) orders <β and type t, as well as the class
QSf of QS's of orders </J and type t9 for 0 < β < a and t G τv. This will be
done by means of a multiple definition based on a transfinite induction on
β(<a) and recursion on t(Gτv), which also determines the HQE and QS des-
ignated by any wfe Δ, provided contextual definitions be absent (QS-designation
rules for theories endowed with a definition system and based on a generalized
(modal) version of MI/ are dealt with in sections 17-20 of [5], p. 200).

For β = 0 we first determine QE? (t Eτv) recursively, in a rather usual ex-
tensional way:

(5.4) QE? = A (f = 0 f . . . , ι0

and

(5.5) QE?, lt... ,,„,,,> = (QE° X. . X Q E ^ Q8,0) U {F},

where Qδf is the class of proper QEf's:

(5.6) QSf = QEf - {F}, hence QEf = Qδf U {F} (t G r,, β < a).

Definitions (5.4)-(5.6) have been written so as to be helpful in stating the
designation rules (h^g) for HQE's and those (ei_8) for QS's. First ( h ^ ) are
given for β = 0 (see below) while the same with (ei_g) is done in N6. This allows
us to define QSf for β = 0 and t G τv. In N7 QEf is defined for β = 1 and t G
τv9 while the same for QSf is done in N8. The process continues for any β < a.
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In spite of the ordinary extensional character of £l9 the rules (hx_s) are
written explicitly for it in order to show, in a simple case, how F and definition
(5.3) work in the semantics under consideration. For similar reasons it is con-
venient to say in advance that, e.g., the designata assigned by those rules to a*
(see (4.6)), (λx) xΦx, and (kx).x = ax v x = a2 vx = a3 are F, 0 , and the con-
stant function g with Ώg = {άua2,a3} and Qΐ>g = [Ύ] respectively, where 5, is
the designatum of a^i = 1,2,3). More generally, the QE designated by any re-
lator will be a constant function g with Q£)g = {T}, so that g is determined by

sv
For 0 < λ < a let Vλ (7λ) denote the set of the ^-valuations (c-valuations)

for £ λ , to be determined below; in more detail, V G Vλ (β G / λ ) iff V (β) is
a function defined only on the variables (constants) of <£λ, for which the first
(second) of the relations

(5.7) V( !/&) G A?, β(cfμ) G A? w i t h A°t = Q E ? (teτv,β<λ,nG N * , 0 <
μ<β + ω)

holds, Af being the set of entities assignable to the variables of order β (<a)
and type t (see (5.7)3 and (7.6)).

By (5.7) V° and 7° are completely determined. Since the definition (7.6) of
Aξ for β > 0 differs relevantly from its analogue (5.7)3 for β = 0, £2 appears to
differ from £x more than <£λ+1 differs from £λ (1 < λ < α) . Furthermore, if
λ is a limit ordinal (i.e., λ = Uλ, according to Monk [20]) and £δ is known for
0 < δ < λ, then £λ also is in effect known. In fact its HQE's (QS's) of type t
form the class QE,<λ (QS,<λ) (teτp).

It is useful to consider the c-valuations 0* G / λ and £ί* for which

(5.8) fl£(c£)=F ( i β < λ < α , teτp9 0<μ<β + ω); β*=defβ%.

For every wfe Δ of £λ we want to define the (hyper)-quasi-extensional
designatum des0^(Δ) at any ϋ G / λ and V G F λ (0 < λ < α ) . This definition
must imply that for some t

(5.9) A = des^vίΔ) =*ΔG QE,<λ (Δ G E,<λ, S.e I λ , V G Vλ).

Hence, for λ = 1, (5.5) shows that, if Δ is any relational or functional expres-
sion Δ 0 ( Δ l 9 . . . ,Δn), then Δo = deSc,^(Δ) is either a function, or (in case it fails
to exist) F; and the same holds for λ > 1 (see (7.7)). Therefore it will appear use-
ful to state, besides definition (5.3), the following convention:

κ i m fft , , t f/(£i, . , ξn), if/ is a function and <&,. . . , £ „ > £ » / ;
(5.10) /(ί i , . . . ,?/,) 1 = ) , , . ,

( F, otherwise.

Furthermore, as is customary, in case 0 < λ < a and V,V G Vλ we write

(5.11) v>=vh'''XAiffV>(x)=\ξi>ί0ΪX = Xi{i=l>'''>m);

\ξi...ξmj {V(x), otherwise.
The rules (h^g) below define (5.9) for λ = 1 recursively, under assump-

tions (i), (ii), and (5.12)-(5.14) below.

(i) n = m + 1 and Δy G E .̂ with tj G τv (j = 0, . . . ,«) .
(ii) xι to xm are m (=AI - 1) variables in E?j to E?w respectively (see (3.3)).
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(5.12) Aj = dtsΰV(Aj) {j = 0 , . . . ,/i).

(5.13) A; = d e s ^ Δ J where V' = vf*1 * * * M (Λ = m + 1).
\ςi ςm/

(5.14) / = {<{!,... ,£„>!£/ G QEg (ι = l , . . . ,m), F * £„ = A;} (see (5.13)).

Rule If Δ is then A = des^v (Δ) is

(hi) v?n (c?μ), V(v?n) (5(4)).
(h 2 ) Δ 0 ( Δ l f . . . ,ΔΠ), Δ 0 ( Δ ! , . . . , Δ π ) t (see (5.10)).
(h 3 ) Δ! = Δ 2 (tι = t2), T if Δ! = A2; F otherwise.
(h 4 ) ^ Δ ! (tx = 0), F (T) if A! is T (F).
(h 5 ) Δi D Δ 2 (tx = t2 = 0), T if A{ is F or A2 is T; F otherwise.
(h 6 ) (Vxx)A2 (ί2 = 0), T if A'2 = T for all ξx G QE?,

(see (5.13) for n = 2); F otherwise.
(h 7 ) 0xi)Δ 2 (t2 = 0), ξ x, if ξj is the unique element of QE^

such that Δf2 = T (see (5.13) for n = 2);
F if such a unique element fails to exist.

(h 8 ) (λxx,. . . 9xm)An, f (see (5.13)-(5.14)).
By induction on the length of An we can prove that, for β = 0:

(5.15) / e Q8?, l f...,,„,,„> (see (5.14) and (5.5)-(5.6)).

Incidentally, every/ satisfying (5.15) can have the form (5.14). In fact, for
some choice of An and V, An has the form F(xx,... ,xm) where Fis a variable,
and V(F) is (or, for β > 0, has the QE)/.

Wtf Ow the senses and QS's of the wfe's of £lΛ Rules for assigning QS's Now
we can assign a sense, or better a QS, Δ = sensc^ίΔ), to any wfe of £ λ , at any
β G / λ and V G F \ for λ = 1.

The simplest among the senses of the (possible) expressions for a given ob-
ject ξ is ostensive, i.e. to be grasped by direct inspection (in a wide sense) of
something in the world (see [5], p. 184). In this way all extensions (including those
for assertions) are put in a canonical one-to-one correspondence with ostensive
senses. Therefore it is possible for us to conform with the following usage, which
much simplifies our semantics:

(I) to identify the QS representing any ostensive sense s with the QE that rep-
resents the extension corresponding to s.

This simplifies our semantics —see, e.g., rule (h^ below (8.5) ((e^ below
(8.6))—by allowing us not to consider the aforementioned one-to-one correspon-
dence.

Let us now consider an interpreted theory 3 in which 4Γ, ' 2 ' , . . . are all
regarded as primitive terms (in contrast to the usual definitions 2 = 1 + 1,3 =
2 + 1,...). Then the sense of '3 ' can be identified with 3 and is regarded as differ-
ing from those of '6/2' and Ίg28'. These last senses are obviously more complex.

It is rather natural to represent the senses of '3 ' , '6/2' or cquot(6,2)', and
43 = 6/2' or '=(3,6/2)' by the following objects (QS's) respectively:

(6.1) 3,</,6,3>, < = ,3,</,6,3».
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Regarding <£χ as a theory belonging to £a all of whose constants are primi-
tive, we want to determine the QS Δ = sens^ίΔ) of any wfe Δ of <£λ at any
βelλ and any V G F λ (0 < λ < a). The rules (e!_8) of QS-designation used
below to this end are similar to and simpler than their analogues for S££.

In this section they are given only for λ = 1, assuming conditions (i) and
(ii) in N5 and definitions (6.2)-(6.3) below.

(6.2.1) A; = sens^ (Δπ) for V = vl*1'' * M ,
\?1 -Km/

(6.2.2) λj = sens3 V (Δ,)(y = 0 , . . . , n)

and (compare with (5.14))

(6.3) g =def K ί i , ΛmΛn)\ί, e QE,, (/ = 1, . . . ,#n), £π = Δ'rt} (see (6.2.1)).

Rule If Δ is then Δ = s e n s ^ (Δ) is

(ei) v?n (c,°μ), V(v?n) (0(c,°».
<e2) ΔoίΔ!,...^,,), <0,Aθ9Al9...9An>.

(e3) Δ 1 = Δ 2 ( / i ' = / 2 ) , < = ,Δ1,Δ2>.
(e4_5) - Δ ! or Δ! D Δ 2 {tx = ί2 = 0), <~,Δ!> or <D,Δ l sΔ2> respectively.
(e6_7) (v^i)Δ2 or (t*i)Δ2(f2 = 0), <V,g> or 0,g> respectively (see

(6.2)-(6.3)for/i = 2).
(e8) ( λ * i , . . . ,xm)ΔΛ, <λ>4g> (see (6.3)).

The occurrence of 0 in Δ for every Δ treated by (e2) will appear reasonable
and natural only when <£>ι is effectively considered as a segment of <£λ (1 <
λ<ce) .

For tGτv the QS?'s, i.e. the QS's of order zero and type t, can be defined
as follows (see (5.8)):

(6.4) QS? = {sensc,i<v>(Δ)|Δ G E?, V E V\ and Δ is constant-free).

The analogue for sens^ίΔ) of condition (5.9) on des0^(Δ) can be easily
checked for λ = 1 (and any β G 7 1 ). Furthermore, the following theorem can
now be proved for λ = 1.

Theorem 6.1, λ If A and A' are (constant-free) wfe's o/<£λ while £f, 0' G / λ

and V, V G Kλ, then

(6.5) senscrv(Δ) = senscjvίΔ') => des^vίΔ) = descj ^ ( Δ ' ) . 9

Hence for β < λ = 1, every σ G QS^ determines its QE, say σE.

Definition 6.1, λ For σ G Q S < λ we say that ξ is its QE (and denote it by σE)
in case ξ = des^(Δ) and σ = sensΰV(A), for some (constant-free) wfe<λ Δ and
s o m e ^ G F λ ( a n d 3 G / λ ) .

Definitions 6.2 (6.3) If δ is the least ordinal for which ξ G QEό (σ G QS6),
then we say that δ is the order of the QE ξ (QS σ) briefly δ = ξ o r d (δ = σ o r d).

Note that Definitions (6.2)-(6.3) do not conflict with one another in spite
of the QE's being special QS's, because if σ G QE(CQS) then the order of σ as
a QS equals its order as a QE.
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N7 Intuitive considerations on the wfe's of£2> Examples of effectively hyper-
intensional functions and relations of arbitrary types. On belief sentences, and
hints at the semantics of £ λ (2 < λ < α) Now we can evaluate the wfe's of
<£2 Their orders are 0 and 1. For instance, we can represenUhe belief relation
expressed by B1 (see (2.7)) with a QE of order 1, say ξ = Bι as follows. Since
that relation exists, ξ is a constant function of range β£)^ = (T); and 3)̂  can be
characterized as follows:

(7.1) 3D̂T = {<p, σ>| p E is a person η and σ is the QS p of an assertion p of £\
believed by η}.

Then Bι(ΐί\l,p) is true iff <9Ϊl,/?> E 3Diτ. Assuming persons to be objects
of type 1, we have thus constructed B1 as an object of type (1,0) = <l,0,0>. This
object is new, i.e. outside the semantics of £i9 and it is natural to regard it as
of order 1. Let us now show that

(A) for any t E τv a new object (or QE) of type t can be constructed iff t £
{0,.. . ,*>}; however

(B) new senses or QS's of any type t can be constructed.

In fact, for t = (t\,..., tn) E τv consider *R E E\ίu _Jn) and n variables xx

to xn of the respective types tγ to tn. Then, setting

(7.2) S =def (λxu... ,xn)Bl[m,, R(xu... fχn)],

S expresses a new object (or QE) of type t (and order 1), for a suitable choice
of Sill's QS-designatum 3ίl.

Now add the assumptions that: (i) x0 to xn are n + 1 variables, (ii) 0 Φ t0 E
τV9 and (iii) xo,a,b E ΈίQ. Then, setting

(7.3) f=def (λxi,... ,xn)(ixo). xo = a/\ S(xu... ,xn) vxo = bΛ ~S(xu...,

f expresses a new object of type (t\,..., tn\ t0) for a suitable choice of 9K.
Of course, the QS's of the wfe's S,/, S(xu . . . ,xn), and/(* i , . . . ,xn) are

also new. This occurs in particular for t0 E {1,..., v} but in this case the QE's
of S(xι,... yxn) and/(xi, . . . ,xn) are not new (in accordance with (A)). Like-
wise no new (proper) object can be denoted by any sentence of £2\ however,
B1(3ϊl,p) e.g. has a new propositional sense.

Thus (A) and (B) have been shown to hold for <£2 Incidentally, they can
be shown to hold for <£λ in a similar way (by considering B" or B^ for β < λ)
( 0 < λ < α ) .

At this point it is natural to consider the directions (α) and (β) below for
evaluating any functional or relational expression Δ 0 (Δ ! , . . . ,An) of £2, of
order 1.

(α) Use the QS Δ, of the argument Ah if (Δ,)ord < Δ§rd -i .e. if Δf belongs to
JVs semantics, while Δo is outside £i (/ = 1,... ,/i).

(β) Use the HQE (hyper-quasi-extension) Δ, of Δ, otherwise (/ = 1,...,«).

In fact (α) is justified by the above considerations on belief sentences and
by a uniformity criterion; e.g. by this criterion alone the QS p is used in (7.1),
in spite of its QE £ = p E being sufficient. Furthermore, (β) is practically im-
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posed by (i) the ordinary (nonintensional) semantics of £ι (already constructed),
in that e.g. the evaluation rules (h^g) in N5 do not involve QS's, and by (ii) sim-
ilar features of £β+i for 1 < β < α. (ii) refers to the fact that, for 1 <
β < α, it is natural to construct £β+i from £β just as £2 is constructed from
£ i , so that many QE's not expressible in £&(0 < δ < β) have an expression Aγ
in £β+ι-and hence β = Δf d (<Δf d ) . Then it is natural to treat Aγ in £β+i like
designators are treated in £l9 and hence to determine the QE of any wfe in
£β+i, of the form Δ 0(Δi), by using only Δi's QE (and disregarding Δi).

For instance, in case β + 1 = λ = 2, A\ can be B1 and Δo can express the
property of being an effectively hyper-intensional relation; furthermore, if Δ!
is a complex expression equivalent to B1 (At = B1), then it is natural to require
that, in £ λ , Δo (Δ t) should be equivalent to Δo (B1) —which practically implies
the above conclusion that (β) is justified.

Note that direction (a) has the alternative

(ax) use Δ/ whenever (Δz )
o r d < (Δ 0 ) o r d (/ = 1,... ,/i).

It can be supported by the same arguments considered for (α). I prefer
(ay) to (α), because it is only according to (αN) that the QE of Δo ( Δ j , . . . ,An)
depends on what Δi to An express, disregarding the orders of these arguments,
and this is very useful (i) to render a nice axiom system valid and (ii) to construct
an order less sense language.

Note that one may want the following condition on belief sentences to hold:

(γ) Bm(ΐfll,p) is false when p expresses a proposition of sense order β with
m < β < a (see the considerations following (2.6)).

This can be rendered compatible with directions (β) and either (a) or (α v)
by stipulating that Bm(ΐSfl,p) is false when/?'s QS, /?, is ostensive. Incidentally,
this appears reasonable in that truth and falsity are generally regarded in everyday
life as properties of sentences or propositions, but never as propositions.

However, for some special purposes, one might be interested in the possi-
bility of rendering condition (7) compatible with the condition

(δ) Bw(3ϊl,/?) is true (false) when p is T (F).

This requires Bm to be sensitive to senses of order m, which can be carried
out only by identifying Bm with a constant of order >m.

Incidentally I decided to define the QS^'s after having stated the rules of
QS-designation —see e.g. (6.4) or (8.7) —(and by using these), because only in
connection with the first five rules among (ei_8) in N5 or N8 can some simple
recursive clauses for a direct definition of QSf (t G τv) be written (disregarding
rules (ej.s)):1 0

(SO l f c Q S ? .

(δ2) If σj E QSf. where tj G τ , ( y = 0,. . . ,/i), then </3,σ0,... ,σπ> e QSf0.

(83_4) If σuσ2 G QSg, then <~,σ!>, <D,σi,σ2> G QSg.

(85) If σl9σ2e QS?, then < = ,σ!,σ2> E QSg.

Clauses (e6_8) in N6 (N8) involve the function g defined by (6.3) ((8.3.2))
using sens3<v>'. Due to the very special nature of this function, to define it inde-
pendently of the rules for QS-designation (though certainly possible) appears very
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complex; therefore the chosen way of defining QS's seems to me strongly prefer-
able, in connection with the aims of the present work.

As far as the choice of A$ for 0 < β < a is concerned (see the considera-
tions following (5.7)), note that it is useful to render the following wff true:_

(7.4) F=G= (Vx).F(x) = G(x) f o r F , G G E ? 0 a n d x G E ^ (teτv),

at least when F o r d = G o r d . For β = 0 (7.4) is valid by rules (h{_s) in N5. For
βι = 1 G(x) can be equivalent to Bι(ΐfϊί,x) (see (2.7)). Then it is obvious that we
have to assign to x every σ G QS? (and hence every £ G QE?).

Of course, by (α) or (a") and (β) the new QE's of type t have also to be
assignable to x in (7.4). At this point it is natural to accept for β = 1 the multi-
ple recursive definition of QEf, A?9 and Q8? (/ G τv) afforded by clauses (5.6)
and (7.5)-(7.7).

(7.5) QEf = Dt (t = 0,...,v) (see (5.2)),

(7.6) ,4? = QE? U QS,^ (see (3.2)) (f 6 r,)

a n d , fortθ9...,tneτP9

(7.7) QE?,lf....,„,,,> = K X . . . X Afn *» Qδ?0] U {F}.
Note that, for β = 0, (7.6) implies (5.7)3, so that (7.5)-(7.7) are equivalent

to (5.4)-(5.5). Hence the definition above can be accepted for β = 0. It will be
accepted also for every β < α, because the considerations above based on (7.4),
(α), and (β), can be repeated mutantis mutandis for every β(<a) that has the
form δ -I- 1 it suffices to consider B^ instead of B1 (see N2 for δ < ω).

In case β = U/3, e.g. β = ω, we can also construct new QE's of relational
and functional types, in spite of each QE used for this having already been used
singularly to construct such a new QE of some order δ < β.n Furthermore, the
considerations based on (7.4), (α), and (β) can also easily be adapted to support
the acceptance of (7.5)-(7.7) and (5.6) for every β = U/3 < a.

N8 Rules of QE- and ^^designation for £2 Objects (5.6) and (7.5)-(7.7)
are now determined for β = 0,1 hence the set Vλ (Iλ) of λ-i -valuations (λ-c-
valuations), i.e. v-(c-)valuations for £ λ , is determined for λ = 1,2.

Now we want, first, to evaluate any wfe Δ of £ λ , i.e. to determine Δ =
des^(Δ) at any β G / λ and V G Γ λ, for λ = 2; then the QS Δ = sens^ίΔ) will
be determined for these Δ, 3, and V. We do this, in the present section, according
to the directions (α) and (0) in N7; and in N9 the present section will be extended
from £2 to «£λ (0 < λ < α). Then, in Nil , the directions (a") and (β) in N7
will be considered (mainly for «£2)> and the resulting sets of rules will be com-
pared with the rules (h^g) and (e^g) in N9.

In accord with (α) and (β) let us consider conditions (i) to (iv) below, for
λ = 2.

(i) Δ and Δo to An are wfe's having the respective types t, t0 to tn, and the
respective orders δ, δ0 to δn; furthermore t0 = Vi> »tn9t}9 m + 1 = n G N*,
and 0 < μ < λ + ω.
(ii) Xι to xm are m variables and *,• G E?/* (see (3.2)) ( / = ! , . . . ,ra).
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(iii) The orders β9 δ, and δ0 to bn are <λ (<α) (hence df<δg< λ, see (8.5) be-
low), β G / \ and V G F \
(iv) One uses the definitions

(8.1.1) Kj = des0V(Δy) ϋ = 0,. . . ,«),

(8.1.2) Δ^ = des0v'(Δπ) with V = v(*1'' ' M ,
Ul W

and

,8.2, A,,f™,Mf<Λ^<(Λ0r-
ldes<jv(Δ/), otherwise

and the first of the definitions

(8.3) \ f =ώίίl<ξu...9ξn>\ξn
V O

f d e s ^ ( Δ ) * F . . . ,„-1)) (see(5.11))
Csensf lV'(ΔΛ)

which, as can be checked (for λ = 2) on the basis of rules (h^g) and (ei_8) be-
low, imply that

(8.4) [f

ge(A%x...xAfa*[<^),mthdfxδg<\,

where1 2

(8.5, [dζ - » - P ( [ f ( ^ |ί e [% X...XA,J. «-« {.».

((ϊ) For λ = 2, Δ = deScί'y(Δ) is defined recursively by rules (h!_8) below,
regarded to hold for all entities that satisfy conditions (i) to (iv):

Rule If Δ is then A = d e s ^ A ) is

(hi) υfn (cfμ), σE, where σ = V{υfn) (σ = S ( φ ) , if σ G
QS^^ and σ otherwise (see Theorem
6.1λ, or (8.10) below).

(h2) Δ 0 ( Δ ! , . . . ,ΔΠ), Δo ( A w . . . ,Δ Λ ) t (see (8.2) and (5.10)).
(h3) A{ = Δ 2 (̂ i = t2), T, if Δ t = Δ 2; Γ otherwise.
(h4) - Δ ! (t{ =0), T (F), if Δ! is F (T).
(h5) Δi D Δ2 Ui = h = 0), T, if Δ! = F or Δ2 = T; F otherwise.
(h6) (V^)A2 (t2 = 0), T, if K'2 = T for all ̂  G ̂ fi (see (8.1.2)

for n = 2); F otherwise.
(h7) (->*! )Δ 2 (t2 = 0), r/ if r/ is the unique element of QEf/ such

that, for some ξx G Apl9 A2 = Ύ (see
(8.1.2) for n = 2) and either £?rd = /J
and 77 = ̂ , or ξfd < β and r; = ξf
(see (8.10)); F otherwise.

(h8) (\xl9...,xm)An, /(see (8.3)0.
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((B) For λ = 2, Δ = senscj«y(Δ) is defined recursively by rules (ei_8) below,
regarded to hold for all entities that satisfy (i) to (iii), (8.3)2, and

(8.6) Aj = sens^(Aj)U = 0,... 9n)9A'n = sens^(An) mihV' = v l X ι ' ' " M .
\ςi Λml

Rule If Δ is then Δ = sens<π?(Δ) is

<€l) V?n K)> V(<) ( 3 ( φ )
(e2) Δ 0 (Δ! , . . . ,ΔΠ), <(Δ0)

o r d, Δo, Δ l 5 . . . ,Δn>
(see Definition 3.1).

( e 3 ) A1=A2(tι=t2)9 < = ,Δ l fΔ 2>.
(e4_7) ~Δ 2, Δ2 D Δ3, (VjeJΔa, <~,Δ2>, <D,Δ2,Δ3>, <V,£>, or

0*i)Δ 2 (t2 = h = 0)> <1>g> respectively, where (8.3)2

holds for n = 2.
(e8) (\χu... ,xm)ΔΛ, <λ,g> (see (8.3)2).

The class QSf of the QS's of type t and orders <β can now be defined for

0 = 1:

(8.7) QSf =def [semβv(A)\V G Vβ+\ β = βξ+ι, A G Ef, Δ is constant-free)
(see (5.8)).

By the considerations adduced following (7.7), the above rules (hi_8) and
(e!_8) induce the corresponding rules in N5 and N6 for JCi.

For λ = 1,2 it is not difficult to check the following:

Theorem 8.1 Assume that 0 < δ < λ < α. Then theses (a) to (c) below hold.
(a) The restrictions V'δ (β'δ) of the valuations V e F λ(0 G / λ ) to the variables
(constants) of orders <δ are the h-v-valuations (b-c-valuations), i.e. they form
the set Vδ (Iδ).

(b) If A is a wfe<δ, VeVλ,βG / \ V G Vδ, β' G / δ , ^rf V (β) agrees with
V (£Γ) on the variables (constants) that occur in Δ, then

(8.8) des^'ίΔ) = des^ίA), senscj ̂ (Δ) = sens^ίΔ).

(c) IfVr G Vλ, βr G / λ , and Ar is a wfe<λ (r = 1,2), then

(8.9) sensajV^Δi) = sensc,2«v2(Δ2) => des^v^Δi) = deSc,2V2(Δ2).

Definition 8.1 A valuation V G Vλ (β G Iλ) is said to be ostensive if it as-
signs every variable (constant) an ostensive QS, i.e. a QE.

By Theorem 8.1(c), for every σ G QS < λ we can define σE by requiring that
for some constant-free wfe<λ Δ and some (ostensive) V G Vλ we should have

(8.10) σE = d e s ^ ( Δ ) , σ = sens^(Δ) (see (5.8)).

Note that Theorem 8.1(c) and (8.10) are extensions of Theorem 6.1,λ and
Definition 6.1,λ, respectively (practically considered only for λ = 1); further-
more, to prove Theorem 8.1(c), it is convenient to note that the same class QSf
could be defined by the identity obtained from (8.7) by either adding to "V G
F / 3 + 1 " the assertion <<eV is ostensive", or replacing "ύ = 3*" with "3 G / / 3 + 1 " and
crossing out "Δ is constant-free".



NEW SEMANTICS 69

N9 A general recursive definition of the main semantical notions for the exten-
sional sense language £a The rules (h^g) and (e!_8) given in N8 in full
generality but considered there only for λ = 2 induce the corresponding rules for
£ι (see the considerations following (8.7)). Now we want to consider them, to-
gether with some definitions— such as Definition 6.1.λ, which was used only for
λ < 2 —in full generality, i.e. for β < λ < a. In more detail, we want to define,
for 0 < λ < α :

(a) the class QE? (QSf) of the HQE's (QS's) designatable by
(constant-free) wfe's in E?, and the classes A? and Qεf (see (7.6)
and (5.6)) (tEτv);

(b) the class Vλ (7λ) of λ-v-valuations (λ-c-valuations (see (5.7));
(c) the HQE σE of any σ G QS < λ , to be denoted by 7λ(σ); and
(d) ((e)) the HQE Δ = des^(Δ) (the QS A = des^ίΔ)) designated by

any wfe<λ Δ at any β G Iλ and V G F \

We do this by possibly transfinite induction on λ and the length of Δ and
by recursion on t. Therefore fix a value (<α) for λ (>0), and assume that the
objects in (a) to (e) are known for the smaller values of λ.

First we consider the case 0 < λ = U λ ( λ i s a limit ordinal). Then all ob-
jects above are in effect known for the actual value of λ too, except F λ , 7λ, and
7λ( ). These can be defined by

(9.1) ί \ λ = {function! V f ^ is the set of the ί v a r i a b l e s

 of £ α and
U [β lΐ>β (constants

ί J ^ } l holds), h=\JIμ (i.e. 7λ(σ) = Iμ(σ) for σord < μ < λ).

In the remaining case it is useful to assume that λ = β + 1 and to order the
objects in (a) to (e) as follows:

(1) QE?, A?, and Qδ? (t e τ¥), (2) F λ and 7\ (3) (/ (see (8.3)0 and) des\
i.e. A = des0 v(Δ) for V G F λ , ύ G 7\ and Δ G E? (t G rv), (4) (g and) sensλ

i.e. A = senscj«y(Δ) for ύ9 V, and Δ as in (3) (see (8.3)2), (5) QSf (/ G τv) see
(8.7)), and (6) σE (see (8.10)), i.e. 7λ(σ) for σ G QS? (/ G τv).

Having assumed that λ = jS 4- 1, we determine the objects (1) to (6) in the
written order by simultaneous recursion. In more detail, we determine: (1) by
using (5.6) and (7.5)-(7.7), as well as recursion on t G τv\ (2) by (9.1); (3) by
rules (hj_8) in N8 and (8.3)i, using recursion on Δ's length 1Δ and assumptions
(i) to (iv) in N8; it is sufficient to do this only for Δord = β, provided we state
(9.2.1) below-see Theorem 8.1(a) for the definition of e.g. β'δ

(9.2.1) des^v(Δ) = des|>vδ(Δ)
(9.2.2) sens^(Δ) = sens^«V'δ(Δ), for δ = Δo r d + 1 < β.

Then we can determine the objects (4) likewise by (8.3)2, (8.6), and rules
(e!_8) in N8, using induction on 1Δ (<oo) and assumptions (i) to (iii) in N8; it
is sufficient to do this only for Δo r d = j8, provided we state (9.2.2). Objects (5)
and (6) are determined by (8.7) and (8.10) respectively.
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Now the validity of Theorem 8.1 can be checked for 0 < λ < a. It can also
be checked that, besides (5.6), we have13:

QE? = QE°, Q8? = Qε? (ί = 0 v,β<a),

(9.3) - QE«CQEf, Q8«CQSf (ί e rv - (0 , . . . ,v}\ δ < β < a),

QSfcQSf, (teτv,δ<β<a).

Furthermore, for δ < β < a and t Φ t'

™ "^-{^•"^'"-{ttfm? *0'
Definition 9.1 Under condition (4.4) we say that

(9.5) « = < » ! , . . . 9S)¥9d>, where β G Ia

is an interpretation of £a relative to the proper individual domains £>ι to £)„,
and that %? is an 5-valuation in case V G Va.

N10 Discussion of the semantics for £a I want now to discuss some features
of the preceding semantics for £a9 and in particular to show that, within it, the
attribution of a property to an object depends on the order of the predicate ex-
pressing the property. The same can be said of the application of an Λ-ary func-
tion to n objects.

As in N6, let us consider 'Γ/2' , . . . as primitive constants of a theory 3
based on (or coinciding with) £ α . By using 43' autonomously, let us set within

(10.1.1) P°(Λr°)^e/Λ:0 = 3,
(10.1.2) P\xι)=defx

x=3,

(10.1.3) Q V ) =def (vσ^.σV) = G'O),
so that, incidentally, Qι(A°) can be translated as "Δ° is synonymous with 3".
Now remember that the extension Foΐ a predicate F, considered in the version
most used in the extensional case, is the set of objects of which Fcan be correctly
predicated; thus Fis the domain SDp of the QE Fdesignated by Fin £ α . Using
these notions we can write:

(10.2.1) P° = {3},
(10.2.2) P} = {σGQS|σE = 3},
(10.2.3) Q' = {3).

By rules (h2)6) in N8 the wff's:

(10.3.1) (^xι).P°(xi) = Px(xx),
(10.3.2) P ° ( 5 - 2 ) ,
(10.3.3) ~ Q ' ( 5 - 2 )

are true. Incidentally, (10.2)-(10.3) still hold in case the replacements xι -* xθ,
P1^P0, Qλ -> Qβ, and G1 -> G0 are performed on (10.1)-(10.3) (0 < β < a).

The truth of (1O.3.2)-(1O.3.3) and (10.2.1) and (10.2.3), show that:
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(i) certain predicates of different orders, e.g. P° and Qι, fail tojbe cojrrectly ap-
plicable to the same entity, e.g. 5 — 2, in spite of the identity P° = P 1 of their
(set theoretical) designata.

On the other hand, by (10.2,l)-(10.2.2) and the truth of (10.3.1), kept in-
tact by the replacement xι -+ xβ,

(ii) certain predicates^ different orders, e.g. P° and P1, have different (set the-
oretical) designata, P° ΦP1, and in spite of this they are applicable to the same
entities (see (10.3.1)).

Assertions (i) and (ii) on £2 have obvious analogues holding for <£λ, in-
duced by the above replacements Pι -+ Pβ and xι -• xβ.

Now recall that by the rules (hi_8) in N8 the wff

(10.4) p = q ΞΞ. p = q (see Convention 3.1)

is logically valid, and that, if av = 0 and F o r d = G o r d , the same holds for (7.4),
which is the conjunction of the wff's

(10.5.1) F=GD(Vx).F(x) = G(x),
(10.5.2) (V*) [F(x) = G(x)]. D F = G, where Foτά = G o r d .

In general av Φ 0 (see (13.1)). Now we remark that:

(iii) both (10.5.1) and (10.5.2) fail to be logically valid in £a when F o r d Φ G o r d ,
even if xoτά > max{F o r d,G o r d}.

Indeed (10.5.1) ((10.5.2)) is false when F and G are replaced by P° and Q1

(and Pι) respectively. This proves (iii) for F o r d = 0 and G o r d = 1. Quite anal-
ogous examples can be constructed for arbitrary different choices (<a) of F o r d

and G o r d .
The considerations above, i.e. (i) to (iii), simply show that:

(iv) in £a the predication of a (set theoretical) attribute depends on the order of
the predicate that designates it.

This fact, in accordance with direction (a) in N7, is not strange in itself.
However, by its consequence (iii), it is natural to try and change <£α's semantics
in order to render (10.5.1)-(10.5.2) valid in more general cases. At this point it
is natural to try and follow the alternative direction (α v) considered in N7.

Nil The interpreted language «£« obtained from £a by a first semantical
change. A corresponding change in the underlying ontology Let us accept
direction (ay) in N7. Then it is important to determine (Δ 0 ) o r d , hence Δo, suit-
ably. Since we call £κ

a the interpreted language being constructed according to
(αN), let us now denote by Δv (Δ') the QE (QS) of any designator Δ in the
modified semantics, unless no confusion arises.

In applying (aκ) we may wish to use Δo like P° or Q{ in N10. Suppose we
want to regard the wff's (10.1) and (10.3) as still true. By (10.2.1) and (10.2.3)
P° = Q1, so that Qι seems to be of order 0. Hence it is practically necessary to
regard ΔQ in the above two cases to be <P°,0> or (QXA) respectively. Thus we
can use Δo as P° or Q 1, no matter what Δ§rd is, provided Δ8rd is >0 or >1 re-
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spectively. Something quite similar happens with functions. To accept this point
of view implies that

(i) in <£« an attribute or function is considered as determined only if, besides its
set theoretical part, the rule for applying it is also given.

Thus the ontologies underlying <£α and <£« differ in general and funda-
mental ways. This has an analogue in mathematics: analysts and topologists use
different notions of functions, as is explicitly remarked in [2], Chapter 1, §2.
Briefly, analysts regard «-ary functions as special (n + l)-ary relations, i.e. spe-
cial sets of (n + l)-tuples, while topologists regard them as determined by such
a set/ of (n + 1)-tuples, associated with two other sets A and B. These are called
the domain and counterdomain respectively, but they can fail to coincide with
the analysts' 3Dy and C2D/ respectively (however SDy c A and (BS)/ c B). Obvi-
ously the new ontology is to the old one as the one of topologists is to the on-
tology of analysts.

The technical changes sufficient to carry out this first semantical change can
be reduced to the following four.

(1) Replace clause (7.7) in the recursive definition (5.6) U (7.5)-(7.7) of QEf,
A?, and Qδf with the clause:

(11.1) QE?, l f... ,,„,,,,> = U| either ξ G QE<t,...,Wo>> or ξ = F, or else ξ =
</,£> for some/G (A£ X . . . X AfΛ *+ Q8f0) w i t h / * 0 for β > 0}
(to,...9tneτv).

Note that the alternative ξ = F in (11.1) could be cancelled (only) for 0 <
β < α. Furthermore, note that the empty Λ-ary attribute is trivially applied (in
<£α) in the same way by all wfe's; therefore the clause "with/=£ 0 for β > 0"
has been inserted in (11.1), in implementing (i) technically.

Lastly, remember that for the sake of simplicity, for t = (t\,..., tn910) G
τv one may wish to identify the nonexisting object of type t with the empty ob-
ject of the same type (a relation or a function), i.e. to render e.g. af = (λxi,
. . . ,xn)Xi Φ X\ (x\ G E/j) true. In fact, in this case the hyper-intensionality
principle has the form (1.1), instead of the form (13.1) which is (mathematically
acceptable but) more complex. For £a the above identification can be obtained
by setting (a) F = 0 . The replacement of (a) with (b) F = <0,O> achieves the
same goal for £^ .

(2) Replace the definition (8.2) of the object A{ depending on β and V with:

( . a A,.=μ<.'fA> :<<<Λor<,
C Δ/, otherwise.

Of course, rule (hx

2) consequently differs from (h2) only in that —by writ-
ing e.g. (c)i for aλ when c = {aua2)— it reads:

Rule (hv

2) If Δ is Δ 0 ( Δ l f . . . ,ΔΛ), then Δ(= des^(Δ)) is F for Δo = F, and
otherwise Δ is (ΔoMΔj,. . . ,Anγ (see (11.2) and (5.10)).

(3) Change rule (h8) in N8 into the following:

Rule (hfe) If Δ is (λx l 5 . . . 9xm)An, then A = </,rf/> (see (8.3)! and (8.5)0.
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(4) Simplify rule (e2) in N8 by crossing out (Δ 0 ) o r d :

Rule (efc) If Δ is Δ 0 ( Δ l f . . . ,ΔΛ), then A = < Δ 0 , . . . , AΛ>.

In the sequel I may denote any rule or semantical object for £"a by the
same symbol of its counterpart for £ α , endowed with a grave accent. When £κ

a

will have been turned into the interpreted language <£« by a second semantical
change —see N12—two such accents will be used for the corresponding purpose
connected with £ £ , as long as no confusion arises. For instance I may write
that Δv = des<π?(Δ) and Δv = sensgv(Δ) are determined by rules (hi_8) and
(€\_8),_for ύ G 7 x λ, "V G F v λ , and Δ G E < λ . However, des (A;) was preferred to
desx((Λ;,)')inRule(fr2)((fr8)).

By changes (1) to (4) above, (h;) and (e>) equal (hr) and (er) respectively
(up to notations) for r G {1} U {3,... ,8}; (h2) differs from (h2) only in that it
is based on definition (11.2) instead of (8.2) and it involves (Δ0)i instead of Δo.
The obvious analogues for £« of definitions (8.7) and (8.10) can be used.

In case we want to compare the versions of QE, for £ α and £«, we denote
them by QE, and QEJ respectively. We assert, e.g.,

(11.3) QE}" = QEf, only for t G {0,..., v\\ QSj" Φ QSf, W G τv (0 < β < a).

The analogue of Theorem 8.1 for £« can be proved.
Note that in £« (10.5.1) is valid for arbitrary orders ofF, G, and x. More

generally, the wff

(11.4) f=gD (VXi,...,xm).f(Xu...,xm) =g(X\,..-,xm)

is valid, where f,g G E < , l t . . .,tm,t0> andXi^Έt. (i = l , . . . , m ) .
A general version of the instantiation axiom (1.2) is also valid in £ ^ (see

N14).
Lastly, we remark that the converse of (11.4) cannot be a valid axiom

scheme in £κ

a. This can easily be seen by considering its special case (10.5.2) for
Ford < Gord < ^ord < ^ ^

In fac^ since by (10.2.1)-(10.2.2) P° Φ P\ we have_that PQκ = <P°,0> Φ
<P1,1> = Pu . However, by these definitions of P°" and Pu and by rules_(hv

2)
_and (hx

6) (=(h6) in N8), the wff (10.3.1) is also true in £^, while (since POy Φ
Pu ) the wff P° = Pι is false in £ ^ ; hence (10.5.2) is also false in £^.

N12 The language £ ^ obtained from £y

abya second semantical change. Onto-
logical considerations. QEβ'sfor £ £ in terms of the QE<β9s and QS<β's It
is natural to try and render the converse of (11.4) true; this is substantially equiv-
alent to regarding the HQE's off and g as identical whenever they render the
consequent of (11.4) true. This strengthening of identity induces a corresponding
strengthening of the synonymy relation. Thus, the second semantical change
which is being chosen appears similar to an extension to S££ of some among
the changes of the basic semantics for 3TC£" that are connected with a strength-
ening of only synonymy, and were considered in [5] (for a = 1).

It is convenient to note that such a strengthening is not new; it occurred dur-
ing the mathematical analysis of basic notions. E.g. when the intuitive notions
of rational, real, and complex numbers were analysed, strictly speaking they were
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redefined within set theory by identifying them with certain mutually disjoint
classes Q, R, and C respectively. A certain part R ( Q ) of 1R is formed by the so-
called rational real numbers, and certain parts C ( R ) and C ( Q ) of C are formed
by the so-called real or rational complex numbers respectively.

By using an overbar, α, to express the object denoted by a wfe α, assume
that

(12.1) α , ϊ , c G Q and e.g. aR (a€) is the counterpart of a in R(C).

Then the mutual equivalence of the relations

(12.2) a + 5 = c, ί 1 + 6 1 = Λ and ^ + ^ = ^

is_well known. Furthermore, people often make the identifications a = aR =
ac. These identities induce the synonymy relations

(12.3) aXaRXac (and a + b X aR + bR X ac + bc)

between terms, and the following ones between wff's14:

(12.4) (a + b = c) X (αR + 6R = cR) X (a€ + b€ = c c ) .

As well as many changes in a hyper-intensional semantics, connected with
the basic synonymy notion—see section 17 in [5], p. 200—our second semanti-
cal change

(1) allows us to treat synonymy relations that are more similar to those used
in practice, at least in certain interesting situations, and

(2) it allows us to write a more efficient (practically more powerful) cor-
responding axiom system.

Now, in order to define ££ technically, we consider the λ-segment <£χ of
<£« (0 < λ < α), use (a part of) the semantics for <£ ,̂ and define simulta-
neously the <£« -versions of the objects (1) to (6) mentioned following (9.1) by
transfinite induction on λ (0 < λ < a) and recursion on t G rv or the length 1Δ

of the wfe Δ being considered.
Recalling Nil, as starting clause we use that

(i) we have

(12.5.1) QEf = QE^ if either β = 0 or t e {0,... ,*>},
(12.5.2) QS? = QSί° (tGτv)9

where (as well as often in the sequel) it is convenient to write QEf (QSf) for
QEϊβ(QSΐβ), and

(ii) the versions of all objects (1) to (6) (see below (9.1)) for the extensional
segments £\ and £ ϊ of <£«and <££ respectively coincide.

Now fix λ (0 < λ < a) and suppose those objects to have been defined for
<££ (0 < ύ < λ). In case λ is a limit ordinal, determine F λ , 7 λ, and 7λ (•) by
(9.1). The others among the versions for <£χ of the objects (1) to (6) are in ef-
fect known.

In case λ is a successor ordinal, set λ = β + 1.
Since the subcase β = 0 need not be considered because of (12.5.1), we first
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assume that 0 = 1. Furthermore we remember the case (10.1.1)—(10.1.2) by which
(10.2.1)-(10.2.2), (10.3.1), and P O v Φ Pu hold. In it, when/ is P° and g is P\
the converse of (11.4) (for n = I, t = (t\) where t is Pι's type, and 0 = 1) is
false; therefore we want to construct a sense language <££ in which POκ and Plκ

are identified and the analogue holds for any n > 1, β > 1, and t E τv -

{0,. . . , .} .
Technically this identification can be carried out by

(a) regarding ξ =def Plκ ( E QEj^) as a pre-QE of order 1 and type t = (t\)

and by

(β) stipulating that Pu £_QEj in <££ because of the truth of the wff (10.3.1)

in £a, which shows that P l v represents the same extension as P ° \ and hence

that it is useless.

Note that the above truth in £x

a involves QE-designation in £κ

a and that,
in a first (tentative technical) approach, P l x could be regarded as the pre-QE
designated by Px in <££. However, for β > 0 the pre-QE designation function
cannot coincide with des x / 3 + 1 (see below (9.1) and above (11.3)) (unlike what
happens for β = 0). This adds to the complexity of this approach.

Furthermore, on the one hand, for £β+ι and £β+u QE? is defined, to-
gether with some other notions, by a multiple recursion on t E: τv, which does
not involve the functions des and sens for £β+ι and £β+\ respectively—i.e.
des^4"1 and sens'34"1. Instead, on the other hand, in the approach above a simi-
lar function (of pre-QE designation) appears to be involved in the correspond-
ing recursion on t G τv; and this also contributes to the complexity of the
approach being considered.

Lastly, note that within a multiple recursion on t E τv the stipulation men-

tioned in (0) is carried out by simply failing to include P l v in QEj.
Therefore we look for a second approach to perform identifications of the

above type; and remembering that (10.3.1) is true because of (10.2.1)-(10.2.2),
we begin by replacing the above identification based on (a) and (β) with state-
ment (β') below, for case δ = 0 and 0 = 1.

<β') We fail to include the case PQEf f = <fr,0> = P 1 * in QEf with t = (tx)

because there is some η E QEf^, and precisely η = <T72 ,δ>_= P°\ that satisfies

the following condition—which directly involves 3D7?1 ( = P°) and 3)^ ( = Pι):

(12.6) SDf, = ΏβfVι =def {σ E A£ | σ E δ E »„,} = {σ E QS,f U QE^ | σBδ E £>„,}
(δ = r ?

o r d < 0 ) ,

where (referring to QS's and QE's for £ £ (see (12.5)))

(12.7) σE δ =def Iβδ(σ) =def ^ if σ * QS,f, for σ E A£,

so that σEδ = σ = σE for σ E QE^.
In order to see that (0') is reasonable, first note that, for ξ E QEδ f ί :

0) ζ[β] =def {σ E Q S < ^ | σ E = £} is the set of the QS's in £β+ϊ that corre-
spond to the QE £ of <££+i and (ii) ξ G ξ [ | 3 ] . Furthermore, in the examples
(10.2.1)-(10.2.2) (iii) δ = 0 so that σ £ QS^ δ = 0 for any σ, whence £ > M l =
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{σ G Q S ? J σ ^ E SD^J. Then, by (10.2.1)-(10.2.2), S>ηi = {3} so that (12.6)!

yields 3Dfl = P 1 .
Thus in the case of the example, where Pι G E< f l >. ..,tm,toy with m = 1 and

t0 = 0, the approach being constructed works. That it works in general will be
proved rigorously by Theorem 13.1 (and Theorem 13.2). Below one aims at
showing, at least in part, that this approach has natural features, and at rendering
these more easily understandable.

Now, from an intuitive point of view, assume that (a) β > δ > 0, (b) we
know £β, and (c) we have defined pre-QEf 's, i.e. the set PQE?, properly. Then
we can consider, first, an η = (ηl9δ} G QE δ * with t = (t{), S)ηι c QS,<δ, and
e.g. δ = 1, and second, a f = <fi,j8> G PQEf that satisfies condition (12.6).
T h e n Z ) Γ l = ΐ>β,ηi = [σ G QSfβ\σ G ΐ>ηi} = £>ηί a n d h e n c e f = {ηuβ) ( Φ η ) .
Therefore, roughly speaking, if we had that f G QEf, then the converse of
(11.4) would be false f o r / = η and g = f. Thus the lower part of definition (12.7)
is also essential in order to extend (β') to case (a) correctly, e.g. for t = (tι).

Looking forward to extending the present considerations to e.g. 1-ary func-
tions, let us note that even in the second case above —where t = (t{) —

(12.8) f i ( σ ) = r / l ( σ E δ ) VσG » Γ l ( = S D ^ ) .

Now let us define £χ rigorously in the case I < j 3 + l = λ < α . To obtain
the analogue for £χ of the definition of the objects (1) following (9.1), we first
add to them the set PQE$ of the pre-QE's of order β and type ϋ G τv - {0,...,
v}9 the jδ-mate mβ(ξ) of any ξ G Q E ^ , σ's δ-equivalent σE δ = Iβδ(σ), and the
set LQE(f) of the lower-order QE's (of type ϋ) corresponding to any f G PQE§.
Second, we define the resulting objects

(12.9) QEf, Qδf, Af, P Q E i Iβδ( )(δ <β),^ mβ{ξ)9 f h LQE^(r)

by recursion on t G τv and ϋ G rv — {0,..., v] in terms of the analogues for £β

of both these objects and the objects (2) to (6) mentioned following (9.1). We
do this by means of the initial clause (12.5.1) for t G {0,..., i>) and the recur-
sive clauses (5.6), (7.6), and (12.11)-(12.14) below for all t9 t0 to tm, ύ, and δ,
with t G τv and

(12.10) ϋ = {tu... , W o > e T,, 0 < δ < β < a.

Incidentally, Definition (12.12) (i.e. (12.12a)-(12.12c)) is equivalent to Defini-
tion 12.1 below.

(12.11) P Q E g =def { / G (Af, x . . . x A?m *> Q&?0)\fΦ 0 } X {β).

For all η = {ηuδ> G QE^:

(12.12a) mβ(η) =def <flf/S> G PQE§

where (remembering (12.7) and that S>ηι Q A^ X . . . x A ^ ) iΊ is the «-ary
function with

(12.12b) 3Dfl = {σ G A?, X . . . X A ? J σ E δ G 2>ηι] (σEδ = <σ?\ . . . ,σ E δ »

and

(12.12c) f 1 ( σ ) = i ? 1 (σ E δ ) VσG » f l ( c A?, X . . . X A f j .
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Furthermore

(12.13) LQE(ξ)=dif[ηeQE$β\t=mβ(η)} (VfGQEg)

(see property (γ) of f h LQE(f) below). Finally

(12.14) QEg =def Q E ^ U [f G PQE§|LQE(f) = 0 ) .

Note that by (12.7) and (12.12b)2, Definition (12.12) is equivalent to

Definition 12.1 For any η = <ηuδ) G Q E | where (12.10) holds, we say that

f = mβ(η) in case f = <fi,0> (G PQEg) where ft is the «-ary function such
that:
(i) < σ 1 ? . . . ,σw> G £>Γl iff, for some (Pu . . . ,pw> G SD^, (fif ) either Pi G QS^δ U
QEf. and σ, = Ph or p, G QEf. and σ, G Q S ^ with σt Φ σf 6 = Pi (i = l9.. .9m)
and
(ii) the alternatives ($i) to ( β m ) in (i) imply (12.12c).

Now we can determine the objects (2) (following (9.1)) for <£χ just as
those for «£λ were determined. The objects (3) for <£χ —i.e. the function/ and
the QE^ deScj^ίΔ) for any βelλ,Ve Vλ, and Δ G wfe^-can be constructed
by means of (8.3)i and rules (hϊ_ 8), where (h?) coincides with rule (hr) in N8
for r G {1,3,4,... ,7} and with rule (hx

2) in N i l for r = 2. Furthermore we have
that

(h§) if Δ is (λxu . . . ,xm)Ani then A is </,rf/> (G P Q E ^ for ϋ = (tu...,tm,
t0)) in case LQE«/,rf / » is 0 ; and the (unique) η G LQE«f,d f))
otherwise-see (12.11), (12.13), (8.3)-(8.5), and assertion (7) below.

At this point let us determine (for <££ ) the objects (4) (in N9), i.e. g and
Δ = senscj'y(Δ), by using induction on 1Δ(< ω), assumptions (i) to (iii) in N8,
(8.3)2, (8.6), and rules (eϊ_8), where (e *) is rule (e,) in N8 for / G {1,3,4,... ,8}
and rule (e2 ) in Nl 1 for / = 2.

Now we can define QSf (t G τv) - i . e . the objects (5)-by (8.7) again. The-
orem 8.1 also holds for £ χ , so that one can define / λ ( ) - i . e . σE for σ G QSf
{t Gτviβ< λ) or object (6)-by (8.10). Thus objects (1) to (6) (following (9.1))
have been defined f o r £ χ ( 0 < β + l = λ < α j ) . Furthermore, by determining
<βχ for any limit ordinal λ as was done for £a in N9, we define £* completely.

Note that relations (9.2)-(9.4) continue to hold; furthermore it is natural
to use the obvious analogue for <££ of Definition 8.1.

Incidentally, let us prove that:

(7) for ξ- G PQEf, LQE(f) is at most a singleton.

Indeed assume that (i) mβ(ξ) = f = mβ(η) and (ii) ξ, η G QEJ^. Then the
case ξoτά = ηoτά clearly implies ξ = η, by (12.12). The opposite case cannot oc-
cur. In fact assume e.g. that (iii) £ o r d < ηoτά = δ<β. Then (12.11) and (12.12)
imply that η = raδ(£), whence LQE(η) Φ 0 by (12.13). Then (12.14) yields η φ.
Q E ^ , in contrast with (ii). Thus both inequality (iii) and its converse are impos-
sible.

N13 The validity in <£« of a general version of the hyper-intensionality axiom.
A maximality property for the QEΊs of £ „ The hyper-intensionality axiom
has the form (1.1) if, as it happens very often, one uses the assumption men-
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tioned in note 2, which in the semantics for £a (for <£̂  and <££ ) is equivalent
to the condition F = 0 (F = <0,O» (see the remarks following (11.3)). If this
condition is not assumed, (1.1) must be replaced by (13.1) below. While this and
(1.1) are valid in <£α or £*a only under certain restrictions on orders— see NN
10,11 —the following theorem on (13.1) holds for <££. Furthermore so does its
analogue for (11.1) in case the QE F is identified with <0,O>; and its proof is
quite similar to the one of Theorem 13.1.

Theorem 13.1 In £* the wff15

(13.1) f=gv {fg} = {a*,0ύ}. Ξ (vχί9... fxm).f(xl9... 9xm) =g(xu ,xm)

is true atVeV" and βela whenever (ϊ)f9g90# E E# and a* = a$(E E#) (see
(4.6)^ with ϋ = {t\9... ,tm9to) E τv9 (ii) X\ to xm are m variables of the respec-
tive types tx to tm9 (iii) δ, =de/xΓd ^ max(/ o r d ,g o r d ), and (iv) 0ϋ denotes (at β
and V) the empty attribute or function of type ϋ (see Definition (13.15) below).

Proof: Let L (R) be the left (right) hand side of the formal equivalence (13.1).
Then the <££ -designatum R ̂ d e s ^ R ) , where β E Ia and V E Va

9 depends
on the designata /( )' and g{ )' of f(xu . . . ,xm) and g(xu . . . ,xm) respec-
tively at β and V (see (5.11)) for all ξ (= (ξl9... , £ w » E A j ; x , . . x A?«.

In order to evaluate these designata, let xf (xf) be the object Δ defined by
(11.2) in case Δ, , V9 and Δo are replaced by xh V, and/ (g) respectively (/ =
1,.. ,,m). We have that:

(13.2) δ=wf^*f^xδi=wx?tά>β=*!rgotά*xrά(<<x) ( / = l , . . . , m ) .

Furthermore, e.g./' —def des^^ί/) is either F or a couple </i,δ>, where/i
(=def(f)\) is an m-ary function. We have that:

(13.3) 3DΛ e A?/ X . . . X Af« if fΦ F (30^ c A?/ x . . . x A?« if g Φ F).

Now assume t h a t / ^ F and ξ E A?} X . . . X Af«, so t h a t / * <0,O>. Then
€, E QS,f' U QE^ (/ = 1, . . . ,/w); and since δ < δ, = xfrd, for some V E F α

(5.11) holds. Hence by (11.2) xf= ξz (xf = ξf) for ξfrd < δ (ξfτd > δ); and the
analogue holds for xf because β < xfτd (/ = 1,.. ., m). Then by (12.7)

(13.4) χS=(x{9...9χfι) = ξEδ (χS = £Eβ).

By (13.3), (αy) if f Φ F, wΛetf ξ ranges over A?* X . . . x A ^ , Jf ̂  ranges
over a set containing 3D/j (α^rf xf = ζ for ξ E 3D/j). Likewise, (α^) holds.

Furthermore, by (13.4)

(13.5) δ = β=* (xf = xg for all j G A f j X . . . X Afj).

Step 1: The D-part L D R o / (13.1) holds.
Assume the truth of L (at β and V). Then either [fg] = {F,<0,O» or

/ = g. In the first alternative, by (h^) (which is (hv

2) in Nil) R is true because
/ ( " ) ' = F = gΓ)' for all ξ E A?/ x . . . x A?£. The other alternative implies
both » Λ = 3Dfl and δ = β9 so that (13.5)! implies (13.5)2. Then by assertions
(a/) and (ag)9 and by rule (h^), R is true again. Thus Step 1 holds.
Step 2: The part R D L of (13.1) tf/so ΛoWs.
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Indeed let R D L be false, as a hypothesis for a reductio ad absurdum. Then
at some 5 € / α and V G Va,R is true and L is false. By this falsity

(13.6) S= ί /,/{Γ,<0,O>}^ {/,#}, fφg.

Then at most one of the QE's/ and g is inside the set S. Furthermore/ and g
have symmetric roles in Theorem 13.1. Hence it suffices to consider the case
/fέS; in full detail:

(13.7) g Φfψ F,/i = (/>! * 0 (hence/ί S).

In the subcase g = F or gι = (g)i = 0, for some £ G 3D/P / Γ ) ' =* Γ =
g( )'. This contrasts with R's truth, deduced above. Thus Step 2 holds in this
subcase ( | G S ) .

In the remaining subcase we have that:

(13.8) fΦg,5)fιΦ0Φΐ>gι «/ |)n8 = 0).

The additional assumptions δ = β —i.e. (f)2 = (£>2—yields/i ^ £i and, by
(13.5), assertion (13.5)2 too. If we had SD/j =£ SDg,, then for some σ G (£>/, -
3D|j) U (ΐ>gι - 3DΛ) only one of the Q E ' s / Π ' and gΓ)f would be F by rule
(h2) in Ni l and by (af) and (o^). Thus R would be false, which is absurd.
Hence 2DΛ = S>gι.

However, fx Φ gλ and (13.5)2 hold. Then fx(xf) Φ gι(x8) for some £ G
»/,. H e n c e / Π ' ^ gTΊ' by rule (h^) in N i l . Thus R would be false again.
Therefore, in the aforementioned remaining subcase we must have δ Φ β and
(13.8)2_3 Hence it is not restrictive to assume that

(13.9) δ<β (andS>flΦ0ΦS>gl).

Now choose arbitrarily

(13.10) ξ E A?/ x . . . X A?£ (see (13.2) and (iii) following (13.1)).

Then, by R's truth, rule (hκ

2) in N i l , and (13.4)

(13.11) fΛ^6Ϋ =λ(xfΫ =K)' =K)f = gΛx8Ϋ = gΛ^β)^

Let us also assume (iv) σ G SD#1, so that (13.3)2 yields (v) ζEβ_ = σ for
some ξ G A?/ x . . . X A?£. For any such ξ, (13.11) holds with (vi)/i(ξE δ) =
gx(ξE^) Φ F. Then, by rule (hx

2) in N i l , (vii) p = ^ ξ E δ G % Γ We can now
show that:

(|3) for i = 1 to m9 either (viii) p, G QSjf - QEfj α«rf (ix) Pi = ξ = σi9 or

(otherwise) (x) p, G QEf. αwrf 60/Λ (xi) ξfδ = p, and (xii) eϋ/rer σ7 = p, o/* σz = ξ/

( ^ P / / o r p r d < € ? r d < l i 8 ) .

In fact, first (v), (vii), (viii), (13.9), and (12.7) yield (ix). Second, (vii) im-
plies (xi) in any case. Third, assume the falsity of (viii) and let (xii) be false as
a hypothesis for a reductio ad absurdum. Then (a) £/ Φ α, Φ p/. Hence by (v) and
(vii), (b) iψ = σ, Φ Pi = ξE δ. By (a) l f (b) l f and (12.7), (c) ξf = σz G Q E f . Then
£ord > σord = ^ > δ > pord R e n c e j . _̂  p . f § o t h a t fey ( χ i ) a n d ( j 2 ? ) > ξ E = p . G

QE?^, which contradicts (c) and (b)2. Thus (on the third place) the falsity of
(viii) implies (xii). Therefore (β) holds.
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Since (iv) yields (β) and, by (2.7), (β) yields σEδ = p, we conclude that

(T) if (iv) σ E 3)^, then (xiii) σE ό = p for some p E 3D/Ί hence

(13.12) 3)^ c 3DΛ/l = ^ {σ E A?, X . . . X A?Jσ E δ E 3DΛ} (δ = / o r d ) .

Now conversely assume (xiv) σ E SD^/j, i.e. (xiii), and (xv) σ E Afj X . . . X
Afw. Furthermore set ξ = σ, hence (xvi) ξE/? = σE^ = σ. By (xv) and (13.2)-so
that xfτά > j8 for / = 1 to m-some V E F α renders (5.11) true. Then (13.4)
holds (see below (13.3)). Furthermore, on the hypothesis that R D L is false
(made below Step 2) (13.11) holds. Therefore (xvi) and (xiii) (whence σEδ E 3D/j)
imply thatfι(σEδ) = g\(σEβ) = gx(σ) Φ F; hence (xvii) σ E 3Dfl. Thus (xiv)
entails (xvii), and we conclude that SD /̂j c 3)^. Hence, by (13.12)!, (xviii)

Since (13.10) implies (13.11), by (af) and (αg) (xv) yields ^ ( σ ) = / ! ( σ E δ ) .
Hence, by (xviii) and (12.12), g is the 0-mate mβ(f) o f/(E QE|^) . Then, by
(12.13), (xix) LQE(£) * 0 .

However, since g E QΈβ/ (so that g <£ Q E ^ ) , by (12.14) g E PQEg and
LQE(g) = 0 , which contradicts (xix). This absurd consequence of the assumed
falsity of R D L yields the truth of R D L. Thus Step 2 also holds. This completes
the proof of Theorem 13.1

Let us now show that the version of QE§ defined for ϋ j i n the above
recursive step (12.14) is the maximal version of QE$ that renders the wff (13.1)
true according to rule (h£), and that satisfies the natural condition QE§ 9
Q E ^ U PQEg.

Thus it is clear that our QE$'s for ££ fail to be some sorts of (proper)
general QE$'s, i.e. some QE§'s for the so-called general models which in some
logics are used to prove completeness theorems.

Theorem 13.2 Fix β < a and # = (tx,..., tm, t0) E τv; furthermore assume
that

(13.13) Q E § C Q E 5 P C Q E ^ U P Q E § (QEg = Q E ^ )

and that QEf, regarded as the set of the QE's (for £%) of orders <β and type
ϋ, is compatible with Theorem 13.1 — as well as the set QE% defined by clause
(12.14). Then (i) QΈf = QEg.

Proof: Let (i) be false as a hypothesis for a reductio ad absurdum. Then by
(13.13) and (12.14) there is some f e QEjf with LQE(f) Φ 0 . Hence by (12.13),
for some rj E Q E ^ , ζ = mβ(η) (ηorά < ford = β). At this point it is easy to show
the falsity of R D L f o r / = η and g = f where L (R) is the left (right) hand side
of the wff (13.1). Thus Theorem 13.1 is violated. Therefore (i) must hold.

It is easy to check the validity in <££ of the wff

(13.14) Δ = at D (vxu... ,xm).A(xu... ,xm) = < (see (4.6) and (1.1)2)

where d = {tu... ,tm,t0) E τv and Δ E E#.
Hence if Δ is a nondenoting functor (attribute) of <££, then Δ ( Δ i , . . . , An)

is a nondenoting (false) wfe.
Consider the metalinguistic definition
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(13.15) 0ύ =def (if).fΦa$A (vyi,...,ym).f(yu...,ym) = < (0 =

where yr is υ^^r (r = 1,. . . , m). And remark that in the ordinary (refined) ver-
sion of £χ, I mean the one where F = (?t) <0,O> is assumed, the first (sec-
ond) of the wff's

(13.16) 0 0 = α j , 0 0 gt at (ϋ = (tu.. .9tm,t0) G r,)

is valid. Furthermore, both this wff and (13.1) can be used as axioms for a logical

calculus based on <££.

N14 The Validity in £κ

a and £ « of a general version of the instantiation ax-

iom Consider the instantiation axiom scheme —which includes (1.2)

(14.1) (Vjt)F(x). D F(Δ), Δ being free for x in F(x) (see Convention 3.2)

where either (i) δ =def xoτά > F(Δ) o r d = 0, or (ii) δ > <5Δ =def Δo r d and Δ's length
1Δ equals 1, or else (iii) δ > δΔ.

The assertion in Nl that embodies (1.2) is included in the following:

Theorem 14.1 Axiom scheme (14.1) is valid in both £"a and £* .

Proof: Assume (a) des^ ((vx)F(x)) = T and (i). Then (in any of the languages
£κ

a and £*) for some V G Va

(14.2) ¥ζx)' =def desdV>[F(x)] = T for ξ, = A =def des^(Δ)

(see (5.11) with m = 1). Furthermore F(Δ) belongs to the ordinary extensional
segment £λ of £a. Hence the truth of F(Δ) (at β and V) can be deduced in a
usual way. Thus (14.1) is (logically) valid in case (i).

Now replace assumption (i) with either (ii) or (iii); and set (b) ξ{ = A =def

senscrv^Δ). Then the V G Va given by (5.11) for m = 1 exists. Thus, in obvi-
ous notations, (c) x' — ξι = Δ and hence (d) x' = Δ. Furthermore (a) implies (e)
F(xY = T again.

Briefly speaking, let φ(x) and φ(A) be any two corresponding sub-wfe's of
F{x) and F(Δ) respectively. By (c) and (d), it is a matter of routine to deduce
(f) φ(xY' = φ(Af and hence (g) φ(x)' — φ(Δ), by induction on the length of
φ(x). When φ(x) is F(x), (g) and (f) yield that F(Δ) = T. Thus (14.1) is also
valid in cases (ii) and (iii).

It is easy to check the validity (in, e.g., <££) of any wfe

(14.3) ( 3 J ) J = Δ with y not occurring free in Δ,

where Δ's type tA is in {0,..., v) -see (9.3)!-or tA G τv and yoτά > Δ o r d . Hence
these wff's have to be (axioms or) theorems of any (strong) logical calculus
£ β £ based on ££.

Now consider any wff

(14.4) (Vjc)(ajO(j> = x A G(x)) D G(A) with Δ free for x in G(x),

where (a) y fails to occur in x = x Λ G(Δ), (β) yorά = Δ o r d (or tA G {0,..., *>}),
and either (ii) or (iii) (below (14.1)) holds.
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Note that, in effect, in e.g. (14.4), (Vx)(3y)(y = x Λ . . . ) acts as a re-
stricted operator that can roughly be translated into "for all entities x of type tA,
whose sense belongs to <£§ Δ + 1 , . . . ". Therefore wff (14.4) (roughly) asserts
that G(Δ) occurs whenever G(x) holds for all the above entities x. Furthermore
any (some) of these is the senSc^Δ) for some (an arbitrarily prefixed) δ, 5J, and
V. Hence the antecedent of (14.4) appears neither too weak nor too strong; thus

(14.4) appears as a certainly satisfactory version of the instantiation principle
(for £κ

a or <££), in case (iii).
By the above considerations on (14.3), if (h) G(x) and G(Δ) are F(x) and

F(A), respectively, then for tA G (ζέ) {0, ...,*>} the antecedent of (14.1) appears
equivalent to (stronger than) the one of (14.4). In more detail (in, e.g., <££) the
former antecedent roughly says, in case (iii): F(x) holds for all entities whose
sense is expressible in £g Δ + 1 or whose extension is designatable in <£$ + 2

Therefore, if case (iii) holds and tA £ {0,..., *>}, the antecedent of (14.1) ap-
pears superabundant; and (on the assumption (h)) (14.4) appears as a logical con-
sequence of (14.1). In addition, in case (i) or (ii), (14.1) is certainly satisfactory
(like (14.4) in case (iii)). Therefore—see Theorem 14.2 below—(14.1) can be the
instantiation axiom of, e.g., a satisfactory lower predicate calculus LPC« based
o n £ « .

Clearly L P Q is expected to contain any ordinary axiom system for the
propositional calculus (obviously valid in ££, £^, and £ α ) and, e.g., the fol-
lowing (certainly valid) axiom (scheme).

(14.5) (VΛ:)(/7 D q) D. pD {vx)q with x not occurring free in /?.

The inference rules for LPC£ can also be assumed to be modus ponens
and multiple generalization of axioms.

Theorem 14.2 Any wff (14.4) is a theorem o / L P Q .

Proof: Briefly speaking, identify, e.g., F(A) with (3j>) [j> = Δ Λ G(Δ)], SO
that (iii) holds and (14.1) is an axiom. Furthermore, assume (Vx)F(x) for-
mally—i.e. in a deduction within LPC£. Then (14.1) yields F(Δ), which by (a)
(below (14.4)) is equivalent to (3j>) y = Δ .Λ G(Δ) according to any lower predi-
cate calculus. Thus G(Δ) can be deduced.

Remark. Forxoτd = β =defF(A)oτά>0, wff(14.1) can be false {in£y

aor£l).

The following example shows this for β = 1. Briefly speaking, assume

that —see convention 3.1 — Qι G E ( 1 ), f° G E ( 1 ; 1), P° and Δ are in E} as well as

xι and j 1 , and that the above wfe's Q1 to Δ are closed. Furthermore let β Gla

be such that, for all V G Va (in obvious notations) (a) P = P =/°(Δ) (hence

P is ostensive), (b) P o r d = 0, (c) Δ o r d = 1, and (d) Q 1 ^ 1 ) = Ύiffy1=P (which

determines Q 1). Then, for all V G VaJ°(xl) is Φ P and has the order zero

because xι G E! and (9.3)! holds. Hence, by (d) and rule (hj) = (hy

2) in Ni l ,

(e) Qι(f°(x1)) =Ίfor all V G Va.

Now we identify x with xι andF(x) (F(Δ)) with - Q 1 [f°(x)] (~Qι[f°(Δ)]).

Then, by (e), the antecedent of (14.1) is (closed and) true. Instead the consequent

F(A) is false. Indeed, by (c), / 0 ( Δ Γ o r d = 1; hence, briefly, the predicate Q*

cannot be sensitive to/°(ΔΓ and, by rule (h$) = (h^) in Ni l , it perceives/°(Δ)
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(= P by (a)). Thus Q ^ / ^ Δ ) ] = Qι(P) = T by (d). Hence F(Δ) is false and
the same holds for (4.1).

NOTES

1. In [6] Bressan uses an unusual extensional language in which, e.g., the (primitive)
matrix of the ordinary language P is the position of the mass point M at the instant
ϋ, briefly P = pos*(M,#), is replaced by the matrix Pis... instant d, in the T-case
(orpossible world) 7, briefly P = pos(M, d,y). Note that the number of the argu-
ment places of the functions pos* and pos are different. The foundations of me-
chanics according to Mach and Painleve can be based on such a language, in spite
of physically possible phenomena, and hence modalities, being essential for that
purpose.

The above substitution of pos*(M,#) with pos(M,#,γ) has to be performed
at the intuitive level when the language of [6] is used, while no such analogue is re-
quired when the modal language ML" (see [7]) is chosen as logical basis. Hence the
formalization carried out in [6] appears partial. Incidentally, ML" can deal with
very general modal contexts, for which the substitutions required at the intuitive
level on the basis of [6] would be much more complex than the above one.

By means of S£v

a a strong formalization is performed, so that this theory
differs much from, e.g., Quine's work in [22]. In constructing §<££ powerful results
were preferred to simplicity.

2. For the sake of simplicity it is assumed here that the nonexisting relation (function)
coincides with the empty set, and hence with the empty relation (function).

3. Definition (2.4) is criticized because it may happen that (ϊ)p happens to be true, (ii)
3ΐl believes this, but (iii) he reaches this belief by an incorrect procedure, and (iv)
if 3ft became aware of this incorrectness, he would change that belief. Thus defi-
nition (2.4) may appear not to be adequate in this case.

However, now we are considering the notion of knowing from a rigorous
point of view; and this is closer to science than to everyday life. Thus, in accordance
with some ideas of Carnap (see [16], pp. 3-7) the rather vague everyday notion of
knowing is an explicandum to be replaced with possibly several exact notions, called
by him explicata, which need not be very similar to the explicandum, but are expected
to fulfill other requirements, possibly including simplicity. I think that definition
(2.4) affords us one of these explicata, which is useful in many situations—including
the one described by (i) to (iv)—and is particularly simple.

4. In order to comply with the treatment of §<££ in [10], we ought to write 0 < μ <
a + ω. However, only the condition 0 < μ < β + ω (which practically fails to affect
that treatment) renders, e.g., the λ-th segment <£λ of <£« a language of the same
type as £ α (0 < λ < α).

5. The examples considered for Case Cl and based on (4.5) or (4.8)-(4.10) can also be
formulated within £ ~ . This can be done directly if a variable x° of order zero be-
longs to <£~, or indirectly—i.e. by restricting x suitably—if every variable x of <£*
is orderless.

6. For instance, the intension of an entity Δ can be defined within ML" itself as the
intensional singleton {Δ}' of Δ, where {a\,...,an)' =def (\x) Πx = aλ v . . . v DΛ: =
an (see Definition 18.13 in [7], p. 68).
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7. By definitions (4.8)-(4.10), under suitable circumstances, the term "George's birth
in Rome", say Δ, has the same sense —or more precisely the same ambiguity-sense
(considered for 'dormouse' in N2) —as the term y. Thus, by the considerations above
(involving (4.7)-(4.13)), in the same circumstances the nonexistence of George's birth
in Rome is equivalent top's falsity.

In that case Δ can be reasonably translated in £a by a wfe in Eo or E(0); e.g.
by y (see (4.8.1) and (4.7), or (4.9.1)). Of course Δ has a complex meaning; in other
circumstances Δ may express the process of George's birth (supposed to occur in
Rome) with its starting and ending instants determined according to the criteria of
some particular physician. Then Δ's translation in <£α may perhaps be similar to
(4.7) or (4.9.1), but certainly more complex and possibly of a type Ψ 0. Since the
ostensivization symbol 0 introduced in Bressan [12] is expected to simplify such
translations, some proposals for them are planned to be given in future works.

8. According to device (D) one has to interpret e.g. (DO Δi D Δ2 as ifAl9 then Δ2,
where Δ stands for Δ is a true proposition, (D2) (VJC)Δ as for every x Δ, and (D3)
(ix)Δ as the x such that Δ. Furthermore, more generally, every possibly nonlogi-
cal operator (Q,xλ,... ,x) to be applied to assertions can also be applied to terms by
interpreting (Ωxu . . . ,xn)A as (ΩΛΓI, . . . ,xn)A.

9. Theorem 6.1,λ for 0 < λ < a is in effect a particular case of Theorem 6.1 asserted
and proved in [12]. More precisely, (6.5) is in effect implication (6.1)3 in [12].

10. The recursion hinted at by means of clauses ( S ^ ) concerns, not the types of the
QS^'s, but their levels (which roughly speaking are the levels of the simplest wfe's
capable of denoting them).

11. Consider e.g. a property-QE whose domain contains exactly one QS of order δ for
every δ < β, a limit ordinal. Its order is β.

12. If ξ is an «-tuple, its /th component is denoted by ξ, (/=1,. ..,«):£• = <£i,. ..,£„>.

13. Relations (9.3) are in effect stated and proved in Bressan [11] —see note 7.

14. In presenting the theory of IR, any mathematician 3Π carefully distinguishes
R ( Q ) from Q; and he defines the set HR of irrational numbers to be R - R ( Q ).
Later, generally for economy of expressions (and thoughts), especially in speaking
with physicists, 911 identifies Q with R (Q); and practically he says, e.g; "if x is a ra-
tional number and y is irrational, then x + y is irrational". Here 9TC in effect forgets
or disregards his rigorous definitions of Q, R, and HR; these definitions have now
at most the roles of intuitive characterizations of the notions Q to BLR, which thus
are used as primitives of an axiomatic theory.

Since the difference between Q and R(αί) is generally disregarded by physicists
(completely), especially in talking with them it is natural for 3ϊl to use the synonymy
relations (12.3)-(12.4). Furthermore, the sense in which 911 uses e.g. Q in this sit-
uation can reasonably be regarded as ostensive according to [5], pp. 184-186.

Something similar is practically required to solve the so-called paradox of
analysis:

(a) P = H (Phosphorous = Hesperous), B(G,P Ψ H) (George believes that P Φ H).

In fact (a) can be solved in <£α by regarding P and H as constants of orders
>0, that are primitives of a theory 3 based on <£α. In £a — 3, P (H) can be intui-
tively characterized by means of a definition (such as those considered in [5], p. 178)
as the most brilliant morning (evening) star. Then (a)J>2 can be postulated in 3, in
that they can be true in <£α's semantics.
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15. Set So = (iF)(VG g R).FU G = G and Si = (iF)(vG c R).FU G = [0,1]. Then
mathematicians (generally) assert that So exists, So is 0 , SΊ is not 0 , and 5 t does
not exist—i.e. a* Φ So = 0 Φ Si =a*. These assertions contrast with (11.1) and are
compatible with (13.1).
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